JP3633141B2 - Anti-bacterial molded product - Google Patents

Anti-bacterial molded product Download PDF

Info

Publication number
JP3633141B2
JP3633141B2 JP25857896A JP25857896A JP3633141B2 JP 3633141 B2 JP3633141 B2 JP 3633141B2 JP 25857896 A JP25857896 A JP 25857896A JP 25857896 A JP25857896 A JP 25857896A JP 3633141 B2 JP3633141 B2 JP 3633141B2
Authority
JP
Japan
Prior art keywords
molded product
polymer
antibacterial
antibacterial molded
molded article
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25857896A
Other languages
Japanese (ja)
Other versions
JPH10101828A (en
Inventor
睦夫 村上
一裕 棚橋
修 川並
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP25857896A priority Critical patent/JP3633141B2/en
Publication of JPH10101828A publication Critical patent/JPH10101828A/en
Application granted granted Critical
Publication of JP3633141B2 publication Critical patent/JP3633141B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Apparatus For Disinfection Or Sterilisation (AREA)
  • Materials For Medical Uses (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バクテリアまたはバクテリア由来の菌体成分の付着を抑制する抗バクテリア成型品に関する。
【0002】
【従来の技術】
我々の生活空間には各種の細菌、カビ、バクテリア等の微生物が存在している。そして、高温多湿な環境下ではそれらの繁殖がとくに活発であり繊維の変質、変色などの現象や、腐敗・発酵現象を起こしたり、不快な臭気を発生したりしている。また、医療施設においても創傷感染や術後感染などが少なからず発生し、関心の高い事項の1つである。
【0003】
従来、抗菌および抗カビ加工法としては天然または合成繊維に抗菌力をもつ化合物、たとえば第四級アンモニウム塩などを塗布したり、化合物溶液に繊維を含浸する方法、銀や銅などの金属またはその化合物を練り込む方法などが知られている。しかし、これらの方法では効力に持続性がなかったり、抗菌剤の脱落による安全衛生上および排水公害の面からも問題であった。またこれが食品用途特に飲料関係に応用された場合、味覚を損なうだけでなく有害となることが懸念される。
【0004】
【発明が解決しようとする課題】
本発明は、例えば水、水溶液、体液、血液中などに含まれるバクテリアまたはバクテリア由来の菌体成分の付着を抑制し、その耐久性に優れる抗バクテリア成型品を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、上記目的を達成するために、下記の構成を有する。
【0006】
「基材に、ポリエチレンオキサイド単位を側鎖に有する下記一般式(1)で示される繰り返し単位を有する重合度が15〜200の重合体を設けたことを特徴とする抗バクテリア成型品。
【0007】
【化2】

Figure 0003633141
(式中RはHまたはCH、RはH、CHおよびCから選ばれ、nは50〜200の整数を示す)」
【0008】
【発明の実施の形態】
以下、本発明を詳細に説明する。
【0009】
本発明でいうバクテリアとは、とくに限定されるものではなく、例えば、大腸菌で代表されるグラム陰性菌や黄色ブドウ球菌で代表されるグラム陽性菌および真菌、藻類、リケッチア、マイコプラズマ、ウイルスなどを例示することができる。
【0010】
本発明でいう重合体とは、ポリエチレンオキサイド単位を側鎖に有する上記一般式(1)で示される繰り返し単位を有し、その重合度が、15〜200のものをいう。但し、他の重合成分と共重合していてもよく、例えば、アクリロニトリルとの共重合体、具体的にはポリエチレングリコールモノアクリル酸、中でもメトキシポリエチレングリコールメタクリレートなどが化学的にも安定であり好ましいnは官能基の自由度に関与し、短すぎるとバクテリアに認識されず、ポリマ表面に付着して増殖する。また長すぎると合成しにくいので、nは15〜200好ましくは20〜120がよい。とりわけ50〜100がより好ましい、R、Rは水素またはアルキル基であり、炭素数が多いと疎水性が強くなるため官能基がバクテリアと接触しにくくなるので、最も炭素数が少ないメチル基が最良である。また、該重合体は使用条件において溶出物がなく、実質上不活性である。
【0011】
本発明でいう抗バクテリア成型品の製造方法の一態様を以下に挙げる。
【0012】
ポリエチレングリコールモノアクリル酸あるいはメタクリル酸エステルを製造しこれを塩化ビニル単位を含むビニル重合体成分にグラフト重合する。ここでいうビニル重合体成分とは、塩化ビニルホモポリマーの他に塩化ビニルと酢酸ビニルの共重合体、塩化ビニルと酢酸ビニル、エチレンの三元共重合体、またこれらのポリマーに可塑剤や安定剤などを混合したものなどを例示することができる。ここでいうポリエチレングリコールモノアクリル酸あるいはメタクリル酸エステルは、対応するポリエチレングリコールとアクリル酸メチルあるいはメタクリル酸メチルのエステル交換反応により得ることができる。
【0013】
また、グラフトする方法は、公知の方法など特に限定されるものではないが、ビニル重合体成分に光官能基を導入し、その光分解から生成するラジカルによる光グラフト重合が高グラフト率の重合体を得ることができる点で、好ましい方法である。
【0014】
本発明において、基材としては、特に限定されるものではないが、例えば、ポリウレタン、ポリ塩化ビニル、ポリアミド、ポリエチレンまたはそれらの混合物などが挙げられる。
【0015】
本発明でいう抗バクテリア成型品の製法としては、該重合体を、上記基材成分と、ブレンドし、抗バクテリア成型品として成型する方法、又、該重合体を有機溶媒に溶解した後、各種合成樹脂からなる上記基材表面にコーティングする方法などが挙げられる。
【0016】
接触の方法として、通液したり瀘別する方法も好ましく用いられる。そして単独または、各種セルロース系誘導体、アクリロニトリル系重合体、ポリビニルアルコール系重合体、ポリメチルメタクリレート系重合体などから成る多孔質膜のようなものと組み合わせた使い方も可能である。
【0017】
本発明でいう抗バクテリア成型品の使用例をあげると、該成型品に輸液、透析液、血液、生理食塩液、水溶液、水またはアルコール、ジュースなどを循環または通液させる方法、循環または通液回路からの漏洩を防ぐため該成型品で被覆する方法などがある。
【0018】
以下に実施例を示すが、本発明はこれら実施例により限定されるものでない。
【0019】
【実施例】
実施例
(1)DTC化PVCの合成
3リットルセパラブルフラスコにN,N−ジメチルホルムアミド(DMF)2.0リットルを仕込み、撹拌下でポリ塩化ビニル(PVC)120gを少量ずつ仕込み、常温で溶解させた。温度を上げ内温が55℃になれば、DMF50mlにN,N−ジエチルジチオカルバミン酸ナトリウム(DTC−Na)5.408gを溶解させたものを添加し、55℃で3時間遮光下で反応した。この反応物を冷却したメタノール3リットル中に再沈し、撹拌後大過剰の水で十分水洗した。メタノール洗浄後分離し、乾燥してDTC化PVC110gを得た。このポリマ中のS含量は1.2%であった。
【0020】
(2)光グラフトポリマの合成
2リットルセパラブルフラスコに光照射装置をセットし、あらかじめ溶解しておいたメトキシポリエチレングリコールメタクリレート(M−90G、エチレンオキサイド部分の重合度90)400g/テトラヒドロフラン670ml溶液を仕込み、次いでジメチルアミノエチルメタクリレート1.0g、さらにDTC化PVC100g/テトラヒドロフラン1000ml溶液を仕込む。内温を40℃にコントロールしながら光照射を行い重合反応を行った。所定時間ごとに粘度測定し、規定粘度に到達すれば光照射を終了した。メタノール中に沈殿させ、水及びメタノールで十分洗浄後乾燥し180gのグラフトポリマを得た。このポリマのグラフト率は75%であった。
【0021】
実施例2
実施例1に示したグラフトポリマ5gをテトラヒドロフラン50mlに溶解後、ポリウレタンのチューブ(5Frサイズ)を軸方向に浸漬してグラフトポリマを塗布して乾燥した。該チューブ(2cm長)をアルコールで消毒した後、大腸菌(MC1061株)を菌濃度10個/mlになるように懸濁した燐酸緩衝液に浸漬し、24時間静置した。24時間後にチューブに付着した菌数を測定した。対照としてグラフトポリマを塗布していないポリウレタンチューブについても同様に操作した。その結果、付着菌数は、グラフトポリマを塗布していないポリウレタンチューブの場合は1024個、グラフトポリマを塗布したチューブでは89個であった。
【0022】
実施例3 実施例1に示したグラフトポリマ5gをテトラヒドロフラン50mlに溶解後、ポリ塩化ビニルのチューブ(5Frサイズ)を軸方向に浸漬してグラフトポリマを塗布して乾燥した。該チューブ(2cm長)をアルコールで消毒した後、大腸菌(MC1061株)を菌濃度104個/mlになるように懸濁した燐酸緩衝液に浸漬し、24時間静置した。24時間後にチューブに付着した菌数を測定した。対照としてグラフトポリマを塗布していないポリ塩化ビニルチューブについても同様に操作した。その結果、付着菌数は、グラフトポリマを塗布していないポリ塩化ビニルチューブの場合は1050個、グラフトポリマを塗布したチューブでは105個であった
【0025】
実施例 アクリロニトリル182重量部とメトキシポリエチレングリコールメタクリレート(M−100G、エチレンオキサイド部分の重合度100 )78部をジメチルスルホキシド1474部に加え、重合開始剤として2,2´−アゾビス−2,4−ジメチルバレロニトリル1.4部を添加し、50℃で24時間重合した後、水/メタノールで再沈、精製してM−100G共重合ポリアクリロニトリルを得た。
【0026】
該重合体4gをジメチルアセトアミド80gに溶解し、ポリウレタンチューブ(5Frサイズ)にコーティングした。約24時間乾燥した後、該チューブを実施例2のように大腸菌を用いて9時間後の付着菌数を測定した。その結果、付着菌数は、未処理のポリウレタンチューブの場合は860個、該重合体をコーティングしたチューブは350個であった。
【0027】
【発明の効果】
本発明の抗バクテリア成型品は、合成樹脂成型品に容易にコーティングまたは混合でき、バクテリアを含有する媒体に接触させてもバイオフィルムを形成せず、バクテリア由来の菌体成分の付着を抑制するので安全衛生上及び取扱上からも有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an antibacterial molded article that suppresses adhesion of bacteria or bacterial cell components derived from bacteria.
[0002]
[Prior art]
In our living space, there are various microorganisms such as bacteria, molds and bacteria. In a hot and humid environment, their breeding is particularly active, causing phenomena such as fiber alteration and discoloration, rot and fermentation, and unpleasant odors. In medical facilities, wound infections and post-operative infections occur frequently, which is one of high interest.
[0003]
Conventionally, antibacterial and antifungal processing methods include applying antibacterial compounds such as quaternary ammonium salts to natural or synthetic fibers, impregnating fibers in compound solutions, metals such as silver and copper or their A method of kneading a compound is known. However, these methods are not durable and have problems in terms of safety and hygiene due to dropping off of antibacterial agents and drainage pollution. Moreover, when this is applied to food applications, particularly beverages, there is a concern that it not only impairs the taste but also becomes harmful.
[0004]
[Problems to be solved by the invention]
An object of the present invention is to provide an antibacterial molded article that suppresses adhesion of bacteria or bacteria-derived bacterial cell components contained in, for example, water, aqueous solutions, body fluids, blood, and the like, and has excellent durability.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the present invention has the following configuration.
[0006]
“An antibacterial molded article characterized in that a polymer having a degree of polymerization of 15 to 200 having a repeating unit represented by the following general formula (1) having a polyethylene oxide unit in the side chain is provided on a base material.
[0007]
[Chemical formula 2]
Figure 0003633141
(Wherein R 1 is selected from H or CH 3 , R 2 is selected from H, CH 3 and C 2 H 5 , and n represents an integer of 50 to 200) ”
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
[0009]
The bacteria referred to in the present invention are not particularly limited, and examples thereof include gram-negative bacteria represented by E. coli and gram-positive bacteria represented by Staphylococcus aureus, fungi, algae, rickettsia, mycoplasma, and viruses. can do.
[0010]
The polymer referred to in the present invention means a polymer having a repeating unit represented by the above general formula (1) having a polyethylene oxide unit in the side chain and a polymerization degree of 15 to 200. However, it may be copolymerized with other polymerization components. For example, a copolymer with acrylonitrile, specifically, polyethylene glycol monoacrylic acid, especially methoxypolyethylene glycol methacrylate is preferable because it is chemically stable. Is involved in the degree of freedom of the functional group, and if it is too short, it is not recognized by bacteria and grows attached to the polymer surface. Moreover, since it is difficult to synthesize | combine when too long, n is 15-200, Preferably 20-120 is good. In particular, 50 to 100 are more preferable. R 1 and R 2 are hydrogen or an alkyl group, and when the number of carbon atoms is large, the hydrophobicity becomes strong and the functional group is difficult to come into contact with bacteria. Is the best. Further, the polymer is substantially inactive without any eluate under use conditions.
[0011]
One embodiment of the method for producing an antibacterial molded product as referred to in the present invention will be described below.
[0012]
Polyethylene glycol monoacrylic acid or methacrylic acid ester is produced, and this is graft-polymerized to a vinyl polymer component containing vinyl chloride units. The vinyl polymer component here means a vinyl chloride / vinyl acetate copolymer, a vinyl chloride / vinyl acetate copolymer, a terpolymer of ethylene, and a plasticizer and a stable polymer. What mixed the agent etc. can be illustrated. The polyethylene glycol monoacrylic acid or methacrylic acid ester mentioned here can be obtained by a transesterification reaction between the corresponding polyethylene glycol and methyl acrylate or methyl methacrylate.
[0013]
In addition, the grafting method is not particularly limited, such as a known method, but a polymer having a high graft ratio is obtained by introducing a photofunctional group into a vinyl polymer component and performing photograft polymerization by radicals generated from the photolysis. Is a preferable method in that it can be obtained.
[0014]
In the present invention, the substrate is not particularly limited, and examples thereof include polyurethane, polyvinyl chloride, polyamide, polyethylene or a mixture thereof.
[0015]
As the method for producing an antibacterial molded product in the present invention, the polymer is blended with the above-mentioned base component and molded as an antibacterial molded product, or after the polymer is dissolved in an organic solvent, Examples include a method of coating the surface of the substrate made of a synthetic resin.
[0016]
As a contact method, a method of passing or separating liquid is also preferably used. And it can be used alone or in combination with a porous membrane made of various cellulose derivatives, acrylonitrile polymers, polyvinyl alcohol polymers, polymethyl methacrylate polymers and the like.
[0017]
Examples of the use of the antibacterial molded product according to the present invention include a method for circulating or passing an infusion solution, dialysate, blood, physiological saline solution, aqueous solution, water or alcohol, juice, etc., circulation or fluid passing through the molded product. In order to prevent leakage from the circuit, there is a method of covering with the molded product.
[0018]
Examples are shown below, but the present invention is not limited to these examples.
[0019]
【Example】
Example (1) Synthesis of DTC-converted PVC Charged 2.0 liters of N, N-dimethylformamide (DMF) into a 3 liter separable flask, charged with 120 g of polyvinyl chloride (PVC) little by little under stirring, and dissolved at room temperature. I let you. When the temperature was raised and the internal temperature reached 55 ° C, a solution obtained by dissolving 5.408 g of sodium N, N-diethyldithiocarbamate (DTC-Na) in 50 ml of DMF was added, and the reaction was carried out at 55 ° C for 3 hours in the dark. This reaction product was re-precipitated in 3 liters of cooled methanol, and then sufficiently washed with a large excess of water after stirring. After washing with methanol, it was separated and dried to obtain 110 g of DTC PVC. The S content in this polymer was 1.2%.
[0020]
(2) Synthesis of photograft polymer A light irradiation device was set in a 2 liter separable flask, and a pre-dissolved solution of 400 g of methoxypolyethylene glycol methacrylate (M-90G, degree of polymerization of ethylene oxide part 90) / 670 ml of tetrahydrofuran was added. Then, 1.0 g of dimethylaminoethyl methacrylate and a solution of 100 g of DTC PVC / 1000 ml of tetrahydrofuran are charged. The polymerization reaction was carried out by light irradiation while controlling the internal temperature at 40 ° C. Viscosity was measured every predetermined time, and light irradiation was terminated when the specified viscosity was reached. It was precipitated in methanol, sufficiently washed with water and methanol and dried to obtain 180 g of graft polymer. The graft ratio of this polymer was 75%.
[0021]
Example 2
After 5 g of the graft polymer shown in Example 1 was dissolved in 50 ml of tetrahydrofuran, a polyurethane tube (5 Fr size) was immersed in the axial direction, and the graft polymer was applied and dried. After the tube (2 cm length) was sterilized with alcohol, E. coli (MC1061 strain) was immersed in phosphate buffer solution was suspended at a cell concentration 104 cells / ml, and allowed to stand 24 hours. The number of bacteria attached to the tube was measured after 24 hours. As a control, the same operation was performed for a polyurethane tube not coated with a graft polymer. As a result, the number of adherent bacteria was 1024 in the case of the polyurethane tube not coated with the graft polymer and 89 in the tube coated with the graft polymer.
[0022]
Example 3 After 5 g of the graft polymer shown in Example 1 was dissolved in 50 ml of tetrahydrofuran, a polyvinyl chloride tube (5 Fr size) was immersed in the axial direction, and the graft polymer was applied and dried. After sterilizing the tube (2 cm long) with alcohol, Escherichia coli (MC1061 strain) was immersed in a phosphate buffer solution suspended at a concentration of 10 4 cells / ml and allowed to stand for 24 hours. The number of bacteria attached to the tube after 24 hours was measured. As a control, the same operation was performed for a polyvinyl chloride tube not coated with a graft polymer. As a result, the number of adherent bacteria was 1050 for the polyvinyl chloride tube not coated with the graft polymer and 105 for the tube coated with the graft polymer .
[0025]
Example 4 182 parts by weight of acrylonitrile and 78 parts of methoxypolyethylene glycol methacrylate (M-100G, degree of polymerization of ethylene oxide part 100) were added to 1474 parts of dimethyl sulfoxide, and 2,2'-azobis-2,4- as a polymerization initiator. After adding 1.4 parts of dimethylvaleronitrile and polymerizing at 50 ° C. for 24 hours, reprecipitation with water / methanol and purification were carried out to obtain M-100G copolymer polyacrylonitrile.
[0026]
4 g of the polymer was dissolved in 80 g of dimethylacetamide and coated on a polyurethane tube (5 Fr size). After drying for about 24 hours, the number of attached bacteria after 9 hours was measured using Escherichia coli for the tube as in Example 2. As a result, the number of adherent bacteria was 860 in the case of an untreated polyurethane tube, and 350 tubes coated with the polymer.
[0027]
【The invention's effect】
The anti-bacterial molded product of the present invention can be easily coated or mixed with a synthetic resin molded product, does not form a biofilm even when brought into contact with a medium containing bacteria, and suppresses adhesion of bacterial cell components derived from bacteria. It is also useful for safety and health and handling.

Claims (7)

基材に、ポリエチレンオキサイド単位を側鎖に有する下記一般式(1)で示される繰り返し単位を有する重合度が15〜200の重合体を設けたことを特徴とする抗バクテリア成型品。
Figure 0003633141
(式中RはHまたはCH、RはH、CHおよびCから選ばれ、nは50〜200の整数を示す)
An antibacterial molded article, wherein a polymer having a repeating degree of 15 to 200 having a repeating unit represented by the following general formula (1) having a polyethylene oxide unit in the side chain is provided on a base material.
Figure 0003633141
(Wherein R 1 is selected from H or CH 3 , R 2 is selected from H, CH 3 and C 2 H 5 , and n represents an integer of 50 to 200)
該重合体をコーティングにより設けたことを特徴とする請求項1記載の抗バクテリア成型品。2. The antibacterial molded article according to claim 1, wherein the polymer is provided by coating. 該重合体を基材に混合することにより設けたことを特徴とする請求項1記載の抗バクテリア成型品。The antibacterial molded article according to claim 1, wherein the antibacterial molded article is provided by mixing the polymer with a base material. 該基材が、合成樹脂成型品であることを特徴とする請求項1〜3のいずれかに記載の抗バクテリア成型品。The antibacterial molded product according to any one of claims 1 to 3, wherein the substrate is a synthetic resin molded product. 該合成樹脂成型品が、ポリウレタン、ポリ塩化ビニル、ポリアミド、ポリエチレンおよびこれらの混合物から選ばれる材料から成ることを特徴とする請求項1〜4のいずれかに記載の抗バクテリア成型品。The antibacterial molded article according to any one of claims 1 to 4, wherein the synthetic resin molded article is made of a material selected from polyurethane, polyvinyl chloride, polyamide, polyethylene, and a mixture thereof. 該抗バクテリア成型品が、カテーテル、チューブ、シース、ステント、チューブコネクター、排液バック、血液回路および飲料用途から選ばれることを特徴とする請求項1〜5のいずれかに記載の抗バクテリア成型品。The antibacterial molded product according to any one of claims 1 to 5, wherein the antibacterial molded product is selected from a catheter, a tube, a sheath, a stent, a tube connector, a drainage bag, a blood circuit, and a beverage application. . 該抗バクテリア成型品が、腹腔内に留置するチューブ、コネクターおよびポートから選ばれることを特徴とする請求項1〜5のいずれかに記載の抗バクテリア成型品。The antibacterial molded product according to any one of claims 1 to 5, wherein the antibacterial molded product is selected from a tube, a connector and a port placed in the abdominal cavity.
JP25857896A 1996-09-30 1996-09-30 Anti-bacterial molded product Expired - Fee Related JP3633141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25857896A JP3633141B2 (en) 1996-09-30 1996-09-30 Anti-bacterial molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25857896A JP3633141B2 (en) 1996-09-30 1996-09-30 Anti-bacterial molded product

Publications (2)

Publication Number Publication Date
JPH10101828A JPH10101828A (en) 1998-04-21
JP3633141B2 true JP3633141B2 (en) 2005-03-30

Family

ID=17322203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25857896A Expired - Fee Related JP3633141B2 (en) 1996-09-30 1996-09-30 Anti-bacterial molded product

Country Status (1)

Country Link
JP (1) JP3633141B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6908878B2 (en) * 2016-03-29 2021-07-28 東レ株式会社 Manufacturing methods for medical polymers, medical polymer solutions and medical devices
JP2019183021A (en) * 2018-04-12 2019-10-24 東洋インキScホールディングス株式会社 Biofilm formation suppression coat agent, and biofilm formation suppression laminate

Also Published As

Publication number Publication date
JPH10101828A (en) 1998-04-21

Similar Documents

Publication Publication Date Title
US6497868B1 (en) Graft polymer and moulded medical articles employing this
JP6373872B2 (en) Medical tools
JP2003508604A (en) Antimicrobial additives
PT639989E (en) METHOD FOR REDUCING THE ADHERENCE OF MICROORGANISMS
CN106075577A (en) Antibacterial coating based on organic guanidine salt and polyethylene glycol
WO2013027556A1 (en) Antithrombogenic material and medical device
CN109942751B (en) Preparation method of plastic antibacterial material
CN105153356A (en) Amphiphilic fluorine-containing block copolymer antibacterial material and preparation method thereof
JP4273965B2 (en) Antithrombotic composition and medical device having the same
RU2141491C1 (en) Antiseptic textile material and method of antiseptic protection of solid substrate
CN111514433A (en) Interventional catheter, preparation method and application thereof
CN115382025A (en) Method for constructing hydrophilic antifouling coating on surface of medical implant material
US20030054185A1 (en) Biocidal controlled-release formulations
JP3633141B2 (en) Anti-bacterial molded product
JP2003509546A (en) Copolymer of acryloylaminoalkyl compound
JPH06239941A (en) Antimicrobial polymer
JP3541627B2 (en) Graft polymer and molded article for medical use using the same
Balakrishnan et al. Chemical modification of poly (vinyl chloride) using poly (ethylene glycol) to improve blood compatibility
Park et al. The design and evaluation of a burn wound covering
CN1200956C (en) Graft polymer and moldings thereof for medical supply
JP2001204809A (en) Blood-compatible composition, and medical instrument coated with same
KR20000069875A (en) Graft Polymer and Moldings Thereof for Medical Supply
CN108003740A (en) A kind of antibacterial polymer of blood compatibility and its preparation method and application
JPH0624592B2 (en) Anticoagulant material
JP4691745B2 (en) Method for coating antibacterial antithrombotic material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120107

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130107

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees