JP3630517B2 - Method for manufacturing stator coil of rotating electric machine - Google Patents

Method for manufacturing stator coil of rotating electric machine Download PDF

Info

Publication number
JP3630517B2
JP3630517B2 JP01368397A JP1368397A JP3630517B2 JP 3630517 B2 JP3630517 B2 JP 3630517B2 JP 01368397 A JP01368397 A JP 01368397A JP 1368397 A JP1368397 A JP 1368397A JP 3630517 B2 JP3630517 B2 JP 3630517B2
Authority
JP
Japan
Prior art keywords
stator coil
brazing
melting point
hollow conductor
brazing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01368397A
Other languages
Japanese (ja)
Other versions
JPH10215534A (en
Inventor
憲寛 渡辺
洋一 小谷
久宣 岡村
征彦 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP01368397A priority Critical patent/JP3630517B2/en
Publication of JPH10215534A publication Critical patent/JPH10215534A/en
Application granted granted Critical
Publication of JP3630517B2 publication Critical patent/JP3630517B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Windings For Motors And Generators (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、大容量の回転電機の固定子コイルの製造方法に関するものである。
【0002】
【従来の技術】
一般に発電機や電動機の回転電機の固定子コイルユニットは、発熱を抑制するため、電機子内部を冷却する必要がある。特に大容量機の固定子コイルユニットの冷却方法の一つとして、固定子コイルを構成する中空導体内部に冷媒(絶縁油及び純水)を流す直接冷却方式が採用されている。
【0003】
固定子コイルユニットは、長手方向に冷媒用孔を有する中空導体を少なくとも1本用いており、固定子コイル、冷媒給排水及び電気接続端子を兼ねた接続箱、接続ホース10からなっている。
【0004】
固定子コイルは、直線部とエンド部から構成されており、直線部は固定子のコア内に納められている。固定子コイルの両端のエンド部には、接続箱が設置され、接続箱に設けられている口金を通して、固定子コイルを構成する中空導体の内部に冷媒が給排水される。これにより固定子コイルの内部から冷媒により冷却される構造となっている。
【0005】
一方接続箱に設けられている接続端子は、他の固定子コイルに電気的に接続されている。電機外部と固定子コイルの冷媒給排水をつなぐために接続ホースが設けられる。絶縁油や水などの冷媒は、回転機外部から接続ホースに供給され、接続箱、固定子コイル、接続箱、接続ホースの順序で流れ、回転機外へ排出される構造となっている。
【0006】
接続箱は三つの部分、すなわち、固定子コイルの内外部への冷媒の給排水を行う口金と、固定子コイルの外部と電気接続を行う端子と、接続箱と固定子コイルの接続部分とから構成されている。この部分は、接続箱と固定子コイルの組み立てを容易にするため、接続箱のうち2面が削除されている。一面は固定子コイルの引き出し口で、他面は固定子コイルの組み立てを容易にするために設けられている。
【0007】
接続箱と、中空導体を有するコイルの導体束及びカバーは、ろう付けにより加熱融合されて接合され、回転機の固定子コイルとなる。このろう付け以前に、あらかじめ、冷媒給排水の口金と接続端子は、接続箱にろう付け接続している。
【0008】
接続箱と固定子コイルは、図4に示すろう付け方法を用いて接続される。まず始めに中空導体2の長手方向に単一ろう材13を設置する。次に固定子コイル9を接続箱1に組み立て後、カバー6を取り付ける。
【0009】
その後加熱融合させて、固定子コイル9と接続箱1がろう付けにより一体化される。加熱中はカバー6に加圧を行う。加熱融合される途中において、接続箱1の表面のろう不足分については、挿しろうにより補給する。
【0010】
【発明が解決しようとする課題】
前記した従来のろう付け時には、あらかじめ中空導体2の導体長手方向に配置された置きろうは、固相線以上に達すると各導体間にろうが浸透し、ろう付けが行われる。一方、各導体間に浸透するろう材が供給過剰になると中空導体2の端部にろうが流れ出す。場合によっては、中空導体2端部の冷媒用孔3へろう材が浸入し、冷媒用孔3をふさぐことがある。
【0011】
中空導体2の冷媒用孔3に穴ふさぎが発生した固定子コイル9を使用すると、中空導体2内部の冷媒の流れを阻害し、固定子コイル9の冷却効率が低下する。これが引き金となり固定子コイル9自身が過熱、焼損し、運転停止に至る結果となる。
【0012】
これらの理由から、中空素線2の冷媒用孔3へのろう材浸入防止が重要である。そのため、固定子コイル9と接続箱1のろう付け後に、中空導体2の冷媒用孔3へのろう浸入の有無を確認しなければならない。確認方法としては、接続箱1の口金からの目視点検がある。その結果、中空導体2の冷媒用孔3にろう浸入が認められた場合には、接続箱1と固定子コイル9のろう付け部の手直しあるいは再製となる。
【0013】
更に、同一接続箱1に着目した場合、後工程におけるろう付け時の過加熱が、既ろう付け部を溶融させ欠陥を発生させる恐れがある。固定子コイル9を回転機コア8内に納めた後、他の固定子コイル9との電気的接続(接続端子11との接続)及び接続ホースとのろう付け接続を加熱融合により接合するが、既終了ろう付け部である固定子コイル9と中空導体2のろう付け部は、(1)口金と接続ホースのろう付け、(2)接続端子11と他の固定子コイル9の接続端子11とのろう付け部に、これらのろう付けによる過加熱の影響を受ける。これが過加熱となった場合、既ろう付け部の溶融により欠陥発生を引き起こす恐れがある。この欠陥による漏水発生防止のため、後工程での加熱時のろう付け欠陥防止の必要性がある。
【0014】
【課題を解決するための手段】
上記目的を達成するため、本発明は長手方向の冷媒用孔を持つ中空導体を用いた回転電機固定子コイルの端部に、外部との電気接続及び前記中空導体内部へ冷媒を給排するための接続箱を接続する回転電機の固定子コイルの製造方法において、融点が異なるろう材を前記中空導体の長手方向に配置し、かつ、融点が高いろう材を前記中空導体の端部側に配置して前記中空導体と接続箱をろう付けするものである。
【0015】
すなわち、固定子コイルの端部の導体長手方向に融点の異なるろう材を配置する。具体的には、固定子コイルの端部に近い部分に融点の高いろう材、その隣(反端部側)に融点の低いろう材を使用する。この異なる融点を有するろう材の温度差は約30℃以上が適切である。
【0016】
さらに、加熱融合する前に予め、中空導体の端面に溶融ろう付着防止コーティング材を塗布することが望ましい。
【0017】
融点は、固体から液体になる始める固相点と、完全に液体になる液相点があるが、本発明ではいずれを用いても良い。
【0018】
ろう付け時には、あらかじめ中空導体の導体長手方向に配置された置きろうは、融点以上の温度に達すると各導体間にろうが浸透し、ろう付けが行われる。一方、各導体間に浸透するろう材が供給過剰になると中空導体2の端部にろうが流れ出す。
【0019】
場合によっては、中空導体2端部の冷媒用孔3へろう材が浸入し、冷媒用孔3をふさぐことがある。固定子コイル9端部の導体の長手方向に配置されたろうは、中空導体端部側に融点の高いろう材を配置することで、中空導体2の端部へろう流れ防止をする。
【0020】
もし過剰ろうが中空導体2の端面へ流れ出しても、中空導体2の端面のコーティング材14が、冷媒用孔3へのろう浸入を防止する。やがて浸入防止されたろうは、中空導体2の端面近傍の下側に設けられた溝7へ溜まる。これにより中空導体2の冷媒用孔3へのろう材浸入防止に寄与する。
【0021】
上記のようなろう材配置によるろう付けしたものは、中空導体2の冷媒用孔3の穴ふさぎを防止するばかりではなく、中空導体2端部のろうが流れにくいことで、ろう付け欠陥発生が少なくなり、隙間腐食の抑制にも効果的である。
【0022】
【発明の実施の形態】
図1、図2、図3、図4は本発明の一実施例を説明する図で、発電機や電動機の電機子固定子コイルユニットは、発電に伴う発熱を抑制するため、電機子内部を冷却する必要がある。特に大容量機の固定子コイルユニットの冷却方法の一つとして、固定子コイルを構成する中空導体2内部に冷媒(絶縁油及び純水)を流す直接冷却方式が採用されている。
【0023】
固定子コイルユニットは、長手方向に冷媒用孔3を有する中空導体2を少なくとも1本用いている固定子コイル9、冷媒給排水用接続ホース10及び電気接続用の接続端子11を固定子コイル9と接続するための接続箱1からなっている。
【0024】
固定子コイル9は、直線部91とエンド部92から構成されており、直線部91は電機子固定子のコア8内に納められている。固定子コイル9の両端のエンド部92には、接続箱1が設置されている。接続箱1に設けられている口金12を通して、固定子コイル9を構成する中空導体2の内部に冷媒が給排水される。
【0025】
これにより固定子コイル9の内部から冷媒により冷却される。一方接続箱1に設けられている接続端子11は、他の固定子コイル9に電気的に接続されている。電機外部と固定子コイル9の冷媒給排水をつなぐために接続ホース10が設けられる。絶縁油や水などの冷媒は、回転機外部から接続ホース10に供給され、接続箱1、固定子コイル9、接続箱1、接続ホース10の順序で流れ、回転機外へ排出される構造となっている。
【0026】
接続箱1は三つの部分、すなわち、固定子コイル9の内外部への冷媒の給排水を行う口金12と、固定子コイル9の外部と電気接続を行う接続端子11と、接続箱1と固定子コイル9の接続部分とから構成されている。この部分は、接続箱1と固定子コイル9の組み立てを容易にするため、接続箱1のうち2面が削除されている。一面は固定子コイル9の引き出し口で、他面は固定子コイル9の組み立てを容易にするために設けられている。
【0027】
接続箱1と、中空導体2を有する固定子コイル9の導体束及びカバー6は、ろう付けにより加熱融合されて接合され、回転機の固定子コイル9となる。このろう付け以前に、あらかじめ、冷媒給排水の口金12と接続端子11は、接続箱1にろう付け接続している。
【0028】
本発明においては、ろう付け方法は、次のような順序で行われる。まず、少なくとも1本以上の中空導体2を有する固定子の端部の上下方向各層に、融点の異なるろう材を中空導体2の長手方向に少なくとも2枚以上配置させる。具体的には、中空導体2端面に近い部分からろう材4、ろう材5を使用する。
【0029】
ろう材4は、JIS 規格のBCuP−1、若しくはこれに相当するろう材である。このろう材4は、燐が4.8ないし5.3重量%、残りが銅であり、融点(固相点)は約705℃、融点(液相点)は約900℃である。
【0030】
ろう材5は、JIS 規格のBCuP−5、若しくはこれに相当するのろう材である。このろう材5は、燐が4.8ないし5.3重量%、銀が14.5ないし15.5重量%、残りが銅であり、融点(固相点)は約643℃、融点(液相点)は約815℃である。ただし、ろう材4は、ろう材5に比較して、融点が約30℃以上高いろう材が適当である。
【0031】
ろう材の配置後、加熱融合させろう付けする。以上述べたような融点が異なるろう材の組合せにより、中空導体2端面の冷媒用孔3へのろう材浸入防止が可能である。もし、中空導体2の冷媒用孔3へ過剰ろうが流出しても、中空導体2端面の近傍下部の溝7に溜まる。
【0032】
この接続箱1は、上記のろう付け終了後、更にろう付けされる。それは、固定子コイル9を発電機コア8内に納めた後、他の固定子コイル9との電気的接続(接続端子11との接続)及び接続ホース10とのろう付け接続をろうにより接合する。この加熱融合ろう付けにより、既終了ろう付け部である固定子コイル9と1本以上からなる中空素線2のろう付け部は、(1) 口金12と接続ホース10の加熱融合ろう付け、(2) 接続端子11と他の固定子コイル9の接続端子11との加熱融合ろう付けによる過加熱の影響を受ける。口金12と接続ホース10及び電気接続端子11のろう付けで使用するろう材は、中空導体2と接続箱1で使用するろう材4(JIS規格で言うBCuP−1、若しくはこれに相当するろう材)よりも融点が低いろう材を使用している。これにより既ろう付け部にろう付け欠陥は発生しにくい。これが固定子コイル9と接続箱1の過加熱によるろう付け欠陥防止する方法である。
【0033】
中空導体2端部に冷媒用孔3へのろう材の浸入を防止するためコーティング材14を塗布する。ろう付けする前に各導体端部にコーティング材14、例えば水酸化マグネシウムを塗布する。加熱融合時に、液相点の高いろう材及び低いろう材が各導体間に浸透するが、これらの過剰ろうが中空導体2の冷媒用孔3に流れ出す。しかし、中空導体2端部にあらかじめ塗布されたコーティング材14により、中空導体2端面の冷媒用孔3へのろう材浸入防止が可能である。
【0034】
これは、置きろうばかりではなく、挿しろうによる過剰なろう流れ出しに対しても、中空導体2の冷媒用孔3へのろう材浸入による穴ふさぎを防止することが出来る。過剰ろうは中空導体2端面の近傍下部の溝7に溜まる構造とする。
【0035】
ろう付け終了後は発電機固定子コイル9と接続箱1とのろう付け部における腐食進展防止の面から、コーティング材14を除去する。これは、固定子コイル9の両エンド部の接続箱1のろう付けが終了した後で行う。両側の接続箱1の口金12を用いて、一方の接続箱1の口金12から洗浄水を充分に注水し、もう一方の接続箱1の口金12から排水する。終了後はコーティング材14が除去されたこと確認するため、接続箱1の口金12から目視点検により確認を行う。
【0036】
これにより中空導体2の冷媒用孔3の穴ふさぎ防止する回転電機固定子コイル9の製造が可能となる。
【0037】
【発明の効果】
本発明によれば、固定子コイル9の中空導体2と接続箱1のろう付け途中において、中空導体2の冷媒用孔3へのろう浸入を効果的に防止することが可能である。これまでのろう付け後の手直しあるいは再製といった問題を解消する。また、このろう付け以降に接続箱1と加熱融合にてろう付けする際でも、過加熱による既ろう付け部の欠陥発生防止に効果的である。
【0038】
これらにより、固定子コイル9と接続箱1のろう付け部の欠陥発生防止による腐食進展防止、ろう付けの信頼性向上及び生産性向上を図れることが可能である。
【図面の簡単な説明】
【図1】本発明方法を説明するために示したの固定子コイルと接続箱のろう付け時の作業状態図である。
【図2】大容量発電機の固定子コイルの構造を示す略図である。
【図3】固定子コイルと接続箱のろう付け後の状態を示す斜視図である。
【図4】従来の固定子コイルの製造方法を説明する固定子コイルと接続箱のろう付け時の作業状態図である。
【符号の説明】
1…接続箱、2…中空導体、3…冷媒用孔、4…ろう材、5…ろう材、6…カバー、7…溝、8…コア、9…固定子コイル、10…接続ホース、11…接続端子、12…口金、13…ろう材、14…コーティング材。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a stator coil of a large capacity rotating electrical machine.
[0002]
[Prior art]
Generally, a stator coil unit of a rotating electric machine of a generator or electric motor needs to cool the inside of the armature in order to suppress heat generation. In particular, as one method for cooling a stator coil unit of a large capacity machine, a direct cooling method is adopted in which a coolant (insulating oil and pure water) is allowed to flow inside a hollow conductor constituting the stator coil.
[0003]
The stator coil unit uses at least one hollow conductor having a coolant hole in the longitudinal direction, and includes a connection box that also serves as a stator coil, coolant supply / drainage, and an electrical connection terminal, and a connection hose 10.
[0004]
The stator coil is composed of a straight portion and an end portion, and the straight portion is accommodated in the core of the stator. Connection boxes are installed at the end portions of both ends of the stator coil, and the coolant is supplied and drained into the hollow conductors constituting the stator coil through the caps provided in the connection box. Thus, the structure is cooled by the refrigerant from the inside of the stator coil.
[0005]
On the other hand, the connection terminal provided in the connection box is electrically connected to another stator coil. A connection hose is provided to connect the outside of the electric machine and the coolant supply / drainage of the stator coil. A refrigerant such as insulating oil or water is supplied to the connection hose from the outside of the rotating machine, flows in the order of the connection box, the stator coil, the connection box, and the connection hose, and is discharged to the outside of the rotating machine.
[0006]
The junction box is composed of three parts, that is, a base for supplying and discharging refrigerant to the inside and outside of the stator coil, a terminal for electrical connection with the outside of the stator coil, and a connection part of the junction box and the stator coil. Has been. In order to facilitate the assembly of the junction box and the stator coil, two portions of the junction box are omitted from this portion. One surface is a stator coil outlet, and the other surface is provided to facilitate assembly of the stator coil.
[0007]
The connection box and the conductor bundle and cover of the coil having the hollow conductor are heat-fused and joined by brazing to form a stator coil of the rotating machine. Prior to this brazing, the coolant supply / drainage base and the connection terminal are brazed to the connection box in advance.
[0008]
The junction box and the stator coil are connected using the brazing method shown in FIG. First, a single brazing material 13 is installed in the longitudinal direction of the hollow conductor 2. Next, after assembling the stator coil 9 to the junction box 1, the cover 6 is attached.
[0009]
Thereafter, the stator coil 9 and the junction box 1 are integrated by brazing by heat fusion. During heating, the cover 6 is pressurized. During the heat fusion, the shortage of solder on the surface of the junction box 1 is replenished by soldering.
[0010]
[Problems to be solved by the invention]
At the time of the conventional brazing described above, the brazing filler placed in the conductor longitudinal direction of the hollow conductor 2 in advance penetrates between the conductors when the solid line or more is reached, and brazing is performed. On the other hand, when the brazing material penetrating between the conductors is excessively supplied, the brazing flows out to the end of the hollow conductor 2. In some cases, the brazing material may enter the refrigerant hole 3 at the end of the hollow conductor 2 to block the refrigerant hole 3.
[0011]
If the stator coil 9 in which the hole 3 for the refrigerant of the hollow conductor 2 is blocked is used, the flow of the refrigerant inside the hollow conductor 2 is hindered, and the cooling efficiency of the stator coil 9 is lowered. This triggers the stator coil 9 itself to overheat and burn out, resulting in a shutdown.
[0012]
For these reasons, it is important to prevent the brazing material from entering the refrigerant hole 3 of the hollow wire 2. Therefore, after the stator coil 9 and the junction box 1 are brazed, it is necessary to confirm whether or not the hollow conductor 2 has entered the coolant hole 3. As a confirmation method, there is a visual inspection from the base of the connection box 1. As a result, when brazing intrusion is recognized in the refrigerant hole 3 of the hollow conductor 2, the brazed portions of the junction box 1 and the stator coil 9 are reworked or remanufactured.
[0013]
Furthermore, when paying attention to the same junction box 1, overheating at the time of brazing in a subsequent process may melt the already brazed portion and cause a defect. After the stator coil 9 is accommodated in the rotating machine core 8, the electrical connection (connection to the connection terminal 11) with the other stator coil 9 and the brazing connection with the connection hose are joined by heat fusion. The brazed part of the stator coil 9 and the hollow conductor 2 which are already finished brazed parts are (1) brazing of the base and the connection hose, and (2) the connection terminal 11 and the connection terminal 11 of the other stator coil 9. The brazing part is affected by overheating due to these brazings. When this is overheated, there is a risk of causing defects due to melting of the already brazed part. In order to prevent water leakage due to this defect, there is a need to prevent brazing defects during heating in the subsequent process.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is designed to electrically connect the outside to the end of a rotating electrical machine stator coil using a hollow conductor having a refrigerant hole in the longitudinal direction and supply and discharge the refrigerant into the hollow conductor. In a method of manufacturing a stator coil of a rotating electrical machine that connects a junction box, a brazing material having a different melting point is disposed in the longitudinal direction of the hollow conductor, and a brazing material having a high melting point is disposed on the end side of the hollow conductor. Then, the hollow conductor and the connection box are brazed.
[0015]
That is, brazing materials having different melting points are arranged in the conductor longitudinal direction at the end of the stator coil. Specifically, a brazing material having a high melting point is used near the end of the stator coil, and a brazing material having a low melting point is used next to it (on the opposite end side). The temperature difference between the brazing materials having different melting points is suitably about 30 ° C. or more.
[0016]
Furthermore, it is desirable to apply a coating material for preventing adhesion of fusion brazing to the end face of the hollow conductor in advance before heat fusion.
[0017]
The melting point has a solid phase point where the solid starts to become liquid and a liquid phase point where the liquid becomes completely liquid, and any of them may be used in the present invention.
[0018]
At the time of brazing, the brazing filler placed in the longitudinal direction of the hollow conductor in advance penetrates between the conductors when the temperature reaches the melting point or higher, and brazing is performed. On the other hand, when the brazing material penetrating between the conductors is excessively supplied, the brazing flows out to the end of the hollow conductor 2.
[0019]
In some cases, the brazing material may enter the refrigerant hole 3 at the end of the hollow conductor 2 to block the refrigerant hole 3. The brazing disposed in the longitudinal direction of the conductor at the end of the stator coil 9 prevents brazing flow to the end of the hollow conductor 2 by disposing a brazing material having a high melting point on the end of the hollow conductor.
[0020]
Even if excess wax flows out to the end face of the hollow conductor 2, the coating material 14 on the end face of the hollow conductor 2 prevents the wax from entering the coolant hole 3. The wax that has been prevented from entering eventually accumulates in the groove 7 provided below the end face of the hollow conductor 2. This contributes to preventing the brazing material from entering the coolant hole 3 of the hollow conductor 2.
[0021]
The brazing by the brazing material arrangement as described above not only prevents blocking of the coolant hole 3 of the hollow conductor 2 but also causes the brazing defect to occur because the brazing of the end of the hollow conductor 2 is difficult to flow. This is effective for suppressing crevice corrosion.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
1, 2, 3, and 4 are diagrams illustrating an embodiment of the present invention. An armature stator coil unit of a generator or an electric motor has an internal armature to suppress heat generation due to power generation. It needs to be cooled. In particular, as one of the cooling methods for the stator coil unit of the large capacity machine, a direct cooling method is adopted in which a coolant (insulating oil and pure water) is flowed into the hollow conductor 2 constituting the stator coil.
[0023]
The stator coil unit includes a stator coil 9 using at least one hollow conductor 2 having a refrigerant hole 3 in the longitudinal direction, a refrigerant supply / drain connection hose 10, and a connection terminal 11 for electrical connection with the stator coil 9. It consists of a connection box 1 for connection.
[0024]
The stator coil 9 includes a straight portion 91 and an end portion 92, and the straight portion 91 is housed in the core 8 of the armature stator. The junction box 1 is installed at the end portions 92 at both ends of the stator coil 9. The coolant is supplied and drained into the hollow conductor 2 constituting the stator coil 9 through the base 12 provided in the connection box 1.
[0025]
Thus, the refrigerant is cooled from the inside of the stator coil 9. On the other hand, the connection terminal 11 provided in the connection box 1 is electrically connected to another stator coil 9. A connection hose 10 is provided to connect the outside of the electric machine and the coolant supply / drainage of the stator coil 9. A refrigerant such as insulating oil or water is supplied to the connection hose 10 from the outside of the rotating machine, flows in the order of the connection box 1, the stator coil 9, the connection box 1, and the connection hose 10, and is discharged to the outside of the rotating machine. It has become.
[0026]
The connection box 1 has three parts, that is, a base 12 that supplies and discharges refrigerant to the inside and outside of the stator coil 9, a connection terminal 11 that makes electrical connection with the outside of the stator coil 9, and the connection box 1 and the stator. The connection part of the coil 9 is comprised. In order to facilitate the assembly of the junction box 1 and the stator coil 9, two portions of the junction box 1 are omitted from this portion. One surface is a lead-out port for the stator coil 9, and the other surface is provided to facilitate assembly of the stator coil 9.
[0027]
The connection box 1 and the conductor bundle of the stator coil 9 having the hollow conductor 2 and the cover 6 are heat-fused and joined by brazing to form the stator coil 9 of the rotating machine. Prior to this brazing, the coolant supply / drainage base 12 and the connection terminal 11 are brazed to the connection box 1 in advance.
[0028]
In the present invention, the brazing method is performed in the following order. First, at least two brazing materials having different melting points are arranged in the longitudinal direction of the hollow conductor 2 in each of the upper and lower layers at the end of the stator having at least one hollow conductor 2. Specifically, the brazing material 4 and the brazing material 5 are used from the portion close to the end face of the hollow conductor 2.
[0029]
The brazing material 4 is JIS standard BCuP-1 or a brazing material equivalent thereto. This brazing material 4 has 4.8 to 5.3% by weight of phosphorus and the remaining copper, and has a melting point (solid phase point) of about 705 ° C. and a melting point (liquid phase point) of about 900 ° C.
[0030]
The brazing material 5 is JIS standard BCuP-5 or a brazing material equivalent thereto. This brazing filler metal 5 has phosphorus of 4.8 to 5.3% by weight, silver of 14.5 to 15.5% by weight and the balance of copper, and a melting point (solid phase point) of about 643 ° C. The phase point) is about 815 ° C. However, the brazing material 4 is suitably a brazing material having a melting point higher than that of the brazing material 5 by about 30 ° C. or more.
[0031]
After the brazing material is placed, it is heat-fused and brazed. By the combination of the brazing materials having different melting points as described above, it is possible to prevent the brazing material from entering the refrigerant hole 3 on the end face of the hollow conductor 2. Even if excessive wax flows into the refrigerant hole 3 of the hollow conductor 2, it accumulates in the groove 7 near the lower end of the hollow conductor 2.
[0032]
The connection box 1 is further brazed after the above brazing. That is, after the stator coil 9 is housed in the generator core 8, the electrical connection (connection with the connection terminal 11) with the other stator coil 9 and the brazing connection with the connection hose 10 are joined by brazing. . By this heat fusion brazing, the brazed portion of the stator wire 9 and one or more hollow wire 2 consisting of one or more end brazing portions is (1) heat fusion brazing of the base 12 and the connecting hose 10; 2) It is affected by overheating due to heat fusion brazing between the connection terminal 11 and the connection terminal 11 of another stator coil 9. The brazing material used for brazing the base 12, the connection hose 10, and the electrical connection terminal 11 is the brazing material 4 used in the hollow conductor 2 and the connection box 1 (BCuP-1 in the JIS standard, or a brazing material equivalent thereto) ) Is used. As a result, brazing defects are unlikely to occur in the already brazed portion. This is a method for preventing brazing defects caused by overheating of the stator coil 9 and the junction box 1.
[0033]
A coating material 14 is applied to the end of the hollow conductor 2 to prevent the brazing material from entering the coolant hole 3. Prior to brazing, a coating material 14, such as magnesium hydroxide, is applied to each conductor end. At the time of heat fusion, the brazing material having a high liquidus point and the brazing material having a low liquid phase permeate between the conductors, but these excess brazing flows out to the refrigerant hole 3 of the hollow conductor 2. However, the coating material 14 previously applied to the end of the hollow conductor 2 can prevent the brazing material from entering the coolant hole 3 on the end surface of the hollow conductor 2.
[0034]
This prevents not only the placement but also the excessive brazing out due to the insertion, so that the hole blocking due to the entry of the brazing material into the coolant hole 3 of the hollow conductor 2 can be prevented. Excess brazing has a structure that accumulates in the lower groove 7 near the end face of the hollow conductor 2.
[0035]
After the brazing is completed, the coating material 14 is removed from the surface for preventing the progress of corrosion at the brazed portion between the generator stator coil 9 and the junction box 1. This is performed after brazing of the junction box 1 at both ends of the stator coil 9 is completed. Using the caps 12 of the connection boxes 1 on both sides, the washing water is sufficiently poured from the caps 12 of the one connection box 1 and drained from the caps 12 of the other connection box 1. After completion, in order to confirm that the coating material 14 has been removed, confirmation is performed by visual inspection from the base 12 of the connection box 1.
[0036]
As a result, it is possible to manufacture the rotating electric machine stator coil 9 that prevents the refrigerant hole 3 of the hollow conductor 2 from being blocked.
[0037]
【The invention's effect】
According to the present invention, it is possible to effectively prevent brazing of the hollow conductor 2 into the coolant hole 3 during the brazing of the hollow conductor 2 of the stator coil 9 and the connection box 1. Eliminates problems such as rework or remanufacturing after brazing. Moreover, even when brazing with the junction box 1 and heat fusion after this brazing, it is effective in preventing the occurrence of defects in the already brazed part due to overheating.
[0038]
As a result, it is possible to prevent the corrosion from progressing by preventing the occurrence of defects in the brazed portion of the stator coil 9 and the junction box 1, and to improve the reliability and productivity of brazing.
[Brief description of the drawings]
FIG. 1 is a work state diagram at the time of brazing of a stator coil and a junction box shown for explaining a method of the present invention.
FIG. 2 is a schematic diagram showing the structure of a stator coil of a large-capacity generator.
FIG. 3 is a perspective view showing a state after the stator coil and the junction box are brazed.
FIG. 4 is a work state diagram when brazing a stator coil and a junction box for explaining a conventional method of manufacturing a stator coil.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Connection box, 2 ... Hollow conductor, 3 ... Refrigerant hole, 4 ... Brazing material, 5 ... Brazing material, 6 ... Cover, 7 ... Groove, 8 ... Core, 9 ... Stator coil, 10 ... Connection hose, 11 ... connection terminal, 12 ... base, 13 ... brazing material, 14 ... coating material.

Claims (6)

長手方向の冷媒用孔を持つ中空導体を用いた回転電機固定子コイルの端部に、外部との電気接続及び前記中空導体内部へ冷媒を給排するための接続箱を接続する回転電機の固定子コイルの製造方法において、融点が異なる第1、第2のろう材を前記中空導体の長手方向に沿って配置し、かつ、融点が高い前記第1のろう材を前記中空導体の端部側に配置し、融点が前記第1のろう材の融点より低い前記第2のろう材を反端部側に配置し、前記中空導体と接続箱をろう付けすることを特徴とする回転電機の固定子の製造方法。Fixing of a rotating electrical machine in which an electrical connection with the outside and a connection box for supplying and discharging the coolant to and from the inside of the hollow conductor are connected to the end portion of the rotating electrical machine stator coil using a hollow conductor having a coolant hole in the longitudinal direction In the child coil manufacturing method, the first and second brazing materials having different melting points are arranged along the longitudinal direction of the hollow conductor, and the first brazing material having a high melting point is disposed on the end side of the hollow conductor. The second brazing material having a melting point lower than the melting point of the first brazing material is disposed on the opposite end side, and the hollow conductor and the junction box are brazed. Child manufacturing method. 請求項1において、前記融点の高いろう材と前記融点の低いろう材との温度差は、少なくとも30℃である回転電機の固定子コイルの製造方法。The method for manufacturing a stator coil of a rotating electric machine according to claim 1, wherein a temperature difference between the brazing material having a high melting point and the brazing material having a low melting point is at least 30 ° C. 請求項1において、前記融点の高い第1のろう材の融点は850℃以上1000℃以下、前記融点の低い第2のろう材の融点は640℃以上900℃以下である回転電機の固定子コイル製造方法。The stator coil of a rotating electric machine according to claim 1, wherein the first brazing material having a high melting point has a melting point of 850 ° C to 1000 ° C, and the second brazing material having a low melting point has a melting point of 640 ° C to 900 ° C. Production method. 請求項1において、前記第1および第2のろう材は、主成分がりん(P)と銅(Cu)であり、必要に応じて他の元素が添加されている回転電機の固定子コイルの製造方法。 2. The stator coil of the rotating electrical machine according to claim 1, wherein the first and second brazing filler metals are mainly composed of phosphorus (P) and copper (Cu), and other elements are added as necessary. Production method. 請求項1において、融点が高い前記第1のろう材の成分は、りん(P)が0.5〜5重量%で、残りが銅(Cu)から成り、必要に応じて銀(Ag)が添加されており、融点が低い前記第2のろう材の組成は、りんが4.5%〜6重量%で残りが銅から成り、必要に応じて銀(Ag)が添加されている回転電機の回転子の製造方法。2. The component of the first brazing material having a high melting point according to claim 1, wherein the phosphorus (P) is 0.5 to 5% by weight, the remainder is made of copper (Cu), and silver (Ag) is optionally contained. The composition of the second brazing filler metal having a low melting point is 4.5% to 6% by weight of phosphorus, the remainder is made of copper, and silver (Ag) is added as required. Method of manufacturing the rotor. 請求項1において、前記中空導体の端部に溶融ろう付着防止コーティング材を塗布する回転電機の固定子コイルの製造方法。2. The method of manufacturing a stator coil for a rotating electric machine according to claim 1, wherein an end portion of the hollow conductor is coated with a molten solder adhesion preventing coating material.
JP01368397A 1997-01-28 1997-01-28 Method for manufacturing stator coil of rotating electric machine Expired - Fee Related JP3630517B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01368397A JP3630517B2 (en) 1997-01-28 1997-01-28 Method for manufacturing stator coil of rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01368397A JP3630517B2 (en) 1997-01-28 1997-01-28 Method for manufacturing stator coil of rotating electric machine

Publications (2)

Publication Number Publication Date
JPH10215534A JPH10215534A (en) 1998-08-11
JP3630517B2 true JP3630517B2 (en) 2005-03-16

Family

ID=11839994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01368397A Expired - Fee Related JP3630517B2 (en) 1997-01-28 1997-01-28 Method for manufacturing stator coil of rotating electric machine

Country Status (1)

Country Link
JP (1) JP3630517B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6071865B2 (en) 2013-12-17 2017-02-01 株式会社東芝 Armature winding of rotating electric machine, rotating electric machine using the same, and manufacturing method thereof
KR101623814B1 (en) 2014-02-21 2016-05-24 두산중공업 주식회사 Seperated water circulation structure for water cooling generator and cooling method thereof

Also Published As

Publication number Publication date
JPH10215534A (en) 1998-08-11

Similar Documents

Publication Publication Date Title
US7464460B2 (en) Method of metallurgically bonding a stator bar
US6353198B1 (en) Welded stator winding splice joint for rotary electric machines and method of forming the same
CN101557145B (en) Soldering method of conducting ring of motor rotor
CN107078581B (en) Stator of rotating electric machine
US6784573B1 (en) Corrosion-resistant liquid-cooled armature bar clip-to-strand connection and related method
CN102449888B (en) Stator structure and method for producing stator
JP2006149186A (en) Soldering method of generator armature winding bar
CN101867098B (en) Aluminium conductor terminal device and manufacturing method thereof
EP2887505B1 (en) Armature winding of electrical rotating apparatus, electrical rotating apparatus using the same, and method of manufacturing the same
US5809632A (en) Method for repairing a cooling fluid box of an electric alternator stator bar
JP2003209944A (en) Rotating electric machine and manufacturing method therefor
US7474022B2 (en) Liquid-cooled armature bar clip-to-strand connection and method
JP3630517B2 (en) Method for manufacturing stator coil of rotating electric machine
US7216796B2 (en) Crevice corrosion-resistant liquid-cooled armature bar clip-to-strand connection and related method
CN108307668B (en) Internal combustion engine rotating electric machine and its electrode
JP2007005093A (en) Method of joining ends of conductor bundles
EP1731257B1 (en) Brazed crevice corrosion-resistant liquid-cooled armature bar clip-to-strand connection and related method
JP3424450B2 (en) Method of joining blocks and method of manufacturing coil for rotating electrical machine using the same
JP3246240B2 (en) Manufacturing method of cage type rotating electric machine
CN106655651B (en) High-capacity motor outgoing line connecting method and joint
JP2006340521A (en) Clearance corrosion resistance liquid-cooling type armature bar clip strand joint and method relating thereto
JP3709665B2 (en) Method of joining generator coil ends
JP2006331765A (en) Winding-terminal connection method
JPH0928062A (en) Manufacture of coil for rotating electric machine body
CA2520716C (en) Crevice corrosion-resistant liquid-cooled armature bar clip-to-strand connection and related method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041214

LAPS Cancellation because of no payment of annual fees