JP3629955B2 - High tensile steel plate with excellent deformability - Google Patents

High tensile steel plate with excellent deformability Download PDF

Info

Publication number
JP3629955B2
JP3629955B2 JP17128098A JP17128098A JP3629955B2 JP 3629955 B2 JP3629955 B2 JP 3629955B2 JP 17128098 A JP17128098 A JP 17128098A JP 17128098 A JP17128098 A JP 17128098A JP 3629955 B2 JP3629955 B2 JP 3629955B2
Authority
JP
Japan
Prior art keywords
oxide
rem
less
steel
inclusions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17128098A
Other languages
Japanese (ja)
Other versions
JP2000001736A (en
Inventor
祐司 三木
康夫 岸本
健一 反町
章男 登坂
修 古君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP17128098A priority Critical patent/JP3629955B2/en
Publication of JP2000001736A publication Critical patent/JP2000001736A/en
Application granted granted Critical
Publication of JP3629955B2 publication Critical patent/JP3629955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、高張力鋼板に関するもので、特に鋼中の酸化物系介在物を制御することにより、変形能に優れる高張力鋼板を提案しようとするものである。
【0002】
【従来の技術】
従来高張力鋼は、その優れた強度を利用して種々の用途に使用されてきた。特に、近年に至って、加工性に優れた高張力鋼板が開発され、自動車車体などの複雑な加工を要求される用途にも普及しつつある。
ところで、このような高張力鋼板をプレスなどによって複雑な形状に加工する場合に、看過することのできない問題点に遭遇した。すなわち、局部的に大きな変形を伴う成形加工時の局部的な割れ(たとえば開口部を含む材料の深絞り加工時の開口部付近の割れなど)である。このような加工に対しては、材料内の微少な範囲に応力が集中するような状態での材料の変形能(これをここでは局部変形能と呼ぶこととする。)を高めることが必要である。このような高張力鋼板特有の局部変形能の不足に対しては、従来は特開平5−195144号公報に開示されるように専ら鋼中の成分をコントロールすることによって対応していたが、そのような努力によってもなお、上記の問題を克服するには到っていない。
【0003】
【発明が解決しようとする課題】
この発明は、このような高張力の変形能、とりわけ局部変形能の不足を、従来とは異なった技術手段で根本的に解決する、優れた高張力鋼板を提案することを目的とする。
【0004】
【課題を解決するための手段】
発明者らは、上記の目的を達成すべく鋭意研究を重ねた結果、鋼中に残留する酸化物系介在物の組成を制御し、これにより鋼中に存在する酸化物及び硫化物を制御することが、変形能の向上に有効であるとの結論に達した。すなわち、巨大クラスター状介在物の生成を抑制して50μm 以下の大きさの介在物に微細分散化を図り、かつ、鋼中のMnS の量を低減して、鋼中の全ての酸化物、硫化物を微細化、非延性にすることが、変形能の向上に有効であり、しかもノズル詰まりや発錆、表面性状の劣化といった諸問題も解決できることを見出した。
上記知見に立脚するこの発明は、C:0.03〜0.20wt%、Si:2.0 wt%以下、Mn:0.05〜2.5 wt%、P:0.15wt%以下、Ti:0.015 〜0.4 wt%、Al:0.01wt%以下、N:0.02wt%以下を含み、Ca,REM の1種又は2種を合計で0.0005〜0.1 wt%含有し、かつ、S及びCa,REM の1種又は2種の合計の含有量が次式
S−5×((32/40) Ca+(32/140) REM) ≦0.0014wt%
(式中、SはS量( wt %)を、 Ca Ca 量( wt %)を、 REM REM 量( wt %)をそれぞれ 示す。)
の関係を満たして残部はFe及び不可避的不純物の組成になり、粒径(最大径;以下同様)1〜50μm の酸化物系介在物がTi酸化物及びCaO ,REM 酸化物の1種又は2種を含有してなることを特徴とする変形能に優れる高張力鋼板である。
また、この発明においては、粒径1〜50μm の酸化物系介在物がTi酸化物:20wt%以上90wt%以下、CaO,REM 酸化物の1種又は2種の合計:10wt%以上40wt%以下、Al2O3:40wt 以下(Ti酸化物、CaO,REM 酸化物の1種又は2種、Al2O3の合計は100 wt 以下)であることが好ましい。
なお、この発明の鋼板は、およそ引張応力が440 MPa 以上の高張力鋼である。
【0005】
【発明の実施の形態】
以下、この発明の基礎となった研究結果を述べる。
発明者らは、高張力鋼板における局部変形能の低下が如何にして生じているかを、鋼板の孔拡げ試験によってシミュレーションし、その原因を究明した。その結果、割れを生じていた部分には割れの起点としてMnS 系の伸長した介在物や、クラスター化したアルミナの巨大介在物が存在することが明らかとなった。
つまり、マトリックスの鋼の組成や組織ももちろん重要ではあるが、製鋼段階で生成する介在物を適切に制御することなくしては十分な局部変形能の向上は達成できないと考えた。
そこで、発明者らは、鋼板中の介在物を伸長し難く、かつ、微細に分散するものに形態制御することに想到した。
【0006】
変形能の向上のためには、1)鋼中の酸化物を粗大化させないこと及び、2)鋼中の硫化物を粗大化させないことが重要である。
上記1)の酸化物については、Alが0.01wt%以下、Tiが0.015 wt%以上であって、Ca又はREM が0.0005wt%以上の条件を満たすことで、酸化物がAl主体からTi系の酸化物に変化する。Ti系酸化物は溶鋼との濡れ性が良いので、クラスターを形成しにくい。このため、Al主体の介在物のように粗大化しない。更に、Ca及び/又はREM を0.0005〜0.1 wt%含有させることにより、Ti酸化物−Ca及び/又はREM 酸化物の複合酸化物となり、これに後述する硫化物が吸収されるところとなる。
【0007】
また、上記2)の硫化物については、凝固時に析出するMnS の抑制が重要であり、MnS があると圧延時に延びて、加工時に割れを助長する。この解決のため、鋼中のSを、より安定な硫化物をつくるCa及び/又はREM によって固定する。このためには、S量と、Ca量,REM 量とについて、
S−5× ((32/40) Ca+(32/140) REM))≦0.0014wt%
(式中、SはS量(wt%)を、CaはCa量(wt%)を、REM はREM 量(wt%)をそれぞれ 示す。)
なる関係を満足することが必要との考えに至った。すなわち、CaS ,REM 硫化物の生成によりSを固定するためには、Ca,REM の添加量は大きいほど良く、その下限値は上記の不等式で示される。すなわち、固定されないSが0.0014wt 以下であることが必要であるとの実験結果を得た。
【0008】
しかし、このようにCa及び/又はREM で鋼中Sを固定したときは、発錆し易くなるという別の懸念がある。そこで、この発明では、鋼中の含有量につきAlが0.01wt%以下、Tiが0.015 wt%以上であって、Ca及び/又はREM が0.0005wt%以上の条件を満たすことで、錆の少ない鋼板とする。このとき、介在物はTi酸化物−CaO 及び/又はREM 酸化物−Al2O3 −SiO2系の酸化物(Alを含有しない場合にはTi酸化物−CaO 及び/又はREM 酸化物−SiO2系の酸化物)となっており、介在物を起点とした発錆が抑制される。更に、その介在物中のCa濃度が40wt%以下であると、錆の起点となることがなく、表面性状も良好である。なお、Alの量が0.01wt%を超えると、介在物はAl2O3 −CaO 系となるので、介在物中のCaO 濃度が50wt 程度となり、錆の起点となって耐食性を劣化させる。
【0009】
更に、上述した酸化物系介在物は、融点が低いため、鋳造時の浸漬ノズルなどに付着して成長することがほとんどないため、該ノズルの閉塞を招くことがなく、したがって、浸漬ノズルなどの内部にArガスやNガスを吹き込む必要がほとんどないことが確認された。
【0010】
発明者らは以上の実験結果をもとに種々検討した結果、以下のようにこの発明を限定した。
以下、各々の成分について限定理由を示す。
【0011】
(C:0.03〜0.20wt%)
Cは、鋼を強化するのに極めて有力な成分である。この発明の鋼では引張強度(T.S.)で440 MPa 以上を得るために0.03wt%以上を含有させることが必要である。但し、多過ぎると溶接性が劣化する、あるいは延性の低下が顕著となるといった問題を生ずるため上限を0.20wt%とする。なお、好ましい下限値は0.05wt%であり、好ましい上限値は0.15wt%である。
【0012】
(Si:2.0 wt%以下)
Siは、鋼を強化して引張強度を増加させるのに有用な成分である。特に、延性を大きく低下させることなく引張強度を増加させるので、高強度鋼板の製造において望ましい成分である。しかしながら、2.0 wt%を超えて含有させた場合は、鋼の熱間変形抵抗が顕著に増加し、薄鋼板の製造に支障を来す。また、表面の塗装性、耐食性も低下する。したがって、Mnは2.0 wt%以下とする。なお、塗装性の観点からより好ましい上限値は1.5 wt%である。また、下限については強度と延性のバランス改善という観点から0.2 wt%程度が好ましい。
【0013】
(Mn:0.05〜2.5 wt%)
Mnは、脱酸に有効な成分であり、また、有用な強化成分であり、組織の微細化にも寄与するため好ましい添加成分である。これらの効果を達成するには、0.05wt%以上の添加が必要である。しかし、2.5 wt%を超えて添加した場合は熱間圧延時の変形抵抗が増加して、圧延性が低下する。なお、強度確保のため好ましい下限値は0.30wt%であり、好ましい上限値は2.0 wt%である。
【0014】
(P:0.15wt%以下)
Pは鋼を強化する作用があり、所望の強度に応じて必要量添加されるが、その添加量が0.15wt%を超えると溶接性が劣るので0.15wt%以下と限定した。なお、特に厳しい溶接性が要求される用途では0.04wt%以下が望ましい。
【0015】
(Ti:0.015 〜0.4 wt%)
Tiはこの発明において重要な成分であり、Ti脱酸により、50μm 以下のサイズの微細酸化物系介在物を形成させ、硫化物の形態を制御する効果もあり、特に圧延方向に直交する方向の延性を改善するのに有効である。また、Tiは析出強化により高張力を得るという役割を果たす。更に、冷延−焼鈍時の粒成長性を制御して、強度伸びバランスを向上させる。さらに、微細酸化物は、熱延板の微細化にも有効であるため、孔拡げ性に代表される伸びフランジ特性が向上する。その添加量が0.015 wt%未満では、添加効果すなわち微細酸化物の量が少なすぎるため、所望の効果が得られないため、0.015 wt%以上と限定した。一方、Ti量が0.4 wt%を超えると望ましい効果が飽和するのに対して、熱間圧延性が低下するとともにスラブ表面の性状が悪化するため、0.4 wt%以下の範囲で含有させることとする。
【0016】
Al:0.01wt%以下
Alはこの発明において含有量が特性に重大な影響を及ぼす成分であり、Al含有量が0.01wt%を超えると、Al脱酸が優先的に生じるため巨大Alクラスターが多量に生成し、表面性状を劣化させるとともに、熱延板の粒成長性を制御できる50μm 以下の微細酸化物が少なくなるため、強度伸びバランスが低下する。したがって、0.01wt%以下と限定した。更に重要なことは、Al量がこれよりも多いと介在物組成がAl−CaO 又はAl−REM 酸化物系となって、錆の起点となって、耐食性を劣化させる。かかる観点からもAlの上限は0.01wt%とする。なお、Alは必ずしも添加することを要せず、Ti脱酸などを行うことによって脱酸剤としてもAlは必須ではない。
【0017】
(N:0.02wt%以下)
Nは、固溶強化成分として寄与するため、有用な成分の一つである。しかし、0.02wt%を超えて添加することは、操業上の困難さが伴うことに加え、添加したTiの一部をTiN として固定してしまうためにTiの望ましい効果が低減されてしまう効果がある。なお、より好ましい上限値は0.01wt%である。
【0018】
(Ca及び/又は金属REM :0.0005〜0.1 wt%)
Ca及び金属REM (La、Ceなどの希土類元素をいう)は、この発明において重要な成分であり、Ca及びREM のいずれか1種又は2種を0.0005wt%以上添加する必要がある。すなわち、Ti脱酸した後、さらに0.0005wt%以上になるようにCa及びREM のいずれか1種又は2種を添加して、溶鋼中の酸化物組成を、Ti酸化物:20wt%以上90wt%以下、好ましくは85wt%以下、CaO 及び/又はREM 酸化物:10wt%以上40wt%以下、Alが40wt%以下である低融点の酸化物系介在物とする。そうすると、連続鋳造時に、地金を含んだTi酸化物のノズルへの付着を有効に防止でき、ノズルの閉塞を防止できる。さらに、CaO 及び/又はREM 酸化物は、冷延−焼鈍後の粒成長及び熱延板の細粒化に寄与できる。これらのことから、Ca,REM の1 種又は2 種を合計で0.0005wt%以上含有させるが、合計量が0.1 wt%を超えると溶製上の困難なことに加えて、耐食性の劣化を引き起こすことから、上限は0.1 wt%に限定した。
【0019】
(S−5×((32/40) Ca+(32/140) REM) ≦0.0014wt%)
(式中、SはS量( wt %)を、 Ca Ca 量( wt %)を、 REM REM 量( wt %)をそれぞれ 示す。)
Sは鋼中で種々の硫化物として存在し得るが、MnS 系の介在物として存在する場合は熱間圧延時に圧延方向に顕著に展伸して圧延方向に直交する方向の機械的性質を悪化させる。Ca、REM の添加によりこの発明が主眼とする変形能の改善が顕著となり、上式で示すCa、REM で固定されないSに対応する量が0.0014wt 以下であることが、その必要な要件である。
【0020】
(O:0.010 wt%以下)
Oは不可避的混入成分であり、特に限定するのではないが、微細な酸化物を生成させるためにある程度は必要な成分である。しかし、0.010 wt%を超えて含有させると粗大なAlを多量に生成させて変形能、耐発錆性を低下させるので0.010 wt%を上限とした。なお、好ましい上限値は0.007 wt%であり、0.005 wt%以下であればより望ましい。
【0021】
以上の成分組成範囲を満足する鋼において、粒径1 〜50μm の酸化物系介在物がTi酸化物及びCaO ,REM 酸化物の1 種又は2 種を含有する介在物であることが、この発明では特に重要である。かかる脱酸生成物としての介在物が、Ti酸化物及びCaO ,REM 酸化物の1 種又は2 種を含有するもの、より詳しくは、Ti酸化物−CaO 及び/又はREM 酸化物−Al−SiO系の酸化物(Alを含有しない場合にはTi酸化物−CaO 及び/又はREM 酸化物−SiO系の酸化物)系の介在物になることにより、錆の少なく、介在物、析出物による変形能の劣化がほとんどなく、かつ、クラスター状介在物による表面欠陥がなく、しかも地金を含んだTi酸化物のノズルへの付着がない、この発明で所期した高張力鋼板となる。
なお、この発明で規定する酸化物系介在物を粒径1 〜50μm のものに限定しているのは、かかる範囲の介在物が脱酸により生成した介在物と見なすことができるからであり、粒径が50μm を超える介在物は一般に、スラグかモールドパウダーなどの外来性の介在物が主因である。
【0022】
上述の粒径1〜50μm の酸化物系介在物の組成は、Ti酸化物:20wt%以上90wt%以下、CaO ,REM 酸化物の1種又は2種の合計:10wt%以上40wt%以下、Al2O3 :40wt 以下(Ti酸化物、CaO ,REM 酸化物の1種又は2種、Al2O3 の合計は100 wt 以下)であることが、より好ましい。
【0023】
上記介在物のTi酸化物が20wt%に満たない場合はTi脱酸鋼ではなく、Al脱酸鋼となり、Al2O3 濃度が高まるためにノズル詰まりが発生する。また、CaO, REM酸化物濃度が高くなると発錆性が著しくなるため、Ti酸化物濃度は20wt %以上とする。一方、Ti酸化物濃度が90wt%を超えると、CaO, REM酸化物の割合が少なくなって、却ってノズル詰まりが発生することから、Ti酸化物濃度は20wt%以上90wt%以下とする。より好ましくは30wt%以上80wt%以下とする。
【0024】
また、上記介在物中のCaO ,REM 酸化物の1 種又は2 種の合計が10wt%に満たないと、介在物が低融点とならず、前述のノズル閉塞を引き起こす。一方、40wt%を超えると介在物がその後にSを吸収して水溶性に変化し、錆の起点となる。なお、より好ましい範囲は20〜40wt%である。
【0025】
また、上記介在物中のAlについては、40wt%を超えると高融点組成となるためにノズル閉塞が起きるだけでなく、介在物の形状がクラスター状になり、製品板での非金属介在物性の欠陥が増加する。なお、鋼中にAlがほとんど含有していない場合には、介在物中のAlもほとんど無視し得るだけの濃度になる。
【0026】
なお、上記酸化物系介在物中には、上掲したもの以外の酸化物が混入する場合もあり、その場合に上掲したもの以外の酸化物の量については、特に限定するものではないが、SiOについては、30wt%以下、MnO については、15wt%以下に制御するのが好ましい。この理由は、これらがそれぞれの量を上回ると、この発明で対象とするチタンキルド鋼とは言えないし、こうした組成のもとでは、Ca添加を行わなくてもノズル詰まりはなく、発錆の問題も無くなるためである。しかも、前述したように、介在物中にSiO, MnO を含有させるためには、溶鋼のSi, Mn濃度をMn/Ti>100 、Si/Ti>50にすることが好ましいのであるが、この場合、鋼の硬質化、表面性状の劣化などを招く。
【0027】
次に、この発明の鋼の製造方法について説明する。
この発明において、調整成分としてのTiを、Ti:0.015 wt%以上とする理由は、Tiが0.015 wt%未満では脱酸素能力が弱く、溶鋼中の全酸素濃度が高くなり、伸び、絞りなどの材料特性が悪化するためである。この場合、Si, Mnの濃度を高めて脱酸力を増加することも考えられるが、Tiが0.015 wt%未満ではSiO2又はMnO 含有介在物が大量に生成し、鋼材質の硬化やめっき性の劣化を招く。これを防ぐには (wt%Mn)/ (wt%Ti) <100 とするようにTiを含有させることが必要となる。その場合、介在物中のTi酸化物濃度は20wt 以上となる。
【0028】
この発明に係るチタンキルド鋼板の製造にあたっては、まず、溶鋼をFeTiなどのTi含有合金により脱酸し、鋼中にTi酸化物を主体とする酸化物系介在物を生成させる。その介在物は、Alで脱酸した時のような巨大クラスター状ではなく、1〜50μm 程度の大きさの粒状、破断状のものが多くを占める。ただし、このときAl濃度が0.010 wt%を超えていると、巨大なAlクラスターが生成する。このようなAlクラスターは、Ti合金を添加してTi濃度を増加しても還元できず、鋼中にクラスター状介在物として残存する。したがって、この発明に係る鋼板については、製造の段階で、まず溶鋼中にTi酸化物を生成させることが好ましい。
【0029】
なお、この発明のもとでは、Alで脱酸する従来方法に比べると、Ti合金の歩留りが悪く、しかも、Ca, REM を含有するため介在物組成調整用合金は高価である。このことから、かかる合金の溶鋼中への添加は、介在物の組成制御が可能な範囲内でできるかぎり少量で済むように行うのが経済的で好ましい。この意味において、Ti含有合金などの脱酸剤の添加の前には、溶鋼中の溶存酸素、スラグ中のFeO, MnOを低下させるために溶存酸素濃度が200ppm以下になるように予備脱酸することが望ましい。この予備脱酸は、真空中での溶鋼攪拌、脱酸後の溶鋼中のAl≦0.010 wt%となるような少量のAlによる脱酸、SiやFeSi, MnやFeMnの添加によって行うのが好ましい。
なお、予備脱酸の直後にTiによる脱酸を行うと、改質が不十分な介在物が溶鋼中に多数残存することとなり、目的の介在物組成にコントロールするのが困難となる。そこで、予備脱酸剤の添加後3〜4分、Ti添加後8〜9分の攪拌を行うことにより、介在物がTi酸化物:20wt%以上90wt%以下、CaO ,REM 酸化物の1種又は2種の合計:10wt%以上40wt%以下、Al2O3:40wt 以下の組成となり、Ti脱酸に支配される介在物となる。
【0030】
上述したように、Ti脱酸により生成したTi酸化物系介在物というのは、2〜20μm 程度の大きさにて鋼中に分散するため、クラスター状の介在物による表面欠陥はなくなる。しかしながら、Ti酸化物は溶鋼中では固相状態であり、また、極低炭素鋼は凝固の温度が高いために、地金を取り込んだ形でタンディッシュノズルの内面に成長し、ノズルの閉塞を誘発するおそれがある。
【0031】
そこで、この発明に係る鋼板では、Ti合金により脱酸した後、さらに0.0005wt%以上になるようにCa及びREM のいずれか1種又は2種を添加して、溶鋼中の粒径1 〜50μm の酸化物系介在物を、Ti酸化物:20wt%以上90wt%以下、好ましくは85wt%以下、CaO 及び/又はREM 酸化物:10wt%以上40wt 以下、Al2O3 が40wt%以下である低融点の酸化物系介在物とする。そうすると、地金を含んだTi酸化物のノズルへの付着を有効に防止することが可能になる。
かかる酸化物系介在物の組成の測定は、EPMAを用いて、各介在物ごとの定量分析によって行う。このようにして分析された鋼中の介在物の全てが上記の組成を満たすことは最も望ましいところではあるが、実用上は1〜50μm の大きさの介在物のうち個数で50%以上のものが上記組成範囲となっていれば、この発明の目的とする高張力鋼板の諸特性が達成される。
【0032】
この発明において、生成する介在物の組成を上記のように制御した場合、連続鋳造時にタンディッシュノズル及びモールドの浸漬ノズル内面に酸化物などが付着するのを完全に防止することができる。したがって、タンディッシュや浸漬ノズル内に、酸化物などの付着防止のためのArやNなどのガスを吹き込む必要がなくなる。その結果、連続鋳造時のパウダー巻き込みによる鋳片のパウダー性欠陥や、吹き込んだガスによる気泡性の欠陥が鋳片に発生するのを防止できるという効果が得られる。
【0033】
連続鋳造後の熱間圧延工程は、常法にしたがって熱間圧延を行えばよい。スラブ加熱温度は、900 〜1300℃であることが好適である。900 ℃以下のスラブ加熱温度では、圧延時の荷重負荷が高くなりすぎ、操業上の問題が生じる。一方、1300℃を超える高い温度では、圧延前の結晶粒径が大きくなり過ぎるため、熱延板が微細化しない。したがって、スラブ加熱温度は900 〜1300℃が好ましい。なお、1200℃以下のスラブ加熱温度は、深絞り性の観点からは好ましい。また、CC−DR(連続鋳造−直送圧延)又はDHCR(ダイレクトホットチャージローリング)は省エネルギーの観点から好ましい。
熱間圧延終了温度は、650 〜960 ℃であることが好ましい。また、熱間圧延後のコイル巻取り温度は、高温ほど析出物の粗大化に有利であるが、高すぎるとスケールが厚くなりすぎるなどの問題が生じるので、400 〜750 ℃が好ましい。
【0034】
【実施例】
(発明例)
転炉出鋼後、300 ton の溶鋼をRH脱ガス装置にて脱炭処理し、C=0.05〜0.09wt%、Si=0.60〜0.80wt%、Mn=1.0 〜1.3 wt%、P=0.005 〜0.030 wt%、S=0.004 〜0.008 wt%に調整するとともに、溶鋼温度を1585〜1615℃に調整した。この溶鋼中に、Alを0.2 〜0.8kg/ton 添加して3 〜4 分の予備脱酸を行い、溶鋼中の溶存酸素濃度を55〜260ppmまで低下させた。この時の溶鋼中のAl濃度は0.001 〜0.005 wt%であった。そしてこの溶鋼に、70wt%Ti−Fe合金を0.8 〜1.8kg/ton 8 〜9 分かけて添加してTi脱酸した。その後、成分調整を行った後に、溶鋼中には30wt%Ca−60wt%Si合金や、それに金属Ca, Fe, 5 〜15wt%のREM を混合した添加剤、又は、90wt%Ca−5 wt%Ni合金などのCa合金、REM 合金のFe被覆ワイヤーを0.05〜0.5kg/ton 添加し処理を行った。この処理の後のTi濃度は0.026 〜0.058 wt%、Al濃度は0.001 〜0.005 wt%、Ca濃度は0.0005〜0.0018wt%、REM 濃度は0.0000〜0.0020wt%であった。
【0035】
次に、この鋼を2ストランドスラブ連続鋳造装置にて鋳造し連鋳スラブを製造した。鋳造時にはタンディッシュならびに浸漬ノズル内にArガスを吹き込まなかった。連続鋳造後に観察したところでは、タンディッシュならびに浸漬ノズル内には付着物はほとんどなかった。
【0036】
次に、上記連鋳スラブを熱間圧延したのち酸洗を行って熱延板とした。なお、このときの酸化物系介在物のサイズは幅が50μm 以下であった。この熱延板にはヘゲ、スリーバー、スケールなどの非金属介在物性の欠陥は0.00〜0.02個/1000m−コイル以下しか認められなかった。熱延板の鋼組成を表1に示し、介在物組成、熱延条件及び機械的性質、錆発生面積率指数を表2に示す。錆発生面積率は、50℃の温度で湿度95%のなかで10時間放置したときの発錆面積を指数で示した。発錆量は、従来のAl脱酸鋼と同じく問題はなかった。
得られた熱延板の孔拡げ性試験の結果を図1に示す。ここでいう孔拡げ性λは2mmの熱延板に10mmの孔をあけ、円錐によって孔を拡大したときに割れの発生しない臨界の孔径D′(mm)から、以下の式で定義した。
λ=(D′−10)/10× 100(%)
なお、冷間圧延後、電気めっき、溶融亜鉛めっき処理を施した鋼板の表面品質も良好であった。
【0037】
【表1】

Figure 0003629955
【0038】
【表2】
Figure 0003629955
【0039】
(比較例)
転炉出鋼後、300 ton の溶鋼をRH真空脱ガス装置にて脱炭処理し、C=0.05〜0.09wt%、Si=0.60〜0.80wt%、Mn=1.0 〜1.3 wt%、P=0.005 〜0.030 wt%、S=0.004 〜0.008 wt%に調整するとともに、溶鋼温度を1590℃に調整した。この溶鋼中に、Alを1.2 〜1.6kg/ton 添加し15分間脱酸処理を行った。脱酸処理後の溶鋼中のAl濃度は0.035 wt%であった。その後、FeTiを添加するとともに、成分調整を行った。この処理の後のTi濃度は0.040 wt%であった。
【0040】
次に、この溶鋼を2ストランドスラブ連続鋳造装置にて鋳造し連鋳スラブを製造した。なお、このときの、タンディッシュ内溶鋼の介在物の平均的な組成は、95〜98wt%Al2O3,5wt 以下のTi2O3 のクラスター状の介在物が主体であった。
【0041】
鋳造時にタンディッシュならびに浸漬ノズル内にArガスを吹き込まなかった場合には、著しくノズルにAlが付着し、3チャージ目にスライディングノズルの開度が著しく増加し、ノズル詰まりにより鋳込みを中止した。また、Arガスを吹いた場合にも、ノズル内にはAlが大量に付着しており、8チャージ目にはモールド内の湯面の変動が大きくなり鋳込みを中止した。
【0042】
次に、上記連鋳スラブは4.0mm まで熱間圧延したのち、酸洗して熱延板とした。鋼組成を表1に示し、介在物組成、熱延条件及び機械的性質、錆発生面積率指数を表2に示す。この焼鈍板にはヘゲ、スリーバー、スケールなどの非金属介在物性の欠陥は0.45個/1000m−コイル認められた。
得られた熱延板の孔拡げ性試験の結果を図1に示す。
【0043】
【発明の効果】
以上説明したように、この発明にかかる高張力鋼板は、その製造に当たり、連続鋳造時に浸漬ノズルの閉塞を引き起こすことがなく、圧延鋼板の表面は非金属介在物に起因する表面欠陥がほとんど皆無で極めて清浄であり、さらに変形能と耐食性に優れた性質を有する鋼板として、自動車部品などとして実に好適に用いられる。
【図面の簡単な説明】
【図1】固定されないS量と局部変形能の指標である孔拡げ性との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-strength steel plate, and in particular, intends to propose a high-tensile steel plate having excellent deformability by controlling oxide inclusions in the steel.
[0002]
[Prior art]
Conventionally, high-strength steel has been used for various applications by utilizing its excellent strength. In particular, in recent years, high-tensile steel sheets with excellent workability have been developed and are becoming popular in applications that require complex processing such as automobile bodies.
By the way, when such a high-strength steel sheet is processed into a complicated shape by pressing or the like, a problem that cannot be overlooked has been encountered. That is, it is a local crack at the time of molding with a large local deformation (for example, a crack near the opening at the time of deep drawing of a material including the opening). For such processing, it is necessary to improve the deformability of the material in a state where stress is concentrated in a minute range in the material (this is referred to as local deformability here). is there. The lack of local deformability peculiar to such a high-tensile steel sheet has conventionally been dealt with by controlling the components in the steel exclusively as disclosed in JP-A-5-195144. Even with such efforts, the above problems have not been overcome.
[0003]
[Problems to be solved by the invention]
This invention has such a high tensionsteelAn object of the present invention is to propose an excellent high-tensile steel sheet that fundamentally solves the lack of deformability, particularly local deformability, by technical means different from conventional ones.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the inventors have controlled the composition of oxide inclusions remaining in the steel, thereby controlling the oxides and sulfides present in the steel. It was concluded that this is effective in improving deformability. In other words, the formation of large cluster inclusions is suppressed to achieve fine dispersion into inclusions with a size of 50 μm or less, and the amount of MnS in the steel is reduced to reduce all oxides and sulfides in the steel. It has been found that making the material fine and non-ductile is effective in improving the deformability and can solve various problems such as nozzle clogging, rusting, and deterioration of surface properties.
Based on the above findings, the present invention includes C: 0.03 to 0.20 wt%, Si: 2.0 wt% or less, Mn: 0.05 to 2.5 wt%, P: 0.15 wt% or less, Ti: 0.015 to 0.4 wt%, Al: 0.01 Contains less than wt%, N: 0.02 wt% or less, contains one or two of Ca and REM in total of 0.0005 to 0.1 wt%, and contains one or two of S and Ca, REM in total The quantity is
S-5 × ((32/40) Ca + (32/140) REM) ≦ 0.0014wt%
(Where S is the amount of S ( wt %) Ca Is Ca amount( wt %) REM Is REM amount( wt %) Each    Show. )
The balance is the composition of Fe and inevitable impurities, and the oxide inclusions having a particle size (maximum diameter; the same applies hereinafter) of 1 to 50 μm are one or two of Ti oxide, CaO and REM oxide. It is a high-tensile steel plate excellent in deformability characterized by containing seeds.
In the present invention, oxide inclusions having a particle size of 1 to 50 μm are Ti oxide: 20 wt% or more and 90 wt% or less, and a total of one or two of CaO and REM oxide: 10 wt% or more and 40 wt% or less. , Al2OThree: 40wt %The following (Ti oxide, CaO, REM oxide one or two, Al2OThreeThe total is 100wt %Or less).
The steel plate of the present invention is a high-tensile steel having a tensile stress of about 440 MPa or more.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the results of research on which the present invention was based will be described.
The inventors have simulated how the local deformability of the high-tensile steel plate is reduced by a hole expansion test of the steel plate and investigated the cause. As a result, it has been clarified that in the portion where the crack occurred, there were inclusions of MnS-based elongation and clustered alumina giant inclusions as the starting point of the crack.
In other words, although the composition and structure of the steel in the matrix are of course important, we thought that sufficient improvement in local deformability could not be achieved without proper control of the inclusions generated in the steelmaking stage.
Therefore, the inventors have conceived to control the form of inclusions in the steel plate that are difficult to extend and are finely dispersed.
[0006]
In order to improve the deformability, it is important that 1) oxides in steel are not coarsened and 2) sulfides in steel are not coarsened.
With respect to the oxide of 1) above, Al satisfies the condition that Al is 0.01 wt% or less, Ti is 0.015 wt% or more, and Ca or REM is 0.0005 wt% or more.2O3The main body changes to a Ti-based oxide. Since Ti-based oxides have good wettability with molten steel, it is difficult to form clusters. For this reason, Al2O3Does not become as coarse as the inclusions of the main body. Further, by containing 0.0005 to 0.1 wt% of Ca and / or REM, a composite oxide of Ti oxide-Ca and / or REM oxide is formed, and sulfides described later are absorbed therein. It becomes.
[0007]
In addition, regarding the sulfide 2), it is important to suppress MnS precipitated during solidification. If MnS is present, it extends during rolling and promotes cracking during processing. For this solution, S in the steel is fixed by Ca and / or REM which produces a more stable sulfide. For this purpose, the S content, the Ca content, and the REM content are
S-5 × ((32/40) Ca + (32/140) REM)) ≦ 0.0014wt%
(In the formula, S represents the amount of S (wt%), Ca represents the amount of Ca (wt%), and REM represents the amount of REM (wt%).)
It came to the thought that it was necessary to satisfy the relationship. That is, in order to fix S by the formation of CaS, REM sulfide, the larger the amount of Ca, REM added, the better, and the lower limit is shown by the above inequality. That is, S which is not fixed is 0.0014.wt %The experimental result that it was necessary to be the following was obtained.
[0008]
However, when S in steel is fixed with Ca and / or REM as described above, there is another concern that rusting is likely to occur. Therefore, in the present invention, the steel content is less rust by satisfying the conditions that Al is 0.01 wt% or less, Ti is 0.015 wt% or more and Ca and / or REM is 0.0005 wt% or more. And At this time, inclusions are Ti oxide-CaO and / or REM oxide-Al.2OThree -SiO2System oxide (Ti oxide-CaO and / or REM oxide-SiO if not containing Al)2Rust generation starting from inclusions is suppressed. Further, when the Ca concentration in the inclusion is 40 wt% or less, it does not become a starting point of rust and the surface properties are good. When the amount of Al exceeds 0.01 wt%, inclusions are Al.2OThree Since it is a CaO system, the CaO concentration in inclusions is 50wt %The corrosion resistance is deteriorated as a starting point of rust.
[0009]
Furthermore, since the above-described oxide inclusions have a low melting point, they hardly adhere to and grow on the immersion nozzle during casting, so that the nozzle is not clogged. Ar gas or N inside2It was confirmed that there was almost no need to blow gas.
[0010]
As a result of various studies based on the above experimental results, the inventors limited the present invention as follows.
Hereafter, the reason for limitation is shown about each component.
[0011]
(C: 0.03-0.20 wt%)
C is a very effective component for strengthening steel. In the steel of this invention, it is necessary to contain 0.03 wt% or more in order to obtain 440 MPa or more in tensile strength (TS). However, if the amount is too large, there arises a problem that the weldability is deteriorated or the ductility is remarkably lowered. Therefore, the upper limit is set to 0.20 wt%. In addition, a preferable lower limit is 0.05 wt%, and a preferable upper limit is 0.15 wt%.
[0012]
(Si: 2.0 wt% or less)
Si is a useful component for strengthening steel and increasing tensile strength. In particular, it is a desirable component in the production of high-strength steel sheets because it increases the tensile strength without significantly reducing the ductility. However, when the content exceeds 2.0 wt%, the hot deformation resistance of the steel is remarkably increased, which hinders the production of the thin steel sheet. In addition, the paintability and corrosion resistance of the surface are also reduced. Therefore, Mn is 2.0 wt% or less. In addition, a more preferable upper limit is 1.5 wt% from the viewpoint of paintability. The lower limit is preferably about 0.2 wt% from the viewpoint of improving the balance between strength and ductility.
[0013]
(Mn: 0.05-2.5 wt%)
Mn is a component that is effective for deoxidation, is a useful reinforcing component, and is also a preferred additive component because it contributes to the refinement of the structure. In order to achieve these effects, addition of 0.05 wt% or more is necessary. However, when adding over 2.5 wt%, the deformation resistance at the time of hot rolling increases, and the rollability deteriorates. In order to secure the strength, the preferable lower limit is 0.30 wt%, and the preferable upper limit is 2.0 wt%.
[0014]
(P: 0.15 wt% or less)
P has an effect of strengthening steel and is added in a necessary amount depending on the desired strength. However, if the added amount exceeds 0.15 wt%, weldability is inferior, so it is limited to 0.15 wt% or less. In applications where particularly severe weldability is required, 0.04 wt% or less is desirable.
[0015]
(Ti: 0.015 to 0.4 wt%)
Ti is an important component in the present invention, and by Ti deoxidation, fine oxide inclusions having a size of 50 μm or less are formed, and there is also an effect of controlling the form of the sulfide, particularly in the direction perpendicular to the rolling direction. It is effective in improving ductility. Ti also plays a role of obtaining high tension by precipitation strengthening. Furthermore, the grain growth property at the time of cold rolling and annealing is controlled to improve the strength-elongation balance. Furthermore, since the fine oxide is effective for miniaturization of the hot-rolled sheet, stretch flange characteristics represented by hole expandability are improved. If the addition amount is less than 0.015 wt%, the addition effect, that is, the amount of fine oxide is too small, and the desired effect cannot be obtained, so it is limited to 0.015 wt% or more. On the other hand, when the amount of Ti exceeds 0.4 wt%, the desired effect is saturated, but the hot rolling property is lowered and the slab surface properties are deteriorated, so the content is within the range of 0.4 wt% or less. I will let you.
[0016]
Al: 0.01 wt% or less
Al is a component whose content has a significant effect on the characteristics in the present invention, and when the Al content exceeds 0.01 wt%, Al deoxidation occurs preferentially, so that a huge Al2O3A large amount of clusters are produced, the surface properties are deteriorated, and the fine oxide of 50 μm or less capable of controlling the grain growth property of the hot-rolled sheet is reduced, so that the strength elongation balance is lowered. Therefore, it was limited to 0.01 wt% or less. More importantly, if the amount of Al is larger than this, the inclusion composition is Al.2O3-CaO or Al2O3-REM It becomes an oxide system, becomes a starting point of rust, and deteriorates corrosion resistance. From this viewpoint, the upper limit of Al is 0.01 wt%. Al does not necessarily need to be added, and Al is not essential as a deoxidizer by performing Ti deoxidation or the like.
[0017]
(N: 0.02 wt% or less)
Since N contributes as a solid solution strengthening component, it is one of useful components. However, adding more than 0.02 wt% is accompanied by operational difficulties, and in addition to fixing a part of the added Ti as TiN, the effect of reducing the desirable effect of Ti. There is. A more preferable upper limit is 0.01 wt%.
[0018]
(Ca and / or metal REM: 0.0005 to 0.1 wt%)
Ca and metal REM (referring to rare earth elements such as La and Ce) are important components in the present invention, and one or two of Ca and REM need to be added in an amount of 0.0005 wt% or more. That is, after deoxidizing Ti, any one or two of Ca and REM are added so as to be 0.0005 wt% or more, and the oxide composition in the molten steel is changed to Ti oxide: 20 wt% or more and 90 wt%. %, Preferably 85 wt% or less, CaO 2 and / or REM oxide: 10 wt% or more and 40 wt% or less, Al2O3Is a low-melting-point oxide-based inclusion having a content of 40 wt% or less. If it does so, the adhesion to the nozzle of Ti oxide containing a metal in the continuous casting can be prevented effectively, and the blockage of the nozzle can be prevented. Furthermore, CaO.sub.2 and / or REM oxide can contribute to grain growth after cold rolling-annealing and refinement of hot-rolled sheets. From these facts, one or two of Ca and REM are added in a total amount of 0.0005 wt% or more. If the total amount exceeds 0.1 wt%, in addition to difficulty in melting, corrosion resistance In order to cause deterioration, the upper limit was limited to 0.1 wt%.
[0019]
(S-5 x ((32/40) Ca + (32/140) REM) ≤ 0.0014 wt%)
(Where S is the amount of S ( wt %) Ca Is Ca amount( wt %) REM Is REM amount( wt %) Each    Show. )
S can exist as various sulfides in steel, but when it exists as MnS inclusions, it significantly extends in the rolling direction during hot rolling and deteriorates the mechanical properties in the direction perpendicular to the rolling direction. Let The addition of Ca and REM markedly improves the deformability which is the main focus of the present invention, and the amount corresponding to S which is not fixed by Ca and REM in the above formula is 0.0014.wt %The following are the necessary requirements.
[0020]
(O: 0.010 wt% or less)
O is an unavoidable component, and although it is not particularly limited, it is a component necessary to some extent in order to produce a fine oxide. However, if it exceeds 0.010 wt%, coarse Al2O3Is generated in a large amount to lower the deformability and rust resistance, so 0.010 wt% was made the upper limit. In addition, a preferable upper limit is 0.007 wt%, and if it is 0.005 wt% or less, it is more desirable.
[0021]
In the steel satisfying the above component composition range, the oxide inclusions having a particle size of 1 to 50 μm are inclusions containing one or two of Ti oxide, CaO 2 and REM oxide. Then it is particularly important. The inclusion as the deoxidation product contains one or two of Ti oxide and CaO 2, REM oxide, more specifically, Ti oxide-CaO 2 and / or REM oxide-Al2O3-SiO2Type oxide (Ti oxide-CaO and / or REM oxide-SiO in the case of not containing Al)2Oxide-based inclusions have little rust, almost no deterioration of deformability due to inclusions and precipitates, no surface defects due to cluster-like inclusions, and metal This is the high-tensile steel plate as expected in the present invention, in which no Ti oxide adheres to the nozzle.
The oxide inclusions defined in the present invention are limited to those having a particle size of 1 to 50 μm because inclusions in such a range can be regarded as inclusions generated by deoxidation, Inclusions having a particle size exceeding 50 μm are generally caused by extraneous inclusions such as slag or mold powder.
[0022]
The composition of the oxide inclusions having a particle size of 1 to 50 μm is as follows: Ti oxide: 20 wt% to 90 wt%, CaO, REM oxide, one or two total: 10 wt% to 40 wt%, Al2OThree : 40wt %The following (Ti oxide, CaO, REM oxide one or two, Al2OThree The total is 100wt %The following is more preferable.
[0023]
When the inclusion Ti oxide is less than 20wt%, it is not Ti deoxidized steel but Al deoxidized steel.2OThree Nozzle clogging occurs due to increased concentration. In addition, as the CaO and REM oxide concentration increases, the rusting property becomes remarkable.wt %that's allAnd On the other hand, when the Ti oxide concentration exceeds 90 wt%, the ratio of CaO and REM oxide decreases, and nozzle clogging occurs. Therefore, the Ti oxide concentration is set to 20 wt% or more and 90 wt% or less. More preferably, it is 30 wt% or more and 80 wt% or less.
[0024]
Further, if the total of one or two kinds of CaO 2 and REM oxide in the inclusion is less than 10 wt%, the inclusion does not have a low melting point and causes the above-mentioned nozzle blockage. On the other hand, if it exceeds 40 wt%, the inclusions will subsequently absorb S and become water-soluble, which becomes the starting point of rust. A more preferable range is 20 to 40 wt%.
[0025]
In addition, Al in the inclusion2O3When the content exceeds 40 wt%, not only the nozzle clogging occurs due to the high melting point composition, but also the inclusions are clustered to increase non-metallic inclusion physical defects in the product plate. In addition, when Al is hardly contained in steel, Al in inclusions2O3Is almost negligible.
[0026]
The oxide inclusions may contain oxides other than those listed above, and the amount of oxides other than those listed above is not particularly limited. , SiO2Is preferably controlled to 30 wt% or less, and MnO 2 is preferably controlled to 15 wt% or less. The reason for this is that if these amounts exceed the respective amounts, it cannot be said that the titanium killed steel is the subject of the present invention. Under such a composition, there is no nozzle clogging even without Ca addition, and there is also a problem of rusting. This is because it disappears. Moreover, as described above, SiO is contained in the inclusion.2In order to contain MnO, the Si and Mn concentrations of the molten steel are preferably Mn / Ti> 100 and Si / Ti> 50. In this case, however, the steel is hardened and the surface properties are deteriorated. Invite.
[0027]
Next, the manufacturing method of the steel of this invention is demonstrated.
In this invention, the reason why Ti as an adjustment component is Ti: 0.015 wt% or more is that if the Ti content is less than 0.015 wt%, the oxygen removal capacity is weak, the total oxygen concentration in the molten steel becomes high, elongation, drawing, etc. This is because the material characteristics deteriorate. In this case, it is conceivable to increase the concentration of Si and Mn to increase the deoxidizing power, but if Ti is less than 0.015 wt%, SiO2Or a large amount of inclusions containing MnO causes hardening of the steel material and deterioration of plating properties. In order to prevent this, it is necessary to contain Ti so that (wt% Mn) / (wt% Ti) <100. In that case, the Ti oxide concentration in the inclusion is 20wt %That's it.
[0028]
In the production of the titanium killed steel sheet according to the present invention, first, the molten steel is deoxidized with a Ti-containing alloy such as FeTi to generate oxide inclusions mainly composed of Ti oxide in the steel. The inclusions are not in the form of large clusters as in the case of deoxidation with Al, but are mostly in the form of granules and ruptures having a size of about 1 to 50 μm. However, if the Al concentration exceeds 0.010 wt% at this time, huge Al2O3A cluster is generated. Such Al2O3Even if the Ti alloy is added to increase the Ti concentration, the cluster cannot be reduced and remains as cluster-like inclusions in the steel. Therefore, with respect to the steel sheet according to the present invention, it is preferable to first produce Ti oxide in the molten steel at the stage of manufacture.
[0029]
Under the present invention, the yield of the Ti alloy is poor compared to the conventional method of deoxidizing with Al, and the inclusion composition adjusting alloy is expensive because it contains Ca and REM. For this reason, it is economically preferable to add such an alloy into the molten steel so that the amount of the alloy is as small as possible within the range in which the composition of inclusions can be controlled. In this sense, prior to the addition of a deoxidizer such as a Ti-containing alloy, pre-deoxidization is performed so that the dissolved oxygen concentration is 200 ppm or less in order to reduce dissolved oxygen in molten steel and FeO and MnO in slag. It is desirable. This preliminary deoxidation is preferably performed by stirring the molten steel in a vacuum, deoxidizing with a small amount of Al so that Al ≦ 0.010 wt% in the molten steel after deoxidation, and adding Si, FeSi, Mn, or FeMn. .
If deoxidation with Ti is performed immediately after preliminary deoxidation, a large number of inclusions that are insufficiently modified remain in the molten steel, making it difficult to control the target inclusion composition. Therefore, by stirring for 3 to 4 minutes after the addition of the preliminary deoxidizer and 8 to 9 minutes after the addition of Ti, the inclusions are Ti oxide: 20 wt% or more and 90 wt% or less, and one kind of CaO and REM oxide. Or total of 2 types: 10wt% or more and 40wt% or less, Al2OThree: 40wt %It becomes the following composition and becomes an inclusion governed by Ti deoxidation.
[0030]
As described above, the Ti oxide inclusions generated by Ti deoxidation are dispersed in the steel with a size of about 2 to 20 μm, so that surface defects due to cluster-like inclusions are eliminated. However, Ti oxide is in a solid state in molten steel, and ultra-low carbon steel has a high solidification temperature, so it grows on the inner surface of the tundish nozzle in a form that takes in the metal, and clogs the nozzle. There is a risk of triggering.
[0031]
Therefore, in the steel sheet according to the present invention, after deoxidizing with a Ti alloy, either one or two of Ca and REM are further added so as to be 0.0005 wt% or more, and the grain size in the molten steel is 1 to 50 μm. The oxide inclusions of Ti oxide: 20 wt% or more and 90 wt% or less, preferably 85 wt% or less, CaO and / or REM oxide: 10 wt% or more 40wt %Hereafter, Al2OThree Is a low-melting oxide oxide inclusion with a content of 40 wt% or less. If it does so, it will become possible to prevent effectively adhesion to the nozzle of Ti oxide containing bullion.
The composition of such oxide inclusions is measured by quantitative analysis for each inclusion using EPMA. Although it is most desirable that all the inclusions in the steel analyzed in this way satisfy the above composition, in practice, there are 50% or more of inclusions having a size of 1 to 50 μm. Is within the above composition range, the various properties of the high-tensile steel sheet aimed at by the present invention are achieved.
[0032]
In this invention, when the composition of the inclusions to be generated is controlled as described above, it is possible to completely prevent oxides and the like from adhering to the inner surface of the tundish nozzle and the immersion nozzle of the mold during continuous casting. Therefore, Ar or N for preventing adhesion of oxide or the like in the tundish or immersion nozzle.2It is no longer necessary to blow in gas. As a result, it is possible to prevent the occurrence of powder defects in the slab due to powder entrainment during continuous casting and bubble defects due to the blown gas in the slab.
[0033]
What is necessary is just to perform the hot rolling in accordance with a conventional method as the hot rolling process after continuous casting. The slab heating temperature is preferably 900 to 1300 ° C. At a slab heating temperature of 900 ° C. or lower, the load applied during rolling becomes too high, causing operational problems. On the other hand, at a high temperature exceeding 1300 ° C., the crystal grain size before rolling becomes too large, so that the hot-rolled sheet is not refined. Therefore, the slab heating temperature is preferably 900 to 1300 ° C. In addition, the slab heating temperature of 1200 degrees C or less is preferable from a viewpoint of deep drawability. CC-DR (continuous casting-direct rolling) or DHCR (direct hot charge rolling) is preferable from the viewpoint of energy saving.
The hot rolling end temperature is preferably 650 to 960 ° C. Moreover, although the coil winding temperature after hot rolling is more advantageous for the coarsening of the precipitate as the temperature is higher, 400 to 750 ° C. is preferable because problems such as excessively thick scale occur.
[0034]
【Example】
(Invention example)
After the converter steel is discharged, 300 ton of molten steel is decarburized with an RH degasser, C = 0.05 to 0.09 wt%, Si = 0.60 to 0.80 wt%, Mn = 1.0 to While adjusting to 1.3 wt%, P = 0.005 to 0.030 wt%, S = 0.004 to 0.008 wt%, the molten steel temperature was adjusted to 1585 to 1615 ° C. In this molten steel, 0.2 to 0.8 kg / ton of Al was added and preliminary deoxidation was performed for 3 to 4 minutes to reduce the dissolved oxygen concentration in the molten steel to 55 to 260 ppm. The Al concentration in the molten steel at this time was 0.001 to 0.005 wt%. And 70 wt% Ti-Fe alloy was added to this molten steel over 0.8 to 1.8 kg / ton 8 to 9 minutes, and Ti was deoxidized. Thereafter, after adjusting the components, the molten steel contains 30 wt% Ca-60 wt% Si alloy, an additive mixed with metal Ca, Fe, 5-15 wt% REM, or 90 wt% Ca-5 wt%. Processing was performed by adding 0.05 to 0.5 kg / ton of Fe-coated wire of Ca alloy such as Ni alloy or REM alloy. The Ti concentration after this treatment is 0.026 to 0.058 wt%, the Al concentration is 0.001 to 0.005 wt%, the Ca concentration is 0.0005 to 0.0018 wt%, and the REM concentration is 0.0000 to It was 0.0020 wt%.
[0035]
Next, this steel was cast with a two-strand slab continuous casting apparatus to produce a continuous cast slab. Ar gas was not blown into the tundish and the immersion nozzle during casting. As observed after continuous casting, there was almost no deposit in the tundish and the immersion nozzle.
[0036]
Next, the continuous cast slab was hot-rolled and then pickled to obtain a hot-rolled sheet. At this time, the width of the oxide inclusions was 50 μm or less. In this hot-rolled sheet, defects of non-metallic inclusion physical properties such as heges, slivers, and scales were recognized only at 0.00 to 0.02 pieces / 1000 m-coil or less. Table 1 shows the steel composition of the hot-rolled sheet, and Table 2 shows the inclusion composition, hot-rolling conditions and mechanical properties, and the rust generation area ratio index. The rust generation area ratio was expressed as an index of the rust generation area when left for 10 hours at a temperature of 50 ° C. and a humidity of 95%. The amount of rusting was not a problem as in the conventional Al deoxidized steel.
The result of the hole expansibility test of the obtained hot-rolled sheet is shown in FIG. The hole expansibility λ here is defined by the following equation from a critical hole diameter D ′ (mm) in which no crack is generated when a 10 mm hole is formed in a 2 mm hot-rolled plate and the hole is expanded by a cone.
λ = (D′−10) / 10 × 100 (%)
In addition, the surface quality of the steel plate which performed the electroplating and the hot dip galvanization process after the cold rolling was also favorable.
[0037]
[Table 1]
Figure 0003629955
[0038]
[Table 2]
Figure 0003629955
[0039]
(Comparative example)
After the converter steel, 300 ton of molten steel was decarburized by RH vacuum degassing equipment, C = 0.05-0.09 wt%, Si = 0.60-0.80 wt%, Mn = 1.0 While adjusting to -1.3 wt%, P = 0.005-0.030 wt%, S = 0.004-0.008 wt%, the molten steel temperature was adjusted to 1590 degreeC. In this molten steel, Al was added in an amount of 1.2 to 1.6 kg / ton and deoxidation treatment was performed for 15 minutes. The Al concentration in the molten steel after the deoxidation treatment was 0.035 wt%. Thereafter, FeTi was added and the components were adjusted. The Ti concentration after this treatment was 0.040 wt%.
[0040]
Next, this molten steel was cast with a two-strand slab continuous casting apparatus to produce a continuous cast slab. At this time, the average composition of inclusions in the molten steel in the tundish is 95 to 98 wt% Al.2OThree, 5wt %The following Ti2OThree The cluster-like inclusions were mainly.
[0041]
If Ar gas is not blown into the tundish or immersion nozzle during casting, the nozzle2O3Attached, the opening of the sliding nozzle increased significantly at the third charge, and casting was stopped due to nozzle clogging. In addition, even when Ar gas is blown, there is Al in the nozzle.2O3A large amount of was attached, and the fluctuation of the molten metal surface in the mold increased at the 8th charge, and casting was stopped.
[0042]
Next, the continuous cast slab was hot-rolled to 4.0 mm and pickled to obtain a hot-rolled sheet. The steel composition is shown in Table 1, and the inclusion composition, hot rolling conditions and mechanical properties, and the rust generation area ratio index are shown in Table 2. In this annealed plate, 0.45 defects / 1000 m-coil were found to have defects in non-metallic inclusions such as bevels, three bars, and scales.
The result of the hole expansibility test of the obtained hot-rolled sheet is shown in FIG.
[0043]
【The invention's effect】
As described above, the high-strength steel sheet according to the present invention does not cause clogging of the immersion nozzle during continuous casting, and the surface of the rolled steel sheet has almost no surface defects due to non-metallic inclusions. As a steel plate having extremely clean properties and excellent properties of deformability and corrosion resistance, it is actually suitably used as an automobile part.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the amount of unfixed S and the hole expandability, which is an index of local deformability.

Claims (2)

C:0.03〜0.20wt%、Si:2.0 wt%以下、Mn:0.05〜2.5 wt%、P:0.15wt%以下、Ti:0.015 〜0.4 wt%、Al:0.01wt%以下、N:0.02wt%以下を含み、Ca,REM の1種又は2種を合計で0.0005〜0.1 wt%含有し、かつ、S及びCa,REM の1種又は2種の合計の含有量が次式
S−5×((32/40) Ca+(32/140) REM) ≦0.0014wt%
(式中、SはS量( wt %)を、 Ca Ca 量( wt %)を、 REM REM 量( wt %)をそれぞれ 示す。)
の関係を満たして残部はFe及び不可避的不純物の組成になり、粒径1〜50μm の酸化物系介在物がTi酸化物及びCaO ,REM 酸化物の1種又は2種を含有してなることを特徴とする変形能に優れる高張力鋼板。
C: 0.03 to 0.20 wt%, Si: 2.0 wt% or less, Mn: 0.05 to 2.5 wt%, P: 0.15 wt% or less, Ti: 0.015 to 0.4 wt%, Al: 0.01 wt% or less, N: 0.02 wt% The total content of one or two of Ca and REM is 0.0005 to 0.1 wt%, and the total content of one or two of S and Ca, REM is represented by the following formula S-5 × ( (32/40) Ca + (32/140) REM) ≦ 0.0014wt%
(In the formula, S represents the S amount ( wt %), Ca represents the Ca amount ( wt %), and REM represents the REM amount ( wt %) .)
Satisfying the above relationship, the balance is composed of Fe and inevitable impurities, and oxide inclusions having a particle size of 1 to 50 μm contain one or two of Ti oxide, CaO and REM oxide. High-tensile steel sheet with excellent deformability characterized by
粒径1 〜50μm の酸化物系介在物がTi酸化物:20wt%以上90wt%以下、CaO ,REM 酸化物の1種又は2種の合計:10wt%以上40wt%以下、Al2O3:40wt 以下(Ti酸化物、CaO,REM 酸化物の1種又は2種、Al2O3 の合計は100 wt 以下)であることを特徴とする請求項1記載の変形能に優れる高張力鋼板。Oxide inclusions having a particle size of 1 to 50 μm are Ti oxide: 20 wt% or more and 90 wt% or less, total of one or two of CaO and REM oxide: 10 wt% or more and 40 wt% or less, Al 2 O 3 : 40 2. High tensile strength excellent in deformability according to claim 1, characterized in that it is wt % or less (one or two of Ti oxide, CaO, REM oxide, the total of Al 2 O 3 is 100 wt % or less) steel sheet.
JP17128098A 1998-06-18 1998-06-18 High tensile steel plate with excellent deformability Expired - Fee Related JP3629955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17128098A JP3629955B2 (en) 1998-06-18 1998-06-18 High tensile steel plate with excellent deformability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17128098A JP3629955B2 (en) 1998-06-18 1998-06-18 High tensile steel plate with excellent deformability

Publications (2)

Publication Number Publication Date
JP2000001736A JP2000001736A (en) 2000-01-07
JP3629955B2 true JP3629955B2 (en) 2005-03-16

Family

ID=15920407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17128098A Expired - Fee Related JP3629955B2 (en) 1998-06-18 1998-06-18 High tensile steel plate with excellent deformability

Country Status (1)

Country Link
JP (1) JP3629955B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4116901B2 (en) * 2003-02-20 2008-07-09 新日本製鐵株式会社 Burring high strength thin steel sheet and method for producing the same

Also Published As

Publication number Publication date
JP2000001736A (en) 2000-01-07

Similar Documents

Publication Publication Date Title
EP1444373A1 (en) STEEL PLATE HAVING SUPERIOR TOUGHNESS IN WELD HEAT&amp;minus;AFFECTED ZONE AND METHOD FOR MANUFACTURING THE SAME&amp;comma; WELDING FABRIC USING THE SAME
US6686061B2 (en) Steel plate having TiN+CuS precipitates for welded structures, method for manufacturing same and welded structure made therefrom
JP3890748B2 (en) High strength steel plate with excellent stretch flangeability and delayed fracture resistance
US6946038B2 (en) Steel plate having Tin+MnS precipitates for welded structures, method for manufacturing same and welded structure
CN108677084B (en) Production method of low-inclusion clean steel
JP4051778B2 (en) Steel plate for cans suitable for 3-piece cans with good surface properties
JP2000001741A (en) Steel sheet for deep drawing and porcelain enameling, excellent in surface characteristic and fishscale resistance, and its manufacture
JP3436857B2 (en) Thin steel sheet excellent in press formability with few defects and method for producing the same
JP4058809B2 (en) Titanium killed steel with good surface properties and method for producing the same
JP4780084B2 (en) Titanium killed steel material with good surface properties and method for producing the same
CN115667563B (en) Precipitation hardening martensitic stainless steel sheet excellent in fatigue resistance
JP3692797B2 (en) Steel plate for cans with good surface properties and excellent can stability
JP3629955B2 (en) High tensile steel plate with excellent deformability
JP2007177303A (en) Steel having excellent ductility and its production method
JP3757633B2 (en) Steel plate for cans with excellent workability
JP3661421B2 (en) Hot-rolled steel sheet for rerolling and manufacturing method thereof
JP2021004407A (en) Steel and method for producing the same
JP2000001748A (en) Steel sheet for deep drawing, excellent in surface characteristic and stretch-flange formability, and its manufacture
JP2000001745A (en) Steel sheet for deep drawing, excellent in surface characteristic and corrosion resistance, and its manufacture
JP3653990B2 (en) Hot rolled steel sheet with extremely good secondary work brittleness resistance after ultra deep drawing
JP2000001742A (en) Steel sheet for deep drawing, excellent in surface characteristic and baking hardenability, and its manufacture
TWI788143B (en) Precipitation-hardened Asada loose iron-based stainless steel with excellent fatigue resistance
JP5103964B2 (en) Deep drawing steel sheet with good surface properties and method for producing the same
JP2000001746A (en) Steel sheet for deep drawing, excellent in surface characteristic, and its manufacture
JP2000119803A (en) Steel sheet for drum can good in surface property and drum can made of steel

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121224

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees