JP3628302B2 - Sabo Dam - Google Patents

Sabo Dam Download PDF

Info

Publication number
JP3628302B2
JP3628302B2 JP2002038068A JP2002038068A JP3628302B2 JP 3628302 B2 JP3628302 B2 JP 3628302B2 JP 2002038068 A JP2002038068 A JP 2002038068A JP 2002038068 A JP2002038068 A JP 2002038068A JP 3628302 B2 JP3628302 B2 JP 3628302B2
Authority
JP
Japan
Prior art keywords
water
dam
hole
view
sand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002038068A
Other languages
Japanese (ja)
Other versions
JP2003239258A (en
Inventor
敬藏 渡辺
Original Assignee
株式会社渡辺コンサルタンツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社渡辺コンサルタンツ filed Critical 株式会社渡辺コンサルタンツ
Priority to JP2002038068A priority Critical patent/JP3628302B2/en
Publication of JP2003239258A publication Critical patent/JP2003239258A/en
Application granted granted Critical
Publication of JP3628302B2 publication Critical patent/JP3628302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Barrages (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、山地、渓流における崩壊或るいは浸食を阻止し、発生する流出土砂及び土石流の阻止による下流での災害発生の防止、治水等を目的とした砂防ダムの寿命を延長し、更なる二次災害を防止することのできる砂防ダムに関するものである。
【0002】
【従来の技術】
図22は、従来の砂防ダムにおける土砂の堆積状態を示す縦断面図である。一般に砂防ダムの堰壁1には、高さの中程に堰壁が堰き止めた背後の土石流の水圧を減少するべく、水抜き孔2が複数箇所設けられている。また、堰壁の上端面には、洪水時に土石流が安全に流下するように、凹んだ放水口4が形成されている。この水抜き孔2は、土砂の堆積過程において水を排出するためのものであり、やがて土砂3の堆積に伴って詰まると、放水口4から水及び土砂が流れるようになってしまう。
【0003】
また、図23示すように一部の取水ダムでは、堰壁1の下端に排泥筒5を設け、この排泥筒5に堰壁の上から駆動モータ6等で開閉できるゲート7を配設したものが存在した。このゲート7は、年に1回または、数年に1回程度の割合で開かれて、底部に堆積した嫌気性泥8を排出するものである。
【0004】
【発明が解決しようとする課題】
しかし、前記した従来の砂防ダムでは、堰壁1の背後に貯まる土石流の水分を水抜き孔2から抜いて、下流に流すことの出来る間は、ダムとしての機能を有するが、水抜き孔2の位置まで土砂、石が堆積して塞がれてしまうと、堰壁の背後に土砂が次第に堆積し、堰壁の上端にまで達して、ダムとしての機能を失ってしまう。つまり、従来の砂防ダムは、ダムが空の時にその機能を発揮できるものであり、常にその機能を発揮できるように、流入土砂の排出機能を有していない。
したがって、従来は、機能を失った砂防ダムの下流に更に別の砂防ダムを築造し、上流の砂防ダムから溢流する土石流を堰き止める必要があった。この様に、多数の砂防ダムを段々畑状に順次築造する必要が生じ、多数の税金が無駄に使われることとなっていた。
また、土砂が堆積して古くなった砂防ダムは、崩壊して二次災害の原因ともなっていた。
【0005】
更に、堰壁1の下端に排泥筒5を設け、この排泥筒5に堰壁の上から駆動モータ6等で開閉できるゲート7を配設したものにあっては、排出される汚泥は、長期間酸欠状態に置かれたものであり、嫌気化している。この状態の汚泥を放流すると、悪臭を発生し新たな公害の原因となる。
また、汚泥が放流された河川の下流で再沈殿すると、河床を覆い河床に棲息する植物、動物を窒息死させる。更に、水質を悪化させ、水中に棲息する生物が死滅又は棲息場所を奪われ、個体数が減少する。更にまた、水質の悪化に伴って下流域での飲料水、農業用水を汚染して被害を与えると云う欠点を有していた。
【0006】
本発明は、前記実情に鑑み提案されたもので、流入土砂の排出機構を設け、長期にわたり土砂及び土石流災害を防止することのできる砂防ダムを提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載の発明は、山地又は渓流を横断して築造した堤壁を備え、山地又は渓流の上流から流れて来る流出土砂及び土石流を堤壁によって堰止める砂防ダムにおいて、堤壁の下部に堤壁が堰き止めた流出土砂及び土石流を水と共に下流へ流す貫通孔を開設し、前記堤壁の下流に位置する貫通孔部分に接続された立ち上がり管と、前記立ち上がり管からオーバーフローした水を受ける受水槽と、前記受水槽を支点の一端側に支持し、他端側に前記貫通孔を開閉するゲート弁を備えた貫通孔開閉機構と、前記受水槽と前記貫通孔とを連通するボール弁を備えた連通管とを備えたことを特徴とする。
【0011】
【発明の実施の形態】
以下、一実施の形態を示す図面に基づいて本発明を詳細に説明する。図1は、本発明に係る砂防ダムを示す正面図、図2は、本発明の砂防ダム10の原理を示す縦断面図である。ここで、山地又は渓流を横断して築造した堤壁11を備え、渓流の上流から流れて来る流出土砂及び土石流を堤壁11によって堰止める砂防ダムであって、堤壁11の下部に堤壁が堰き止めた流出土砂及び土石流を水と共に下流へ流す貫通孔12を開設し、この貫通孔12に開閉装置13を設けるとともに、堤壁11で堰き止められた流出土砂及び土石流上の水位を検出する水位計14を備えている。
【0012】
堤壁11には、高さの中程に堤壁が堰き止めた背後の土石流の水圧を減少するべく、水抜き孔15が設けられている。この水抜き孔15は、土砂の堆積過程において水を排出するためのものである。また、堤壁11の上端面の中央には、洪水時に土石流が安全に流下するように、凹んだ放水口16が形成されている。
【0013】
貫通孔12は、堤壁11の下端近傍に配置されている。そして、貫通孔12には、開閉装置13が取り付けられている。開閉装置13は、例えば弁体を駆動モータ17によって回転制御して開閉するものであってもよい。駆動モータ17は、制御装置18により制御される。
【0014】
水位計14は、堤壁11が堰き止めた水位をフロート14aが検出し、制御装置18に出力する。
【0015】
次に、以上のように構成された本発明に係る砂防ダム10の動作について図3〜図8に従って説明する。先ず、図3(a)は、同砂防ダムにおける土砂の排出開始時を示す平面図、(b)はその縦断面図である。ここで、ダムの水位が所定高さ(H.W.L)に達すると、水位計14が水位を検出して、制御装置18に出力する。制御装置18は、水位計14からの検出信号に基づいて駆動モータ17を回転制御する。駆動モータ17によって、開閉装置13が開成される。
【0016】
開閉装置13が開成されると貫通孔12は、前回排出時の残りの堆積した土砂19を水とともに排出する。また、新たな水が土砂20を含んだまま流入する。土砂の内、粒径の大きい土砂20aは、流入部に堆積し、粒径が小さく、比重の軽い土砂20bが下流部まで到達して堆積する。一般に土砂は、比重が同じであり、粒径の差によってその到達位置が決定される。また、下流側に行く程、堆積層が薄くなり、広い範囲に堆積する傾向がある。
【0017】
図4(a)は、同砂防ダムにおける土砂の排出中期1を示す平面図、(b)はその縦断面図である。水の流出に伴って土砂が流出すると、ここに示すように堆積した土砂が、貫通孔12の排汲口12aまで到達しない時期がある。この時、上流部の土砂20は、水位の低下に従い、ダムの底部を斜めに水の移動とともに移動する。
【0018】
図5(a)は、同砂防ダムにおける土砂の排出中期2を示す平面図、(b)はその縦断面図、図6(a)は同砂防ダムにおける土砂の排出終了時を示す平面図、(b)はその縦断面図である。水位が貫通孔12の位置まで低下すると、排泥の動きが弱くなる。したがって、開閉装置13を閉じて、排泥終了の準備をする。このとき、土砂の一部は残留する。しかし、大部分の土砂は、水とともに排出される。排泥が終了すると、貫通孔12の弁が閉となり水が貯まって行く。同時に水に含まれている土砂も順次貯まって行く。
【0019】
図7(a)は、本発明の砂防ダムにおける貯水初期を示す平面図、(b)は、その側面図である。水の流入に伴い水位が上昇し、土砂20も堆積を始める。 図8(a)は、本発明の砂防ダムにおける貯水終了時を示す平面図、(b)は、その縦断面図である。水の流入にしたがって土砂20も上流側にその堆積範囲を拡大して行く。砂防ダム内に貯まった水位が所定高さに達すると、図3に戻って、開閉装置13を開成して、排泥動作を行う。
【0020】
このように、本発明の砂防ダム10によれば、土砂が順次排出されるので、ダム内に土砂が堆積してダムとしての働きを停止してしまうと云う欠点がない。したがって、順次次の新たな砂防ダムを構築する必要がなく、非常に経済的である。
【0021】
次に、比較のために、水位を下まで下げない、一般のダムにおける排泥動作について、図9〜図14にしたがって説明する。先ず、図9に示すように土砂流入初期において、土砂3は上流より搬送されて、流入口付近に堆積する。また、図10に示す土砂流入中期において、土砂3は徐々に下流に向かって堆積範囲を延長して行く。ここで、粒径の大きい土砂3aは、上流(流入口付近)に堆積し、粒径の小さい土砂3bは、下流側に堆積する。
【0022】
図11に示すように、土砂流入完了時には、ダム底の全域に渡って土砂3が堆積する。この時、砂防ダムの上流部には、相当量の土砂が堆積しており、ダムの貯水量もその多くを土砂に占められている状態である。
【0023】
図12(a)は、従来の取水ダムにおける土砂排出時を示す平面図、(b)はその縦断面図である。開閉装置30を開いて土砂を水とともに排出する。水位は、排出された土砂及び水の量に応じて低下するが、一般にダムに蓄えられた水の量が膨大であるので、水位低下量ΔW.Lは殆ど変わらない。したがって、堆積した土砂を効果的に排出することができなかった。
【0024】
図13は、土砂排出動作の終了時を示すものである。土砂は、貫通孔31に近い部分のみが排出される。ある一定範囲の土砂が排出された後は、水のみが排出される事となる。この時点で、排泥操作が終了する。
【0025】
図14(a)は、従来の取水ダムにおける貯水開始時を示す平面図、(b)はその縦断面図である。貯水開始とともに、水と土砂が順次堆積する。取水ダムに所定量の水と土砂が貯留されると、前述の操作を繰り返すこととなるが、堆積した土砂のごく一部しか排出することができない。これは、図13等に示すように水面が、貫通孔31の位置まで下降しないためである。つまり、水面が殆ど移動しない為に、水の移動に伴う土砂の流動化が生じない事に起因している。したがって、土砂の排出には、水面を貫通孔付近まで下げ、水面の低下に伴う土砂の流動化を利用する事が必要である。
【0026】
図15は、本発明の第2の実施例を示す縦断面図である。本実施例において、堤壁11の下部に堤壁が堰き止めた流出土砂及び土石流を水と共に下流へ流す貫通孔12を開設し、この貫通孔12の出口にサイフォン管21を接続している。ここで、サイフォン管21の立ち上がり部21aは、ダムの設定水位(H.W.L)と同等とし、この水位より上昇したとき、流出土砂及び土石流を水と共にこのサイフォン管21を通じて下流へ流す。
【0027】
以上のように構成した場合、サイフォン管21を所定の水位に設けたので、ダム内の水位が、所定水位になると自動的に排泥され、砂防ダム内が土砂で満たされて、満杯状態になることがない。したがって、砂防ダムとしての働きを長期に渡り維持することができる。また、排泥に際して特別の機構及びエネルギーを必要としないので、経済的である。また、可動部分を含まないので、メンテナンス等が不要である。
【0028】
図16は、本発明の第3の実施例を示す縦断面図である。堤壁11の下部に堤壁が堰き止めた流出土砂及び土石流を水と共に下流へ流す貫通孔12を開設し、この貫通孔12に開閉装置22を設けるとともに、堤壁11で堰き止められた流出土砂及び土石流上の水中で浮くフロート23を設け、このフロート23の上昇と連動して前記開閉装置22を開成するものである。フロート23は、ワイヤ24により吊下されており、このワイヤ24は、ローラ25a〜25dを介して、開閉装置22と接続されている。
【0029】
以上のように構成した場合、砂防ダム内に貯留された土砂、水の量に連動して開閉装置22が開閉するので、土砂の排出機構を簡素化することができる。
【0030】
図17〜19は、本発明の第4の実施例を示す縦断面図である。本実施例において、堤壁11の下部に堤壁が堰き止めた流出土砂及び土石流を水と共に下流へ流す貫通孔12を開設し、この堤壁11の下流に位置する貫通孔部分に接続された立ち上がり管30と、前記立ち上がり管30からオーバーフローした水を受ける受水槽31と、前記受水槽31を支点36の一端側に支持し、他端側に前記貫通孔12を開閉するゲート弁32を備えた貫通孔開閉機構33と、前記受水槽31と前記貫通孔12とを連通するボール弁34を備えた連通管35とを備えている。
【0031】
立ち上がり管30は、分岐管30aを有しており、この分岐管30aの位置が砂防ダムに貯留された水の排出高さを決定する。また、分岐管30aは、堤壁11の直接設けてもよい。貫通孔開閉機構33は、支点36を中心としてレバー37の一端側に受水槽31が他端側にゲート弁32が配置されている。受水槽31が空の状態でゲート弁32の重量により貫通孔12の先端が閉じている。連通管35は、可撓性の管により構成されており、ボール弁34を備えている。また、連通管35は、受水槽31と貫通孔12を連通している。ボール弁34は、図20,21に示すように拡開部分34aに水に浮くボール38を備えている。したがって、図20に示すようにボール38が浮くと、浮力で弁が閉じる。また、水が無くなると、図21に示すようにボール38が網39上に落ちて弁を開く。
【0032】
以上のように構成された砂防ダムにおいて、図17に示すようにダムの水位が分岐管30aの高さに達するまでは、貫通孔開閉機構33は閉じている。また、図18に示すように水位が分岐管30aの高さを越えると、分岐管30aから水が受水槽31に流れ込む。受水槽31に水が流れ込むと、重量のつり合いが崩れ、ゲート弁32が開く。このように、砂防ダムの貯留水量が所定量に達すると、自動的に貫通孔開閉機構33が開き堰き止めた流出土砂及び土石流を水と共に下流へ流すことができる。
【0033】
また、貯留水量が所定値以下になると、図19に示すように自動的に貫通孔開閉機構33が閉じて貯水を再開する。つまり、ダムの水位が低下すると、ボール弁34におけるボール38の浮力が無くなり、弁が開く。弁34が開くと、受水槽31内の水が連通管35を通じて貫通孔12に流れ、重量のつり合いから、ゲート弁32が閉じる。
【0034】
【発明の効果】
この発明は前記した構成からなるので、以下に説明するような効果を奏することができる。
【0039】
請求項1に記載の発明では、山地又は渓流を横断して築造した堤壁を備え、山地又は渓流の上流から流れて来る流出土砂及び土石流を堤壁によって堰止める砂防ダムにおいて、堤壁の下部に堤壁が堰き止めた流出土砂及び土石流を水と共に下流へ流す貫通孔を開設し、前記堤壁の下流に位置する貫通孔部分に接続された立ち上がり管と、前記立ち上がり管からオーバーフローした水を受ける受水槽と、前記受水槽を支点の一端側に支持し、他端側に前記貫通孔を開閉するゲート弁を備えた貫通孔開閉機構と、前記受水槽と前記貫通孔とを連通するボール弁を備えた連通管とを備えたので、砂防ダムの貯留水量が所定量に達すると、自動的に貫通孔開閉機構が開き堰き止めた流出土砂及び土石流を水と共に下流へ流すことができる。また、貯留水量が所定値以下になると、自動的に貫通孔開閉機構が閉じて貯水を再開する。
【図面の簡単な説明】
【図1】図1は、本発明に係る砂防ダムを示す正面図である。
【図2】図2は、同砂防ダムの原理を示す縦断面図である。
【図3】図3(a)は、同砂防ダムにおける土砂の排泥開始時を示す平面図、(b)はその縦断面図である。
【図4】図4(a)は、同砂防ダムにおける土砂の排泥中期1を示す平面図、(b)はその縦断面図である。
【図5】図5(a)は、同砂防ダムにおける土砂の排泥中期2を示す平面図、(b)はその縦断面図である。
【図6】図6(a)は、同砂防ダムにおける土砂の排泥終了時を示す平面図、(b)はその縦断面図である。
【図7】図7(a)は、本発明の砂防ダムにおける貯水初期を示す平面図、(b)は、その側面図である。
【図8】図8(a)は、本発明の砂防ダムにおける貯水終了時を示す平面図、(b)は、その縦断面図である。
【図9】図9(a)は、従来の取水ダムにおける土砂流入初期を示す平面図、(b)はその縦断面図である。
【図10】図10(a)は、従来の取水ダムにおける土砂流入中期を示す平面図、(b)はその縦断面図である。
【図11】図11(a)は、従来の取水ダムにおける土砂流入完了時を示す平面図、(b)はその縦断面図である。
【図12】図12(a)は、従来の取水ダムにおける土砂排出時を示す平面図、(b)はその縦断面図である。
【図13】図13(a)は、従来の取水ダムにおける土砂排出終了時を示す平面図、(b)はその縦断面図である。
【図14】図14(a)は、従来の取水ダムにおける貯水開始時を示す平面図、(b)はその縦断面図である。
【図15】図15は、本発明の第2の実施例を示す縦断面図である。
【図16】図16は、本発明の第3の実施例を示す縦断面図である。
【図17】図17は、本発明の第4の実施例の動作を示す縦断面図である。
【図18】図18は、本発明の第4の実施例の動作を示す縦断面図である。
【図19】図19は、本発明の第4の実施例の動作を示す縦断面図である。
【図20】図20は、同実施例のボール弁を示す縦断面図である。
【図21】図21は、同実施例のボール弁を示す縦断面図である。
【図22】図22は、従来の砂防ダムにおける土砂の堆積状態を示す縦断面図である。
【図23】図23は、従来の砂防ダムにおける土砂の排出状態を示す縦断面図である。
【符号の説明】
10 砂防ダム
11 堤壁
12 貫通孔
13 開閉装置
14 水位計
15 水抜き孔
16 放水口
17 駆動モータ
18 制御装置
19、20 土砂
21 サイフォン管
22 開閉装置
23 フロート
24 ワイヤ
25a〜d ローラ
30 立ち上がり管
31 受水槽
32 ゲート弁
33 貫通孔開閉機構
34 ボール弁
35 連通管
36 支点
37 レバー
38 ボール
[0001]
BACKGROUND OF THE INVENTION
The present invention prevents the collapse or erosion of mountains and mountain streams, prevents the occurrence of downstream disasters by blocking the generated sediment and debris flow, extends the life of sabo dams for the purpose of flood control, etc. It relates to a sabo dam that can prevent secondary disasters.
[0002]
[Prior art]
FIG. 22 is a longitudinal sectional view showing the state of sediment accumulation in a conventional sabo dam. In general, the dam wall 1 of the sabo dam is provided with a plurality of drain holes 2 in order to reduce the water pressure of the debris flow behind the dam wall at the middle of its height. In addition, a recessed water outlet 4 is formed on the upper end surface of the weir wall so that a debris flow can flow safely during a flood. This drain hole 2 is for discharging water in the sediment accumulation process, and when it is clogged with the accumulation of sediment 3, the water and sediment will flow from the water outlet 4.
[0003]
Further, as shown in FIG. 23, in some intake dams, a drainage cylinder 5 is provided at the lower end of the dam wall 1 and a gate 7 that can be opened and closed by a drive motor 6 or the like from above the dam wall is provided. There was something to do. The gate 7 is opened once a year or once every several years, and discharges the anaerobic mud 8 accumulated at the bottom.
[0004]
[Problems to be solved by the invention]
However, the conventional sabo dam described above has a function as a dam as long as the debris flow water stored behind the dam wall 1 can be drained from the drain hole 2 and flowed downstream, but the drain hole 2 If sediment and stone accumulates up to the position of, then the sediment gradually accumulates behind the dam wall, reaches the upper end of the dam wall, and loses its function as a dam. In other words, the conventional sabo dam can exhibit its function when the dam is empty, and does not have a function of discharging the inflow soil so that the function can always be exhibited.
Therefore, conventionally, it has been necessary to construct another sabo dam downstream of the sabo dam that has lost its function and to block the debris flow overflowing from the upstream sabo dam. In this way, it was necessary to build many sabo dams one after another in the form of fields, and many taxes were wasted.
In addition, the sabo dam, which became old due to sedimentation, collapsed and caused secondary disasters.
[0005]
Furthermore, if the drainage cylinder 5 is provided at the lower end of the dam wall 1, and the drainage cylinder 5 is provided with a gate 7 that can be opened and closed by a drive motor 6 or the like from above the dam wall, the discharged sludge is It has been left in an oxygen deficient state for a long time and is anaerobic. If sludge in this state is discharged, it generates a foul odor and causes new pollution.
In addition, when re-sedimenting downstream of a river where sludge has been discharged, plants and animals that cover the river bed and inhabit the river bed will be suffocated and killed. Furthermore, the water quality deteriorates, and organisms that live in the water are killed or deprived of the place of inhabiting, and the number of individuals decreases. Furthermore, it has the disadvantage that it causes damage by contaminating drinking water and agricultural water in the downstream area as the water quality deteriorates.
[0006]
The present invention has been proposed in view of the above circumstances, and an object of the present invention is to provide a sabo dam capable of preventing sediment and debris flow disasters over a long period of time by providing a discharge mechanism for inflow sediment.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the invention described in claim 1 includes a bank wall built across a mountainous area or a mountain stream, and blocks outflow sediment and debris flow flowing from the upstream of the mountainous area or mountain stream by the bank wall. In the sabo dam, a rising pipe connected to a through-hole portion located downstream of the dam wall, opening a through-hole that flows the outflow sediment and debris flow with the dam wall dammed in the lower part of the dam wall with water, A water receiving tank that receives water overflowed from the riser, a through hole opening / closing mechanism that includes a gate valve that supports the water receiving tank on one end side of a fulcrum and opens and closes the through hole on the other end side, and the water receiving tank; And a communication pipe having a ball valve communicating with the through hole .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings illustrating an embodiment. FIG. 1 is a front view showing a sabo dam according to the present invention, and FIG. 2 is a longitudinal sectional view showing the principle of a sabo dam 10 according to the present invention. Here, a sabo dam is provided with a dam wall 11 constructed across a mountainous area or a mountain stream, and the spill dam and debris flow that flows from the upstream of the mountain stream is blocked by the dam wall 11. Has opened a through-hole 12 through which the spilled sediment and debris flow that has been dammed down flows together with water, and an opening / closing device 13 is provided in the through-hole 12 and the water level on the spilled sediment and debris flow blocked by the dam wall 11 is detected A water level gauge 14 is provided.
[0012]
The dam wall 11 is provided with a drain hole 15 in order to reduce the water pressure of the debris flow behind the dam wall that has been dammed in the middle of the height. This drain hole 15 is for discharging water in the sediment deposition process. In addition, a recessed water outlet 16 is formed in the center of the upper end surface of the bank wall 11 so that a debris flow can flow safely during a flood.
[0013]
The through hole 12 is disposed in the vicinity of the lower end of the bank wall 11. An opening / closing device 13 is attached to the through hole 12. The opening / closing device 13 may be, for example, a device that opens and closes a valve body by controlling the rotation of the valve body by a drive motor 17. The drive motor 17 is controlled by the control device 18.
[0014]
The water level gauge 14 detects the water level blocked by the bank 11 and outputs it to the control device 18.
[0015]
Next, operation | movement of the sabo dam 10 based on this invention comprised as mentioned above is demonstrated according to FIGS. First, FIG. 3 (a) is a plan view showing the start of discharge of earth and sand in the sabo dam, and FIG. 3 (b) is a longitudinal sectional view thereof. Here, when the water level of the dam reaches a predetermined height (HWL), the water level gauge 14 detects the water level and outputs it to the control device 18. The control device 18 controls the rotation of the drive motor 17 based on the detection signal from the water level gauge 14. The opening / closing device 13 is opened by the drive motor 17.
[0016]
When the opening / closing device 13 is opened, the through-hole 12 discharges the remaining accumulated earth and sand 19 from the previous discharge together with water. Moreover, new water flows in with the earth and sand 20 included. Of the earth and sand, the earth and sand 20a having a large particle size is accumulated at the inflow portion, and the earth and sand 20b having a small particle size and a low specific gravity reaches the downstream portion and accumulates. In general, earth and sand have the same specific gravity, and the arrival position is determined by the difference in particle diameter. In addition, as it goes downstream, the deposited layer becomes thinner and tends to deposit over a wider area.
[0017]
Fig.4 (a) is a top view which shows the middle discharge 1 of the earth and sand in the sabo dam, (b) is the longitudinal cross-sectional view. When the earth and sand flows out with the outflow of water, there is a time when the accumulated earth and sand do not reach the discharge port 12a of the through hole 12 as shown here. At this time, the upstream sediment 20 moves obliquely along the bottom of the dam with the movement of water as the water level decreases.
[0018]
FIG. 5A is a plan view showing the middle sediment discharge period 2 in the sabo dam, FIG. 5B is a longitudinal sectional view thereof, and FIG. 6A is a plan view showing the end of the sediment discharge in the sabo dam, (B) is the longitudinal cross-sectional view. When the water level decreases to the position of the through hole 12, the movement of the mud becomes weak. Accordingly, the opening / closing device 13 is closed to prepare for the end of the mud discharge. At this time, a part of the earth and sand remains. However, most of the sediment is discharged with water. When the mud is finished, the valve of the through hole 12 is closed and water is accumulated. At the same time, the earth and sand contained in the water is also stored sequentially.
[0019]
Fig.7 (a) is a top view which shows the water storage initial stage in the sabo dam of this invention, (b) is the side view. The water level rises with the inflow of water, and the earth and sand 20 starts to accumulate. Fig.8 (a) is a top view which shows the time of the completion | finish of water storage in the sabo dam of this invention, (b) is the longitudinal cross-sectional view. As the water flows in, the sediment 20 also expands its accumulation range upstream. When the water level stored in the sabo dam reaches a predetermined height, the process returns to FIG. 3 to open the switchgear 13 and perform the mud draining operation.
[0020]
Thus, according to the sabo dam 10 of the present invention, since the earth and sand are discharged sequentially, there is no disadvantage that the earth and sand accumulate in the dam and the function as the dam is stopped. Therefore, it is not necessary to construct a new sabo dam one after another, which is very economical.
[0021]
Next, for comparison, a mud draining operation in a general dam without lowering the water level to the bottom will be described with reference to FIGS. First, as shown in FIG. 9, in the initial stage of inflow of earth and sand, the earth and sand 3 is conveyed from the upstream and is deposited near the inlet. In addition, in the middle of the inflow of earth and sand shown in FIG. 10, the earth and sand 3 gradually extends the accumulation range toward the downstream. Here, the earth and sand 3a having a large particle diameter is accumulated upstream (near the inflow port), and the earth and sand 3b having a small particle diameter is accumulated downstream.
[0022]
As shown in FIG. 11, when the inflow of earth and sand is completed, earth and sand 3 accumulates over the entire area of the dam bottom. At this time, a considerable amount of earth and sand has accumulated in the upstream part of the sabo dam, and the amount of water stored in the dam is also occupied by the earth and sand.
[0023]
FIG. 12 (a) is a plan view showing when sediment is discharged in a conventional intake dam, and FIG. 12 (b) is a longitudinal sectional view thereof. The switchgear 30 is opened and the earth and sand are discharged together with water. Although the water level falls according to the amount of earth and sand discharged, the amount of water stored in the dam is generally enormous, so the water level drop amount ΔW. L is almost unchanged. Therefore, the accumulated sediment could not be discharged effectively.
[0024]
FIG. 13 shows the end of the earth and sand discharging operation. Only the part close to the through hole 31 is discharged. After a certain range of earth and sand is discharged, only water is discharged. At this point, the mud draining operation is finished.
[0025]
Fig.14 (a) is a top view which shows the time of the water storage start in the conventional intake dam, (b) is the longitudinal cross-sectional view. With the start of water storage, water and sediment accumulate sequentially. When a predetermined amount of water and earth and sand are stored in the intake dam, the above-described operation is repeated, but only a small portion of the accumulated earth and sand can be discharged. This is because the water surface does not descend to the position of the through hole 31 as shown in FIG. That is, because the water surface hardly moves, the fluidization of earth and sand accompanying the movement of water does not occur. Therefore, in order to discharge earth and sand, it is necessary to lower the water surface to the vicinity of the through hole and use fluidization of the earth and sand accompanying the decrease in the water surface.
[0026]
FIG. 15 is a longitudinal sectional view showing a second embodiment of the present invention. In the present embodiment, a through-hole 12 is formed in the lower part of the dam wall 11 to allow the outflow sediment and debris flow blocked by the dam wall to flow downstream together with water, and a siphon tube 21 is connected to the outlet of the through-hole 12. Here, the rising portion 21a of the siphon pipe 21 is equivalent to the set water level (HWL) of the dam, and when it rises from this water level, the outflow sediment and debris flows together with water to flow downstream through the siphon pipe 21.
[0027]
When configured as described above, since the siphon tube 21 is provided at a predetermined water level, the mud is automatically drained when the water level in the dam reaches the predetermined water level, and the inside of the sabo dam is filled with earth and sand and becomes full. Never become. Therefore, the function as a sabo dam can be maintained for a long time. Moreover, since a special mechanism and energy are not required for mud discharge, it is economical. Moreover, since a movable part is not included, maintenance etc. are unnecessary.
[0028]
FIG. 16 is a longitudinal sectional view showing a third embodiment of the present invention. A through-hole 12 is formed in the lower part of the dam wall 11 to allow the outflow sediment and debris flow blocked by the dam wall to flow downstream together with water. A float 23 floating in the water on the earth and sand and debris flow is provided, and the opening / closing device 22 is opened in conjunction with the rise of the float 23. The float 23 is suspended by a wire 24, and the wire 24 is connected to the opening / closing device 22 via rollers 25a to 25d.
[0029]
When comprised as mentioned above, since the opening / closing device 22 opens and closes in conjunction with the amount of earth and sand stored in the sabo dam, the earth and sand discharge mechanism can be simplified.
[0030]
17 to 19 are longitudinal sectional views showing a fourth embodiment of the present invention. In the present embodiment, a through hole 12 is formed in the lower part of the dam wall 11 to allow the outflow sediment and debris flow blocked by the dam wall to flow downstream with water, and is connected to the through hole portion located downstream of the dam wall 11. A rising pipe 30, a water receiving tank 31 that receives water overflowing from the rising pipe 30, and a gate valve 32 that supports the water receiving tank 31 on one end side of the fulcrum 36 and opens and closes the through hole 12 on the other end side. A through-hole opening / closing mechanism 33 and a communication pipe 35 including a ball valve 34 for communicating the water-receiving tank 31 and the through-hole 12.
[0031]
The rising pipe 30 has a branch pipe 30a, and the position of the branch pipe 30a determines the discharge height of the water stored in the sabo dam. Further, the branch pipe 30 a may be provided directly on the bank wall 11. In the through-hole opening / closing mechanism 33, the water receiving tank 31 is disposed on one end side of the lever 37 around the fulcrum 36, and the gate valve 32 is disposed on the other end side. The tip of the through hole 12 is closed by the weight of the gate valve 32 in a state where the water receiving tank 31 is empty. The communication pipe 35 is configured by a flexible pipe and includes a ball valve 34. Further, the communication pipe 35 communicates the water receiving tank 31 and the through hole 12. As shown in FIGS. 20 and 21, the ball valve 34 includes a ball 38 that floats on water in the expanded portion 34 a. Therefore, when the ball 38 floats as shown in FIG. 20, the valve is closed by buoyancy. When the water runs out, the ball 38 falls on the net 39 and opens the valve as shown in FIG.
[0032]
In the sabo dam configured as described above, the through-hole opening / closing mechanism 33 is closed until the water level of the dam reaches the height of the branch pipe 30a as shown in FIG. Further, as shown in FIG. 18, when the water level exceeds the height of the branch pipe 30a, water flows into the water receiving tank 31 from the branch pipe 30a. When water flows into the water receiving tank 31, the weight balance is lost and the gate valve 32 is opened. In this way, when the amount of stored water in the sabo dam reaches a predetermined amount, the outflow sediment and debris flow automatically opened and blocked by the through-hole opening / closing mechanism 33 can flow downstream together with water.
[0033]
When the amount of stored water becomes equal to or less than a predetermined value, the through-hole opening / closing mechanism 33 is automatically closed and the storage of water is resumed as shown in FIG. That is, when the water level of the dam decreases, the buoyancy of the ball 38 in the ball valve 34 disappears and the valve opens. When the valve 34 is opened, the water in the water receiving tank 31 flows into the through hole 12 through the communication pipe 35, and the gate valve 32 is closed from the balance of weight.
[0034]
【The invention's effect】
Since this invention consists of an above-described structure, there can exist an effect which is demonstrated below.
[0039]
In the first aspect of the present invention, in the sabo dam, which includes a dam wall constructed across a mountainous area or a mountain stream, and dams outflow sediment and debris flowing from the upstream of the mountainous area or mountain stream by the dam wall, A through-hole that allows the outflow sediment and debris flow blocked by the dam wall to flow downstream with water, and a riser pipe connected to the through-hole portion located downstream of the levee wall, and water overflowing from the riser pipe A water receiving tank, a through hole opening / closing mechanism that supports the water receiving tank on one end side of a fulcrum and includes a gate valve that opens and closes the through hole on the other end side, and a ball that communicates the water receiving tank and the through hole Since the communication pipe provided with the valve is provided, when the amount of stored water in the sabo dam reaches a predetermined amount, the outflow sediment and debris flow automatically opened and blocked by the through-hole opening / closing mechanism can flow downstream together with water. Further, when the amount of stored water becomes equal to or less than a predetermined value, the through-hole opening / closing mechanism is automatically closed and water storage is resumed.
[Brief description of the drawings]
FIG. 1 is a front view showing a sabo dam according to the present invention.
FIG. 2 is a longitudinal sectional view showing the principle of the sabo dam.
FIG. 3A is a plan view showing the start of mud discharge of earth and sand in the sabo dam, and FIG. 3B is a longitudinal sectional view thereof.
FIG. 4 (a) is a plan view showing the middle stage 1 of mud discharge of earth and sand in the sabo dam, and FIG. 4 (b) is a longitudinal sectional view thereof.
FIG. 5 (a) is a plan view showing the middle stage 2 of sediment discharge in the sabo dam, and FIG. 5 (b) is a longitudinal sectional view thereof.
FIG. 6 (a) is a plan view showing the end of mud discharging of earth and sand in the sabo dam, and FIG. 6 (b) is a longitudinal sectional view thereof.
7A is a plan view showing an initial stage of water storage in the sabo dam of the present invention, and FIG. 7B is a side view thereof.
FIG. 8A is a plan view showing the end of water storage in the sabo dam of the present invention, and FIG. 8B is a longitudinal sectional view thereof.
FIG. 9A is a plan view showing the initial stage of inflow of sediment in a conventional intake dam, and FIG. 9B is a longitudinal sectional view thereof.
FIG. 10 (a) is a plan view showing the middle period of sediment inflow in a conventional intake dam, and FIG. 10 (b) is a longitudinal sectional view thereof.
FIG. 11 (a) is a plan view showing the completion of sediment inflow in a conventional intake dam, and FIG. 11 (b) is a longitudinal sectional view thereof.
FIG. 12 (a) is a plan view showing when sediment is discharged in a conventional intake dam, and FIG. 12 (b) is a longitudinal sectional view thereof.
FIG. 13 (a) is a plan view showing the end of sediment discharge in a conventional intake dam, and FIG. 13 (b) is a longitudinal sectional view thereof.
FIG. 14 (a) is a plan view showing the start of water storage in a conventional intake dam, and FIG. 14 (b) is a longitudinal sectional view thereof.
FIG. 15 is a longitudinal sectional view showing a second embodiment of the present invention.
FIG. 16 is a longitudinal sectional view showing a third embodiment of the present invention.
FIG. 17 is a longitudinal sectional view showing the operation of the fourth embodiment of the present invention.
FIG. 18 is a longitudinal sectional view showing the operation of the fourth embodiment of the present invention.
FIG. 19 is a longitudinal sectional view showing the operation of the fourth embodiment of the present invention.
FIG. 20 is a longitudinal sectional view showing the ball valve of the same example.
FIG. 21 is a longitudinal sectional view showing the ball valve of the same example.
FIG. 22 is a longitudinal sectional view showing the state of sediment accumulation in a conventional sabo dam.
FIG. 23 is a longitudinal sectional view showing the state of earth and sand discharge in a conventional sabo dam.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Sabo dam 11 Deck wall 12 Through-hole 13 Opening and closing device 14 Water level meter 15 Drain hole 16 Water outlet 17 Drive motor 18 Control device 19 and 20 Earth and sand 21 Siphon tube 22 Opening and closing device 23 Float 24 Wire 25a-d Roller 30 Standing tube 31 Water receiving tank 32 Gate valve 33 Through-hole opening / closing mechanism 34 Ball valve 35 Communication pipe 36 Support point 37 Lever 38 Ball

Claims (1)

山地又は渓流を横断して築造した堤壁を備え、山地又は渓流の上流から流れて来る流出土砂及び土石流を堤壁によって堰止める砂防ダムにおいて、
堤壁の下部に堤壁が堰き止めた流出土砂及び土石流を水と共に下流へ流す貫通孔を開設し、
前記堤壁の下流に位置する貫通孔部分に接続された立ち上がり管と、
前記立ち上がり管からオーバーフローした水を受ける受水槽と、
前記受水槽を支点の一端側に支持し、他端側に前記貫通孔を開閉するゲート弁を備えた貫通孔開閉機構と、
前記受水槽と前記貫通孔とを連通するボール弁を備えた連通管とを備えたことを特徴とする砂防ダム。
In a sabo dam that has a dam wall built across a mountain or mountain stream, and dams outflow sediment and debris flowing from the upstream of the mountain or mountain stream by the dam wall,
A through-hole was created in the lower part of the dam wall to flow the sediment and debris flow blocked by the dam wall downstream with water.
A riser pipe connected to a through hole portion located downstream of the dam wall;
A water receiving tank for receiving water overflowed from the riser;
A through-hole opening and closing mechanism comprising a gate valve that supports the water receiving tank on one end side of a fulcrum and opens and closes the through hole on the other end side;
A sabo dam comprising a communication pipe having a ball valve communicating the water receiving tank and the through hole.
JP2002038068A 2002-02-15 2002-02-15 Sabo Dam Expired - Fee Related JP3628302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002038068A JP3628302B2 (en) 2002-02-15 2002-02-15 Sabo Dam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002038068A JP3628302B2 (en) 2002-02-15 2002-02-15 Sabo Dam

Publications (2)

Publication Number Publication Date
JP2003239258A JP2003239258A (en) 2003-08-27
JP3628302B2 true JP3628302B2 (en) 2005-03-09

Family

ID=27779476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002038068A Expired - Fee Related JP3628302B2 (en) 2002-02-15 2002-02-15 Sabo Dam

Country Status (1)

Country Link
JP (1) JP3628302B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4799639B2 (en) * 2009-04-20 2011-10-26 中国電力株式会社 Discharge method of sediment in the reservoir
JP5240790B2 (en) * 2009-11-26 2013-07-17 典政 佐々木 Dam lake low-level water discharge device
CN102002927B (en) * 2010-11-01 2011-12-14 中国科学院水利部成都山地灾害与环境研究所 Compound mud-rock flow discharge and guide trough
KR101047319B1 (en) * 2010-11-11 2011-07-13 대한민국 The eco-friendly dam having the lower water purifying functionality and eco-type holes
JP5555339B1 (en) * 2013-02-08 2014-07-23 中国電力株式会社 Structure downstream of the dam
JP6731177B2 (en) * 2016-02-01 2020-07-29 中国電力株式会社 Water discharge equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04101Y2 (en) * 1985-08-26 1992-01-06
JP3277489B2 (en) * 1999-12-09 2002-04-22 信州大学長 Sediment discharge mechanism for water storage area and method for discharging sediment from water storage area

Also Published As

Publication number Publication date
JP2003239258A (en) 2003-08-27

Similar Documents

Publication Publication Date Title
JP5737675B2 (en) Sabo weir
JP2004524467A (en) How to remove sediment from a sand trap
JP3961722B2 (en) Closure opening mechanism of sediment collection and transfer equipment
JP3628302B2 (en) Sabo Dam
WO2020044355A1 (en) Integration of multipurpose box tunnels with empty lakes and mini dam for effective flood control
JP4678893B1 (en) Intake mechanism of Sabo Dam
KR100780743B1 (en) Siphon spillways
US9278808B1 (en) System and method of using differential elevation induced energy for the purpose of storing water underground
KR100572507B1 (en) Overflow discharge chamber
KR100974019B1 (en) apparatus of reverse protection for sewage and sea water
RU2636944C1 (en) Sand and gravel trap
KR102259684B1 (en) Water collecting type fish way having water pressure reduction function
JP2005282206A (en) Rainwater intake device and rainwater storage device
SU1668550A1 (en) Method for silting control of quick-silting water reservoirs
JP2004162393A (en) Sediment discharge structure for backflow preventing gate
CN109137846B (en) External drainage pump submerged floating type sediment trapping bank for preventing sediment from entering water intake
CN208965519U (en) Overflow weir is adjusted in fish-bellied type
CN112281649A (en) Bridge drainage spiral filter equipment
JPH05179631A (en) Dam structure
KR101060253B1 (en) Valley Filter
JP2001073349A (en) Method and facility for discharging sand from reservoir
KR200408865Y1 (en) Floodgate automatic opening and shutting apparatus for stream dam
CN110804998A (en) Ecological artificial river channel with variable water passing section
KR20180108355A (en) fish way possessed of water conveyance line
JP3028417U (en) Non-powered sweeping device to prevent floating clay accumulation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees