JP3626992B2 - Manufacturing method of rubber bush - Google Patents

Manufacturing method of rubber bush Download PDF

Info

Publication number
JP3626992B2
JP3626992B2 JP04312897A JP4312897A JP3626992B2 JP 3626992 B2 JP3626992 B2 JP 3626992B2 JP 04312897 A JP04312897 A JP 04312897A JP 4312897 A JP4312897 A JP 4312897A JP 3626992 B2 JP3626992 B2 JP 3626992B2
Authority
JP
Japan
Prior art keywords
outer cylinder
rubber
cylinder
flange
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04312897A
Other languages
Japanese (ja)
Other versions
JPH10238576A (en
Inventor
恒男 林
道弘 川田
栄一 草間
善之 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP04312897A priority Critical patent/JP3626992B2/en
Publication of JPH10238576A publication Critical patent/JPH10238576A/en
Application granted granted Critical
Publication of JP3626992B2 publication Critical patent/JP3626992B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Springs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のサスペンション等の連結部に使用されるゴムブッシュに関するものである。
【0002】
【従来の技術】
自動車に用いられる防振ゴムとして種々の形状のものが存在するが、特にサスペンションアームなどの連結部に使用される防振ゴムとしては、図6に示すごとき筒状のゴムブッシュがある。このゴムブッシュ1は、ボルトを挿入可能な内筒2と、この内筒2の周囲に配置されサスペンションアームを外嵌連結する外筒3と、前記内筒2と外筒3との間に介在されたゴム状弾性体4とを備えている。また、ゴム状弾性体4は、外筒の回転方向におけるねじり力を緩衝するために、内外筒2、3間における筒部弾性部4aに連続して、内筒フランジ5と外筒フランジ6との間にもフランジ側弾性部4bが充填形成されている。
【0003】
さらに、このゴム状弾性体4は、その耐久性を向上させるために、その半径方向に予備圧縮されて製品として完成される。この予備圧縮は、外筒3を割ダイス型の絞り治具(図示せず)を用いて、その半径方向に絞り加工することにより行われている。
【0004】
【発明が解決しようとする課題】
ところで、上記ゴムブッシュ1を、サスペンションアームとの連結部に使用する場合には、該アームとの取り付け精度を考慮して、外筒フランジ6の立ち上がり角度がほぼ直角に設定され、外筒3の筒部3aもほぼ直管状に設定されている。従って、かかる外筒形状から、ゴム状弾性体4には、直管状の筒部3aと外筒フランジ6とのコーナー部7に応力が集中し易く、このコーナー部7から亀裂が生じ易くなる。
【0005】
また、ゴム状弾性体4の予備圧縮の不均一性に起因してコーナー部7から亀裂が生じ易くなる。すなわち、上記のフランジ付きゴムブッシュ1では、外筒3の絞り加工は、外筒形状の特異性からフランジ部6では行えず、直管状の筒部3aのみが行え得るに過ぎなかった。そのため、絞り加工後のゴム状弾性体4には、予備圧縮がかかった筒部側弾性部4aと、予備圧縮が施されず、逆に筒部側の弾性部の圧縮応力に起因して引張応力のかかったフランジ側弾性部4bとが存在することになる。
【0006】
この予備圧縮が施される弾性部4aとそうでない弾性部4bとの境界部Aが、亀裂が生じ易い前記コーナー部7と一致して存在することになるため、上記ゴムブッシュ1を振動疲労試験機にかけて疲労試験を行うと、上記のゴム状弾性体の形状性と予備圧縮の不均一性とに起因して、ゴム状弾性体のコーナー部から亀裂が発生し、製品寿命が短くなるといった難点があった。
【0007】
本発明は、上記に鑑み、筒部とフランジとのコーナー部に生じる局部歪みを可及的に少なくして製品寿命の大幅な向上を図り得るゴムブッシュの提供を目的とするものである
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明者は、鋭意研究した結果、予備圧縮を与える部分とそうでない部分との境界部を、歪みの生じ易いフランジ側弾性部と筒部側弾性部とのコーナー部からずらすことに着眼した。その方策として、絞り加工前の外筒の筒部の基端部を、他の部分よりも半径方向内側に湾曲させて窪ませれば、絞り加工時に当該部分に絞りがかからないようになるとの知見が得られた。
【0009】
そこで、本発明では、外筒に、その絞り加工前の形状として、その基端部を他の部分よりも半径方向内側に湾曲させて窪ませた凹部が形成され、絞り加工後における外筒のフランジ立ち上がり部におけるゴム状弾性体の絞り率を可及的に零に近くした構成を採用することにしたものである。
【0010】
従って、本発明によると、予備圧縮のかかった部分とそうでない部分とが、外筒の筒部に存在するが、この境界部Aが、亀裂が生じ易い、筒部弾性部とフランジ弾性部とのコーナー部からずれているので、絞りによる残留歪みの影響を極力抑えることができる。そのため、亀裂が生じやすいコーナー部の局部歪みが少なくなり、ゴムブッシュに、その軸方向、軸直角方向、並びに軸回りのねじり方向等から力が加わっても、前記コーナー部から亀裂が入るのを極力回避でき、製品寿命を大幅に延ばすことができる。
【0011】
ここで、軸方向とは、内筒に嵌合するボルトや軸(以下、「ボルト等」という)の軸方向をいい、軸直角方向とは、ボルト等の軸線に対して直交する方向をいい、ねじり方向とは、ボルト等の中心軸回りの回転方向をいうものとする。また、コーナー部とは、外筒のフランジ立ち上がり部の内面側であって、ゴム状弾性体の筒部側弾性部とフランジ側弾性部との屈曲部をいうものとする。
【0012】
なお、外筒は、その材質、径、厚み等は適宜選択できる。すなわち、外筒として、絞り加工が施し易い材質、例えば、熱間圧延鋼材(SPH)や冷間圧延鋼材(SPC)等を使用することができる。外筒の厚みとしては、絞り加工を可能にする板厚であれば、その厚みは問わないが、上記SPH又はSPCを使用した場合、その加工性を考慮すれば、1.2mm〜3mm程度のものが望ましい。外筒の径は、使用箇所、ゴム状弾性体による減衰性能などにより適宜選択できる。また、外筒の筒部の形状は、円筒に限らず、角筒、楕円筒であっても本発明を適用できる。
【0013】
外筒に形成する凹部は、絞り加工前にプレス加工等により筒部基端側を全周に亘って湾曲させて窪ませればよい。筒部基端部とは、外筒の立ち上がり部から形成する場合のみならず、フランジ立ち上がり部から筒部先端側にずれた場合も含む概念である。ただ、予備圧縮のかかる部分をできるだけ多くすることを考えると、フランジ立ち上がり部から凹部を形成するのが望ましい。
【0014】
この凹部の形状も絞り加工によって変形可能な形状であれば、いかなる形状であってもよい。図4に凹部形状を例示する。同図(a)は立ち上がり部の円弧部から先端側にかけて上り傾斜のテーパ面が形成されたテーパ状の凹部を示す。同図(b)はフランジ側にも円弧部が形成されたテーパ状の凹部を示す。同図(c)は半円弧状の凹部を示し、(d)はV字状の凹部を示し、(e)はU字状凹部を示す。
【0015】
これらのいずれの形状の凹部においても本発明を適用できるが、予備圧縮が筒部基端側までかかり、かつ比較的絞り加工の行い易い形状を考えれば、(a)(b)に示すテーパ状の凹部が最適である。この図4(a)に示すテーパ状凹部の場合、ゴム状弾性体が予備圧縮されない部分から予備圧縮される部分に徐々に移行するようにすることになり、集中歪みが少なくなる点で有利である。
【0016】
さらに、凹部の最も内筒側に窪んだ部分は、応力が集中しないように、図4(d)に示すようなV字状凹部の場合であっても、尖端形状よりも円弧形状であることが望ましい。なお、凹部の深さは、ゴム状弾性体の絞り率によって決定すればよく、さらに、凹部深さが絞り量よりも大であっても、本発明の目的を達成する上では支障がない。
【0017】
次に、内筒について説明すると、内筒は、上記外筒と同様に、種々の材質、径、厚み等が適宜選択できる。特に内筒の材質においては、外筒と異なり、貫通するボルト等をナットにより強固に締め付けるため、これに耐え得る座屈強度が要求される。そのため、内筒は肉厚の円筒状鋳造品あるいは鍛造品が好ましい。
【0018】
また、本発明では、外筒の筒部基端部における絞り率を問題としているので、内筒側の端部フランジの存在の有無に拘わらず、本発明を適用できる。ただ、外筒の回転方向におけるねじり力に対する緩衝作用を行うために、内外筒間にもフランジ側弾性部が充填形成されているゴムブッシュにおいては、当該フランジ側弾性部に外筒筒部側の予備圧縮により引張応力が作用し易いので、このような形式に本発明を採用すれば特に有意義である。
【0019】
さらに、本発明が筒部基端部の絞り率を問題としていることから、内筒については、ゴム状弾性体が最適なばね定数を得るために、直管状のものに限らず、その筒部外面に突出部が形成された形式のものにおいても本発明を適用できる。また、本発明は内外筒が同心状に配列されたもののみならず、非同心状に配列した場合であっても適用できることは勿論である。
【0020】
次に、ゴム状弾性体について説明すると、ゴム状弾性体は、要求される使用目的、特性等により、あるいは加工工程の難易により天然ゴム、合成ゴム、あるいはこれらの混合した材料が適宜選択できる。また、ゴムブッシュの2軸方向で異なる動的特性を得るために、ゴム状弾性体にすぐり穴を形成したものや、液体封入型のゴムブッシュにも本発明を適用できる。
【0021】
さらに、本発明は、ゴム状弾性体に予備圧縮を与えために絞り加工を施すことを前提としているので、本来的にはゴム状弾性体が内外筒に加硫接着されたものを対象としている。ただ、ゴム状弾性体を内筒に接着しその上から外筒を圧入するタイプや、内外筒を共に非接着として圧入するタイプのものであっても、さらに所定の絞り率を得るために、絞り加工を施す形式のものであれば、本発明を適用できる。なお、ゴム状弾性体の接着は、加硫接着したもの以外に、単に接着剤により接着したものにおいても本発明を適用できることは勿論である。
【0022】
ゴム状弾性体の絞り率は、外筒の材質、板厚等により適宜選択できるが、ゴム状弾性体の耐久性を考慮した場合、これと接着する外筒の内周面の面積が問題となってくる。外筒の内周面はゴム状弾性体との接着を考慮して、接着剤塗布前に化性処理が施されるが、その処理膜が絞り加工により破壊されないようにすることが肝要であり、これを実現するためには、絞り率を7パーセント未満に設定することが望ましい。
【0023】
上記ようなゴムブッシュは、内筒の周囲に、外筒フランジ付きの外筒を配置して、内筒と外筒との間並びに外筒フランジの軸方向外面側に至るまでゴム状弾性体を介在し、外筒を半径方向に絞り加工を施すことによりゴム状弾性体を予備圧縮して製造する。この際、絞り加工前の外筒の基端部を、他の部分よりも半径方向内側に湾曲させて窪ませたものを用いて絞り加工を施し、絞り加工後における外筒のフランジ立ち上がり部におけるゴム状弾性体の絞り率を可及的に零に近くする方法を採用している。
【0024】
従って、絞り加工後における外筒フランジの立ち上がり部には絞りがかからず、絞り加工に伴う内部歪みが零に近い状態となるので、予備圧縮がかかった部分とそうでない部分との境界部Aが、亀裂が生じ易いゴム状弾性体のコーナー部からずれることになり、このコーナー部における応力集中が緩和され、従来のゴムブッシュに比べて製品寿命が延びることになる。
【0025】
【発明の実施の形態】
以下、本発明の一実施の形態を図面に基づいて説明する。図1は本発明の一実施の形態を示すゴムブッシュの製造過程を示す図、図2はゴムブッシュの側面図、図3は一対のゴムブッシュを対向させてサスペンションアームの連結部に用いた例を示す断面図、図4は外筒の凹部形状の一例を示すものである。
【0026】
図示のごとく、本実施の形態におけるゴムブッシュ11は、内筒12と、該内筒の周囲に配置された外筒13と、内筒12と外筒13との間に介在されたゴム状弾性体14とを備えている。
【0027】
内筒12は、図3のごとく、車体フレーム側のブラケット15に連結するためのボルト16を貫通する中央穴17を有する肉厚円筒状の鋳造品であって、その基端部にゴム状弾性体14が破断した場合でもサスペンションアーム18の連結筒18aが脱落しないように内筒フランジ19が形成されている。また、内筒12の基端部端縁は内筒フランジ19よりもわずかに突出され、この端面には図2のごとく、セレーション20が形成されており、車体フレーム側のブラケット15がナット21により締め付け固定される。
【0028】
外筒13は、板厚1.2〜3mmのSPH材により円筒状に形成されており、直管状の筒部13aと、その基端部側に直角に折曲形成された外筒フランジ13bとを備えている。この外筒13は、内筒12との間にゴム状弾性体14を介在して絞り加工を施して製品を完成させるが、絞り加工前の外筒13の形状は、図1に示すように、プレス加工等により、筒部13aの基端部側全周を他の部分よりも半径方向内側に湾曲させて窪ませ、凹部25が形成されている。
【0029】
この凹部25の形状は、図4の(a)で示すように、接線方向が外筒フランジ13bの外側面に一致する円弧部25aと、これに連続して筒部13aの先端側に形成された上り傾斜のテーパ部25bとを備え、テーパ部25bの先端と筒部13aの先端直管部13cとの境界部には緩やかな円弧面25cが形成されている。
【0030】
円弧部25a、テーパ部25b及び円弧面25cの曲率及びテーパ角度は、絞り率やゴムブッシュ11の径などにより適宜選択できる。具体的には、外筒筒部13aの外径が34mmである場合、円弧部25aの曲率半径が1.5mm、テーパ部25bのテーパ角が10度、直線状の筒部13aとの境界部における円弧面25cの曲率半径が10mmに設定できる。
【0031】
凹部25の形状は上記実施の形態に限るものではなく、図4の(b)のように、フランジ立ち上がり部において、円弧部25aの一部がフランジ側にも形成された形態を採用することもできる。さらに、図4(c)(d)(e)に示す形状であってもよい。同図(c)は半円弧状の凹部を示し、(d)はV字状の凹部を示し、(e)はU字状凹部を示す。
【0032】
これらのいずれの形状の凹部25においても本発明を適用できるが、本実施の形態は、テーパ部25bを形成しているので比較的絞り加工の行い易い点、及びゴム状弾性体14の予備圧縮されない部分から予備圧縮される部分に徐々に移行するようになり、歪みが極変する部分がなくなる点などの利点を有する。
【0033】
この外筒13の凹部25は、周知の割型ダイス28により、外筒の周囲から半径方向内側に押圧することにより絞り込まれる。図4(a)において、割型ダイス28により半径方向内側に加圧すると、外筒13の筒部13aは、縮径されながら、凹部25の円弧部25aから外筒13の先端方向に力がかかるために、筒部13aが軸方向に伸張し、図4(a)の2点鎖線で示す状態まで縮径する。
【0034】
このときの絞り率は、外筒13の内周面における接着剤塗布前の化性処理膜の破壊防止を考慮して7%未満に設定されている。具体的には、外筒径34mmの外筒13を使用した場合、絞り加工後の径を32.15mm(平均径)としている。
【0035】
ゴム状弾性体14は、外筒13の筒部13aと内筒12の筒部との間に介在された筒部側弾性部14aと、これに連続して内外フランジ13b、19間に介在されたフランジ弾性部14bとから構成されている。ゴム状弾性体14の端部と内外筒12、13との接触部には、応力変位を考慮してすみ肉を形成した状態で接着されている。
【0036】
ゴム状弾性体14の材質としては、一般的には、防振ゴムに使用される天然ゴム、あるいは合成ゴム、例えば、SBR(スチレンブタジエンゴム)、BR(ブタジエンゴム)、IR(イソプレンゴム)、NBR(アクリルニトリルブタジエンゴム)、CR(クロロプレンゴム)、IIR(ブチルゴム)、EPDM(エチレンプロピレンゴム)、あるいはウレタンエラストマーなどが使用される。これらの原料ゴムに加硫剤、加硫促進剤、老化防止剤、補強剤、充填剤、軟化剤等の配合剤を入れて、所定の弾性率、機械的強度、動的特性、疲労特性等を得られるようにする。
【0037】
ゴムブッシュ11の成形は、金型内にフランジ19付き内筒12と、絞り加工前の外筒13とゴム状弾性体14とをセットし、加圧して加硫成形する。この際、内外筒12、13のゴム接着面には亜鉛系リン酸塩などにより化性処理を施して処理膜を形成後、接着剤を塗布して加硫接着する。
【0038】
その後、割型ダイス28を使用した絞り治具により、外筒13に絞り加工を施す。このとき、ダイスにより外筒13を半径方向内側に絞っていくと、外筒13の凹部25のテーパ部25bが縮径方向に力を受けるとともに、その分力により外筒の筒部先端に移行し、直管部13cも同様に絞られるので、最終的にはテーパ部25b及び直管部13cが直線状になるまで絞られ、ゴム状弾性体14に予備圧縮がかけられ、製品として完成することになる。
【0039】
この完成品の状態では、外筒13の凹部25のうち、フランジ立ち上り部13dに相当する内筒側に最も接近した部分Bの絞り率は零に近いため、結果的にゴム状弾性体のコーナー部14cには残留歪みが残らない状態となっている。従って、応力が集中し易いゴム状弾性体のコーナー部14cの疲労を最小限に抑えることができ、製品寿命を大幅に延ばすことができる。
【0040】
上記実施品と図6に示す従来品とを比較するためのねじり疲労試験を行った。ねじり疲労試験は、図3に示す場合と同様に、一対の本実施品の組み付け状態で、外筒部分にアームの連結筒を外嵌し、このアームにより軸直角方向に1.1KNの負荷を掛けて、これを試験温度23±2℃、ねじり角度15〜25deg、周波数3Hzで繰り返してねじり、その振動疲労度合いを測定するものである。
【0041】
本試験の結果、本実施品では、50万回のねじり後においても異常がみられなかったのに対し、従来品では、5万回でゴム状弾性体のコーナー部に亀裂が発生した。
【0042】
図5は本発明の別の実施の形態を示すゴムブッシュの断面図である。上記実施の形態では内外フランジ間にゴム状弾性体14bが充填接着された形態を示したが、この実施の形態では、ゴム状弾性体14のフランジ側弾性部14bが外筒フランジ13bにのみ接着されており、フランジ側弾性部14bと内筒フランジ19との間に隙間29が形成されたゴムブッシュを示している。この場合のフランジ側弾性部14bは、ねじり方向の防振機能としてよりも軸方向の緩衝用ストッパとして機能するものである。
【0043】
【発明の効果】
以上の説明から明らかな通り、本発明によると、ゴム状弾性体を予備圧縮するために、フランジ付き外筒を半径方向に絞り加工するゴムブッシュにおいて、絞り加工の前の外筒の形状が、その基端部を他の部分よりも半径方向内側に湾曲させて窪ませることにより、絞り加工後における外筒の基端部側のゴム状弾性体の絞り率を可及的に零に近くしているから、亀裂が発生し易いゴム状弾性体のコーナー部の残留歪みを極力少なくでき、製品寿命を大幅に延ばすことができるといった優れた効果がある。
【図面の簡単な説明】
【図1】本発明の一実施の形態であるゴムブッシュの製造過程を示す図
【図2】同じくゴムブッシュを軸方向からみた側面図
【図3】本発明のゴムブッシュを一対対称に配列してサスペンションアームの連結部に適用した例を示す断面図
【図4】本発明の凹部の形態を示す断面図であり、同図(a)はテーパ状の凹部を、同図(b)は(a)の変形例を、同図(c)は半円弧状の凹部を、(d)はV字状の凹部を、(e)はU字状凹部を夫々示す。
【図5】本発明の別の実施の形態を示す断面図
【図6】従来のゴムブッシュの断面図
【符号の説明】
11 ゴムブッシュ
12 内筒
13 外筒
13a 筒部
13b 外筒フランジ
13c 直管部
14 ゴム状弾性体
19 内筒フランジ
25 凹部
25a 円弧部
25b テーパ部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rubber bush used for a connecting portion such as an automobile suspension.
[0002]
[Prior art]
There are various types of anti-vibration rubbers used in automobiles, and there is a cylindrical rubber bush as shown in FIG. 6 as an anti-vibration rubber particularly used for a connecting portion such as a suspension arm. The rubber bush 1 includes an inner cylinder 2 into which a bolt can be inserted, an outer cylinder 3 which is disposed around the inner cylinder 2 and externally connects a suspension arm, and is interposed between the inner cylinder 2 and the outer cylinder 3. The rubber-like elastic body 4 is provided. In addition, the rubber-like elastic body 4 is continuous with the cylindrical elastic portion 4a between the inner and outer cylinders 2 and 3 in order to buffer the torsional force in the rotation direction of the outer cylinder. A flange-side elastic portion 4b is also formed between the two.
[0003]
Further, the rubber-like elastic body 4 is preliminarily compressed in the radial direction in order to improve its durability, and is completed as a product. This pre-compression is performed by drawing the outer cylinder 3 in the radial direction using a split die type drawing jig (not shown).
[0004]
[Problems to be solved by the invention]
By the way, when the rubber bush 1 is used for a connecting portion with the suspension arm, the rising angle of the outer cylinder flange 6 is set to be substantially right angle in consideration of the mounting accuracy with the arm. The cylindrical portion 3a is also set to be almost a straight tube. Therefore, stress is easily concentrated on the corner portion 7 between the straight tubular portion 3a and the outer tube flange 6 in the rubber-like elastic body 4 from the outer tubular shape, and cracks are likely to be generated from the corner portion 7.
[0005]
Further, cracks are likely to occur from the corner portion 7 due to the non-uniformity of the pre-compression of the rubber-like elastic body 4. That is, in the above-described rubber bush 1 with flange, the drawing of the outer cylinder 3 cannot be performed by the flange portion 6 due to the peculiarity of the outer cylinder shape, and only the straight tube portion 3a can be performed. Therefore, the rubber-like elastic body 4 after drawing is not subjected to the pre-compression of the cylinder-side elastic part 4a that has been pre-compressed, and conversely, it is pulled due to the compressive stress of the cylinder-side elastic part. There is a flange-side elastic portion 4b to which stress is applied.
[0006]
Since the boundary portion A between the elastic portion 4a to which the pre-compression is applied and the elastic portion 4b to which the pre-compression is not performed coincides with the corner portion 7 that is liable to crack, the rubber bush 1 is subjected to a vibration fatigue test. When a fatigue test is performed on the machine, cracks occur from the corners of the rubber-like elastic body due to the shape of the rubber-like elastic body and the non-uniformity of the pre-compression, and the product life is shortened. was there.
[0007]
In view of the above, an object of the present invention is to provide a rubber bush that can significantly reduce the local distortion generated in the corner portion between the cylindrical portion and the flange, and can greatly improve the product life. ]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventor has intensively studied. Focused on shifting. As a measure, if the base end of the cylindrical part of the outer cylinder before drawing is curved and recessed inward in the radial direction with respect to other parts, the knowledge that the part will not be drawn during drawing was gotten.
[0009]
Therefore, in the present invention, the outer cylinder is formed with a concave portion in which the base end is curved inward in the radial direction with respect to the other part as a shape before drawing, and the outer cylinder is drawn after drawing. A configuration is adopted in which the squeezing rate of the rubber-like elastic body at the flange rising portion is as close to zero as possible.
[0010]
Therefore, according to the present invention, the pre-compressed part and the non-present part are present in the cylindrical part of the outer cylinder, but this boundary part A is prone to cracking, and the cylindrical elastic part and the flange elastic part. Therefore, the effect of residual distortion due to the diaphragm can be suppressed as much as possible. Therefore, the local distortion of the corner portion where cracks are likely to occur is reduced, and even if a force is applied to the rubber bush from the axial direction, the direction perpendicular to the axis, the torsional direction around the axis, etc., the crack is prevented from entering from the corner portion. It can be avoided as much as possible, and the product life can be greatly extended.
[0011]
Here, the axial direction refers to the axial direction of a bolt or a shaft (hereinafter referred to as “bolt or the like”) that fits in the inner cylinder, and the axis perpendicular direction refers to a direction orthogonal to the axis of the bolt or the like. The torsional direction refers to the rotational direction around the central axis of a bolt or the like. Further, the corner portion is an inner surface side of the flange rising portion of the outer cylinder, and refers to a bent portion of the cylinder-side elastic portion and the flange-side elastic portion of the rubber-like elastic body.
[0012]
The material, diameter, thickness, etc. of the outer cylinder can be selected as appropriate. That is, a material that can be easily drawn, such as hot rolled steel (SPH) or cold rolled steel (SPC), can be used as the outer cylinder. The thickness of the outer cylinder is not limited as long as it is a plate thickness that enables drawing, but when using the SPH or SPC, considering the workability, it is about 1.2 mm to 3 mm. Things are desirable. The diameter of the outer cylinder can be appropriately selected depending on the place of use, the damping performance of the rubber-like elastic body, and the like. Further, the shape of the cylindrical portion of the outer cylinder is not limited to a cylinder, and the present invention can be applied to a rectangular cylinder or an elliptic cylinder.
[0013]
The concave portion formed in the outer cylinder may be recessed by curving the base end side of the cylindrical portion over the entire circumference by pressing or the like before drawing. The cylindrical base end portion is a concept including not only the case where the cylindrical base end portion is formed from the rising portion of the outer cylinder but also the case where the cylindrical base portion is displaced from the flange rising portion. However, it is desirable to form the concave portion from the flange rising portion in view of increasing the number of portions to which pre-compression is applied as much as possible.
[0014]
The shape of the recess may be any shape as long as it can be deformed by drawing. FIG. 4 illustrates the recess shape. FIG. 4A shows a tapered concave portion in which an upwardly inclined taper surface is formed from the arc portion of the rising portion to the tip side. FIG. 5B shows a tapered concave portion in which an arc portion is also formed on the flange side. (C) shows a semicircular arc-shaped recess, (d) shows a V-shaped recess, and (e) shows a U-shaped recess.
[0015]
Although the present invention can be applied to the concave portions having any of these shapes, the taper shape shown in (a) and (b) is considered in consideration of a shape in which the pre-compression is applied to the base end side of the cylindrical portion and relatively easy to draw. The recess is optimal. In the case of the tapered concave portion shown in FIG. 4 (a), the rubber-like elastic body is gradually shifted from the portion that is not pre-compressed to the portion that is pre-compressed, which is advantageous in that concentrated strain is reduced. is there.
[0016]
Furthermore, the portion of the recess that is recessed toward the inner cylinder side is more arcuate than the tip shape, even in the case of a V-shaped recess as shown in FIG. Is desirable. The depth of the recess may be determined by the drawing ratio of the rubber-like elastic body. Furthermore, even if the depth of the recess is larger than the amount of drawing, there is no problem in achieving the object of the present invention.
[0017]
Next, the inner cylinder will be described. For the inner cylinder, various materials, diameters, thicknesses, and the like can be appropriately selected as in the case of the outer cylinder. In particular, in the material of the inner cylinder, unlike the outer cylinder, a bolt or the like that penetrates is firmly tightened with a nut, so that a buckling strength that can withstand this is required. Therefore, the inner cylinder is preferably a thick cylindrical cast or forged product.
[0018]
Further, in the present invention, since the drawing ratio at the tube base end portion of the outer cylinder is a problem, the present invention can be applied regardless of the presence or absence of the end flange on the inner tube side. However, in order to perform a buffering action against the torsional force in the rotation direction of the outer cylinder, in the rubber bush in which the flange side elastic portion is filled between the inner and outer cylinders, the flange side elastic portion is connected to the outer cylinder cylinder side. Since tensile stress tends to act by pre-compression, it is particularly meaningful to adopt the present invention in such a form.
[0019]
Furthermore, since the present invention has a problem with the narrowing ratio of the base end portion of the tube portion, the inner tube is not limited to a straight tube in order to obtain an optimal spring constant for the rubber-like elastic body. The present invention can also be applied to a type in which a protrusion is formed on the outer surface. In addition, the present invention can be applied not only to the case where the inner and outer cylinders are arranged concentrically but also to the case where they are arranged non-concentrically.
[0020]
Next, the rubber-like elastic body will be described. As the rubber-like elastic body, natural rubber, synthetic rubber, or a mixed material thereof can be appropriately selected depending on the intended purpose of use, characteristics, etc. or difficulty of the processing step. Further, in order to obtain different dynamic characteristics in the biaxial direction of the rubber bush, the present invention can also be applied to a rubber-like elastic body formed with a pierced hole or a liquid-filled rubber bush.
[0021]
Further, the present invention is based on the premise that the rubber-like elastic body is subjected to drawing in order to preliminarily compress the rubber-like elastic body, so that the rubber-like elastic body is originally intended to be vulcanized and bonded to the inner and outer cylinders. . However, in order to obtain a predetermined squeezing ratio even if it is a type in which a rubber-like elastic body is bonded to the inner cylinder and the outer cylinder is press-fitted from above, or a type in which both the inner and outer cylinders are pressed in as non-bonded The present invention can be applied to any type that is subjected to drawing. Of course, the present invention can be applied to a rubber-like elastic body that is not only vulcanized but also simply bonded with an adhesive.
[0022]
The squeezing rate of the rubber-like elastic body can be selected as appropriate depending on the material of the outer cylinder, the plate thickness, etc., but considering the durability of the rubber-like elastic body, the area of the inner peripheral surface of the outer cylinder to be bonded is a problem. It becomes. The inner peripheral surface of the outer cylinder is subjected to a chemical conversion treatment before applying the adhesive in consideration of adhesion to the rubber-like elastic body, but it is important that the treated film is not destroyed by drawing. In order to realize this, it is desirable to set the aperture ratio to less than 7%.
[0023]
The rubber bush as described above has an outer cylinder with an outer cylinder flange arranged around the inner cylinder, and a rubber-like elastic body is provided between the inner cylinder and the outer cylinder and to the outer surface side in the axial direction of the outer cylinder flange. The rubber-like elastic body is pre-compressed and manufactured by interposing and drawing the outer cylinder in the radial direction. At this time, the base end portion of the outer cylinder before drawing is subjected to drawing processing using a concave portion that is curved inward in the radial direction with respect to the other portions, and at the flange rising portion of the outer cylinder after drawing processing. A method is adopted in which the squeezing rate of the rubber-like elastic body is as close to zero as possible.
[0024]
Accordingly, the rising portion of the outer cylinder flange after drawing is not drawn, and the internal distortion accompanying drawing is close to zero, so that the boundary portion A between the pre-compressed portion and the portion that is not. However, it will shift | deviate from the corner part of the rubber-like elastic body which is easy to produce a crack, the stress concentration in this corner part will be relieved, and a product life will be extended compared with the conventional rubber bush.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a view showing a manufacturing process of a rubber bush according to an embodiment of the present invention, FIG. 2 is a side view of the rubber bush, and FIG. 3 is an example in which a pair of rubber bushes are opposed to each other and used as a suspension arm connecting portion. FIG. 4 shows an example of the concave shape of the outer cylinder.
[0026]
As illustrated, the rubber bush 11 in the present embodiment includes an inner cylinder 12, an outer cylinder 13 disposed around the inner cylinder, and a rubber-like elasticity interposed between the inner cylinder 12 and the outer cylinder 13. And a body 14.
[0027]
As shown in FIG. 3, the inner cylinder 12 is a thick cylindrical cast product having a central hole 17 that passes through a bolt 16 for connecting to a bracket 15 on the vehicle body frame side. An inner cylinder flange 19 is formed so that the connecting cylinder 18a of the suspension arm 18 does not fall off even when the body 14 is broken. Further, the base end edge of the inner cylinder 12 protrudes slightly from the inner cylinder flange 19, and a serration 20 is formed on this end surface as shown in FIG. Tightened and fixed.
[0028]
The outer cylinder 13 is formed in a cylindrical shape by an SPH material having a plate thickness of 1.2 to 3 mm, and includes a straight tubular cylinder portion 13a and an outer cylinder flange 13b that is bent at a right angle to the base end side thereof. It has. The outer cylinder 13 is subjected to a drawing process with a rubber-like elastic body 14 interposed between the inner cylinder 12 and a product is completed. The shape of the outer cylinder 13 before the drawing process is as shown in FIG. The recess 25 is formed by curving the entire circumference of the cylindrical portion 13a on the proximal end side by a press working or the like so as to be curved radially inward from other portions.
[0029]
As shown in FIG. 4A, the shape of the recess 25 is formed on the arc side 25a whose tangential direction coincides with the outer surface of the outer cylinder flange 13b, and continuously on the distal end side of the cylinder part 13a. Further, a gently arcuate surface 25c is formed at the boundary portion between the tip of the taper portion 25b and the straight pipe portion 13c of the tube portion 13a.
[0030]
The curvature and taper angle of the arc portion 25a, the taper portion 25b, and the arc surface 25c can be appropriately selected depending on the drawing ratio, the diameter of the rubber bush 11, and the like. Specifically, when the outer diameter of the outer cylindrical tube portion 13a is 34 mm, the radius of curvature of the arc portion 25a is 1.5 mm, the taper angle of the tapered portion 25b is 10 degrees, and the boundary portion with the linear cylindrical portion 13a The radius of curvature of the circular arc surface 25c can be set to 10 mm.
[0031]
The shape of the recess 25 is not limited to the above embodiment, and a form in which a part of the arc 25a is also formed on the flange side at the flange rising portion as shown in FIG. it can. Furthermore, the shape shown in FIGS. 4C, 4D, and 4E may be used. (C) shows a semicircular arc-shaped recess, (d) shows a V-shaped recess, and (e) shows a U-shaped recess.
[0032]
Although the present invention can be applied to the concave portions 25 having any of these shapes, the present embodiment has a tapered portion 25b, and therefore is relatively easy to draw and the preliminary compression of the rubber-like elastic body 14. There is an advantage in that the portion that is not compressed is gradually shifted to the portion that is pre-compressed, and there is no portion where the distortion is extremely changed.
[0033]
The concave portion 25 of the outer cylinder 13 is narrowed down by being pressed radially inward from the periphery of the outer cylinder by a known split die 28. In FIG. 4A, when the radial die 28 is pressed inward in the radial direction, the cylindrical portion 13a of the outer cylinder 13 is reduced in diameter, and a force is applied from the arc portion 25a of the concave portion 25 toward the distal end of the outer cylinder 13. For this reason, the cylindrical portion 13a extends in the axial direction and is reduced in diameter to a state indicated by a two-dot chain line in FIG.
[0034]
The drawing ratio at this time is set to less than 7% in consideration of prevention of breakage of the chemical treatment film before application of the adhesive on the inner peripheral surface of the outer cylinder 13. Specifically, when the outer cylinder 13 having an outer cylinder diameter of 34 mm is used, the diameter after drawing is set to 32.15 mm (average diameter).
[0035]
The rubber-like elastic body 14 is interposed between the cylindrical portion side elastic portion 14a interposed between the cylindrical portion 13a of the outer cylinder 13 and the cylindrical portion of the inner cylinder 12, and the inner and outer flanges 13b and 19 continuously. And a flange elastic portion 14b. A contact portion between the end of the rubber-like elastic body 14 and the inner and outer cylinders 12 and 13 is bonded with a fillet formed in consideration of stress displacement.
[0036]
The material of the rubber-like elastic body 14 is generally natural rubber or synthetic rubber used for vibration-proof rubber, for example, SBR (styrene butadiene rubber), BR (butadiene rubber), IR (isoprene rubber), NBR (acrylonitrile butadiene rubber), CR (chloroprene rubber), IIR (butyl rubber), EPDM (ethylene propylene rubber), urethane elastomer or the like is used. These raw rubbers contain compounding agents such as vulcanizing agents, vulcanization accelerators, anti-aging agents, reinforcing agents, fillers, softeners, etc., and prescribed elastic modulus, mechanical strength, dynamic characteristics, fatigue characteristics, etc. To get.
[0037]
The rubber bush 11 is molded by setting the inner cylinder 12 with the flange 19, the outer cylinder 13 before drawing and the rubber-like elastic body 14 in a mold, and pressurizing and vulcanizing the rubber bush 11. At this time, the rubber bonding surfaces of the inner and outer cylinders 12 and 13 are subjected to a chemical conversion treatment with zinc phosphate or the like to form a treatment film, and then an adhesive is applied and vulcanized and bonded.
[0038]
Thereafter, the outer cylinder 13 is drawn by a drawing jig using the split die 28. At this time, if the outer cylinder 13 is squeezed radially inward by the die, the taper portion 25b of the recess 25 of the outer cylinder 13 receives a force in the diameter reducing direction, and the component force shifts to the tip of the outer cylinder portion. Since the straight pipe portion 13c is also squeezed in the same manner, it is finally squeezed until the taper portion 25b and the straight pipe portion 13c become linear, and the rubber-like elastic body 14 is pre-compressed to complete the product. It will be.
[0039]
In the state of the finished product, the squeezing rate of the portion B closest to the inner cylinder side corresponding to the flange rising portion 13d in the concave portion 25 of the outer cylinder 13 is close to zero. The portion 14c is in a state where no residual strain remains. Accordingly, the fatigue of the corner portion 14c of the rubber-like elastic body where stress tends to concentrate can be minimized, and the product life can be greatly extended.
[0040]
A torsional fatigue test was performed to compare the above-described product with the conventional product shown in FIG. As in the case shown in FIG. 3, the torsional fatigue test is performed by fitting a connecting cylinder of an arm to the outer cylinder portion in the assembled state of a pair of this embodiment product, and applying a load of 1.1 KN in the direction perpendicular to the axis by this arm. This is repeatedly twisted at a test temperature of 23 ± 2 ° C., a twist angle of 15 to 25 degrees, and a frequency of 3 Hz, and the degree of vibration fatigue is measured.
[0041]
As a result of this test, in the present product, no abnormality was observed after 500,000 times of twisting, whereas in the conventional product, cracks occurred in the corners of the rubber-like elastic body after 50,000 times.
[0042]
FIG. 5 is a cross-sectional view of a rubber bush showing another embodiment of the present invention. In the above embodiment, the rubber-like elastic body 14b is filled and bonded between the inner and outer flanges. In this embodiment, the flange-side elastic portion 14b of the rubber-like elastic body 14 is bonded only to the outer cylinder flange 13b. A rubber bushing in which a gap 29 is formed between the flange side elastic portion 14b and the inner cylinder flange 19 is shown. In this case, the flange side elastic portion 14b functions as a buffering stopper in the axial direction rather than as a vibration isolating function in the torsional direction.
[0043]
【The invention's effect】
As is clear from the above description, according to the present invention, in order to pre-compress the rubber-like elastic body, in the rubber bush for drawing the flanged outer cylinder in the radial direction, the shape of the outer cylinder before drawing is By curving the base end part inward in the radial direction with respect to the other parts, the draw ratio of the rubber-like elastic body on the base end part side of the outer cylinder after drawing is made as close to zero as possible. Therefore, there is an excellent effect that the residual strain at the corner portion of the rubber-like elastic body, which is easily cracked, can be reduced as much as possible, and the product life can be greatly extended.
[Brief description of the drawings]
FIG. 1 is a view showing a manufacturing process of a rubber bush according to an embodiment of the present invention. FIG. 2 is a side view of the rubber bush viewed from the axial direction. FIG. FIG. 4 is a cross-sectional view showing an embodiment of a recess according to the present invention, where FIG. 4 (a) shows a tapered recess, and FIG. FIG. 4 (c) shows a semicircular arc-shaped recess, (d) shows a V-shaped recess, and (e) shows a U-shaped recess.
FIG. 5 is a sectional view showing another embodiment of the present invention. FIG. 6 is a sectional view of a conventional rubber bush.
11 Rubber bush 12 Inner tube 13 Outer tube 13a Tube portion 13b Outer tube flange 13c Straight tube portion 14 Rubber elastic body 19 Inner tube flange 25 Recessed portion 25a Arc portion 25b Tapered portion

Claims (4)

内筒の周囲に、直管状の筒部とその筒部基端部に直角に折曲形成された外筒フランジとを有する外筒を配置して、内筒と外筒との間並びに外筒フランジの外面側に至るまでゴム状弾性体を充填し、外筒の筒部を半径方向内側に絞り加工することにより、ゴム状弾性体を予備圧縮してゴムブッシュを製造する方法において、
絞り加工前の外筒の筒部基端部を他の部分よりも半径方向内側に湾曲させて外筒の筒部外周面を窪ませることにより凹部を形成したものを用い、その筒部が直管状になるまで絞り加工を施し、絞り加工後における外筒のフランジ立ち上がり部におけるゴム状弾性体の絞り率を可及的に零に近くすることを特徴とするゴムブッシュの製造方法。
An outer cylinder having a straight tubular cylinder portion and an outer cylinder flange bent at a right angle to the proximal end portion of the cylindrical portion is disposed around the inner cylinder so that the outer cylinder is located between the inner cylinder and the outer cylinder. In the method of manufacturing a rubber bush by pre-compressing the rubber-like elastic body by filling the rubber-like elastic body up to the outer surface side of the flange and drawing the cylindrical portion of the outer cylinder radially inward,
The cylindrical base end of the outer cylinder before drawing is curved inward in the radial direction with respect to the other parts and the outer peripheral surface of the cylindrical part of the outer cylinder is recessed to form a recess. A method for producing a rubber bush, wherein drawing is performed until a tube is formed, and the drawing rate of the rubber-like elastic body at the flange rising portion of the outer cylinder after drawing is made as close to zero as possible.
内筒の周囲に外筒を配置し、内筒と外筒との間、並びに内筒の軸方向端部に半径方向外側に突出する内筒フランジと、これに対向して外筒の軸方向基端部に半径方向外側に形成された外筒フランジとの間に至るまでゴム状弾性体を充填し、外筒の筒部を半径方向内側に絞り加工することにより、ゴム状弾性体の筒部側弾性部を予備圧縮してゴムブッシュを製造する方法において、
絞り加工前の外筒の筒部基端部を他の部分よりも半径方向内側に湾曲させて外筒の筒部外周面を窪ませることにより凹部を形成したものを用い、その筒部が直管状になるまで絞り加工を施し、絞り加工後における外筒のフランジ立ち上がり部におけるゴム状弾性体の絞り率を可及的に零に近くすることを特徴とするゴムブッシュの製造方法。
An outer cylinder is arranged around the inner cylinder, an inner cylinder flange projecting radially outwardly between the inner cylinder and the outer cylinder, and at an axial end portion of the inner cylinder, and an axial direction of the outer cylinder opposite thereto A rubber-like elastic cylinder is filled by filling a rubber-like elastic body up to the outer cylinder flange formed radially outward at the base end and drawing the cylinder of the outer cylinder radially inward. In the method of manufacturing the rubber bush by pre-compressing the part side elastic part,
The cylindrical base end of the outer cylinder before drawing is curved inward in the radial direction with respect to the other parts and the outer peripheral surface of the cylindrical part of the outer cylinder is recessed to form a recess. A method for producing a rubber bush, wherein drawing is performed until a tube is formed, and the drawing rate of the rubber-like elastic body at the flange rising portion of the outer cylinder after drawing is made as close to zero as possible.
前記凹部が、外筒フランジ立ち上がり部の円弧部から筒部先端側にかけて上り傾斜のテーパ面が形成されたテーパ状凹部であることを特徴とする請求項1又は2に記載のゴムブッシュの製造方法。The method for manufacturing a rubber bush according to claim 1 or 2, wherein the concave portion is a tapered concave portion in which an upwardly inclined taper surface is formed from an arc portion of the rising portion of the outer cylindrical flange to the distal end side of the cylindrical portion. . 前記円弧部の一部が外筒フランジ側にも形成されたことを特徴とする請求項3に記載のゴムブッシュの製造方法。The method of manufacturing a rubber bush according to claim 3, wherein a part of the arc portion is also formed on the outer cylinder flange side.
JP04312897A 1997-02-27 1997-02-27 Manufacturing method of rubber bush Expired - Lifetime JP3626992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04312897A JP3626992B2 (en) 1997-02-27 1997-02-27 Manufacturing method of rubber bush

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04312897A JP3626992B2 (en) 1997-02-27 1997-02-27 Manufacturing method of rubber bush

Publications (2)

Publication Number Publication Date
JPH10238576A JPH10238576A (en) 1998-09-08
JP3626992B2 true JP3626992B2 (en) 2005-03-09

Family

ID=12655215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04312897A Expired - Lifetime JP3626992B2 (en) 1997-02-27 1997-02-27 Manufacturing method of rubber bush

Country Status (1)

Country Link
JP (1) JP3626992B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101307038B1 (en) * 2011-10-04 2013-09-11 주식회사 디알비동일 Anti-vibration member for railway vehicle

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257071A (en) * 2004-02-12 2005-09-22 Tokai Rubber Ind Ltd Vibration control device
JP2006144972A (en) * 2004-11-22 2006-06-08 Tokai Rubber Ind Ltd Vibration absorbing bush installation structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101307038B1 (en) * 2011-10-04 2013-09-11 주식회사 디알비동일 Anti-vibration member for railway vehicle

Also Published As

Publication number Publication date
JPH10238576A (en) 1998-09-08

Similar Documents

Publication Publication Date Title
WO2018079244A1 (en) Anti-vibration bushing
JP2002295560A (en) Cylindrical rubber mount
JP2012211604A (en) Vibration-isolating device
JP3951274B1 (en) Anti-vibration bushing manufacturing method
JP3680575B2 (en) Rubber bush and manufacturing method thereof
JPH0960769A (en) Hydraulic hose
JP3626992B2 (en) Manufacturing method of rubber bush
JP4171095B2 (en) How to squeeze the outer cylinder of the rubber bush
JP2008168756A (en) Stabilizer bar with vibration proofing bush, and its manufacturing method
JPH10274268A (en) Vibration isolation bush and bush assembly
JPH1163058A (en) Rubber bush
JP3729003B2 (en) Anti-vibration bush and anti-vibration bush assembly
JPH11117974A (en) Rubber bush
JP4699294B2 (en) Vibration isolator
JP2002115745A (en) Bush type mount
JP3724221B2 (en) Anti-vibration bushing manufacturing method
JP3586090B2 (en) Rubber bush manufacturing method
JP4371708B2 (en) Vibration isolator and manufacturing method thereof
JP2020118284A (en) Vibration-proof bush and manufacturing method of vibration-proof bush
JP4131975B2 (en) Anti-vibration device mounting structure
JPH07190144A (en) Manufacture of damper
JP3700237B2 (en) Cylindrical mount and manufacturing method thereof
JP2008256101A (en) Anti-vibration bushing
JP2001317578A (en) Vibration control bush
JPS5842668Y2 (en) Anti-vibration rubber

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term