JP3626520B2 - Process for producing 3-substituted-3-methylbutanal - Google Patents

Process for producing 3-substituted-3-methylbutanal Download PDF

Info

Publication number
JP3626520B2
JP3626520B2 JP33724394A JP33724394A JP3626520B2 JP 3626520 B2 JP3626520 B2 JP 3626520B2 JP 33724394 A JP33724394 A JP 33724394A JP 33724394 A JP33724394 A JP 33724394A JP 3626520 B2 JP3626520 B2 JP 3626520B2
Authority
JP
Japan
Prior art keywords
methylbutanal
methylene chloride
substituted
methyl
hydroxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33724394A
Other languages
Japanese (ja)
Other versions
JPH08176053A (en
Inventor
秀治 岩崎
邦男 馬屋原
孝志 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP33724394A priority Critical patent/JP3626520B2/en
Publication of JPH08176053A publication Critical patent/JPH08176053A/en
Application granted granted Critical
Publication of JP3626520B2 publication Critical patent/JP3626520B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/30Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with halogen containing compounds, e.g. hypohalogenation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【産業上の利用分野】
本発明は3−ヒドロキシ−3−メチルブタナール及び/又は3−メチル−3−メトキシブタナールの製造方法に関する。
【0002】
本発明により提供される3−ヒドロキシ−3−メチルブタナール及び/又は3−メチル−3−メトキシブタナール(以下、3−ヒドロキシ−3−メチルブタナール及び/又は3−メチル−3−メトキシブタナールを3−置換−3−メチルブタナールと称することがある)は、例えば、脱水反応あるいは脱メタノール反応に付することによりセネシオンアルデヒドに誘導でき、医薬、香料、農薬などの合成原料として有用である。
【0003】
【従来の技術】
従来、3−ヒドロキシ−3−メチルブタナールの製造法として下記のような方法が知られている。すなわち、
▲1▼2−メチル−4−ペンテン−2−オールをオゾン分解する方法(例えば、J.Org.Chem.(1987),52(9),1790−4など)
▲2▼アセトンとビニルエーテルを水銀ランプの光照射下に反応させてジメチルアルコキシオキセタンとした後、加水分解する方法(例えば、米国特許3709944号など)
▲3▼天然物であるBlakeslea trisporaの揮発成分に含まれる3−ヒドロキシ−3−メチルブタールを単離する方法(例えば、Phytochemistry(1980),19(6),1133−5)
しかしながら、▲1▼の方法は爆発の危険性があるオゾンを使用しなければならず、▲2▼の方法は水銀ランプの使用など、極めて特殊な工業的装置を必要とする。また、▲3▼の天然物からの単離は原料供給が安定しないなどの欠点を有しており、いずれも工業的製法としては不適当である。
【0004】
また、3−メチル−3−メトキシブタナールは、医薬、農薬、例えば第一菊酸の原料であるセネシオン酸の中間体化合物として有用であるにもかかわらず、その合成法は知られておらず、新規な化合物である。
【0005】
【発明が解決しようとする課題】
そこで、本発明は上記のような有用性を持つ化合物である3−置換−3−メチルブタナールを、工業的規模で製造されている原料から、容易にしかも安価に製造することを目的とする。
【0006】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、3−ヒドロキシ−3−メチルブタノール及び/又は3−メチル−3−メトキシブタノールをN−オキシル化合物の存在下に次亜塩素酸塩で酸化することにより、3−ヒドロキシ−3−メチルブタナール及び/又は3−メチル−3−メトキシブタナールを高収率で容易に製造しうることを見出し、本発明に至った。
【0007】
なお、本発明により得られる上記3−メチル−3−メトキシブタナールは文献未載の新規化合物であり、この化合物は、もう一方の生成物である3−ヒドロキシ−3−メチルブタナールとともに医薬、農薬、例えば第一菊酸の原料であるセネシオンアルデヒドの合成中間体として有用である。
【0008】
本発明において反応原料として用いられる3−ヒドロキシ−3−メチルブタノール及び/又は3−メチル−3−メトキシブタノール(以下、3−ヒドロキシ−3−メチルブタノール及び/又は3−メチル−3−メトキシブタノールを3−置換−3−メチルブタノールあるいは基質と称することがある)は、イソブテンとホルムアルデヒドとから合成される4,4−ジメチル−1,3−ジオキサンをイオン交換樹脂の存在下メタノールを溶媒に用いて分解することにより容易に製造することができる(特開昭53−124205号公報)。
【0009】
本発明において3−置換−3−メチルブタノールはN−オキシル化合物の存在下に次亜塩素酸塩で酸化されるが、その際、基質に対して量論量の酸化剤を必要とする。すなわち、収率よく反応を進めるためには当モル付近の酸化剤の使用が推奨される。酸化剤として用いられる次亜塩素酸塩は、例えば次亜塩素酸ナトリウム、次亜塩素酸カリウム及び次亜塩素酸カルシウムなどであり、工業的に安価に入手できる水溶液(例えば、次亜塩素酸ナトリウムの13%水溶液)もしくは粉末(例えば、さら粉)をそのまま、あるいは水で希釈して使用することができる。
【0010】
本発明においては、次亜塩素酸塩と組合せて、触媒としてN−オキシル化合物を用いることが必要である。N−オキシル化合物は、いわゆるヒンダードアミンのN−オキシル化合物であり、例えば、2,2,6,6−テトラメチルピペリジニルオキシ(TEMPO)、4−アセトキシ−2,2,6,6−テトラメチルピペリジニルオキシ、4−アセトアミド−2,2,6,6−テトラメチルピペリジニルオキシ、4−ベンゾイルオキシ−2,2,6,6−テトラメチルピペリジニルオキシ、4−メトキシ−2,2,6,6−テトラメチルピペリジニルオキシ、4−ベンジルオキシ−2,2,6,6−テトラメチルピペリジニルオキシなどである。N−オキシル化合物の使用量は、基質に対して通常0.01モル%以上であるが、反応面及び経済的観点から0.1〜2モル%の使用が好ましい。
【0011】
本発明において溶媒は必須ではないが、酸化反応が阻害されない限りその使用は差し支えない。使用しうる溶媒としては、例えば、トルエン、ベンゼン、シクロヘキサンなどの炭化水素溶媒;塩化メチレン、クロロホルム、四塩化炭素、ジクロルエタン、塩化ベンゼンなどのハロゲン化炭化水素溶媒などが使用できるが、特に塩化メチレンなどのハロゲン化炭化水素溶媒が好ましい。溶媒の使用量について特に制限はないが、反応器での生産効率面などから基質に対して一般に0.5〜10倍容量の使用が実際的である。
【0012】
また、本発明においては反応系のpHを3〜9の範囲に保持するのが好ましく、塩を添加することにより水素イオン濃度(pH)を調節するのがよい。使用可能な塩としては、例えば、炭酸水素ナトリウム、炭酸水素カリウム、リン酸水素ナトリウム、リン酸水素カリウム、リン酸二水素ナトリウム、リン酸二水素カリウムなどがあげられる。塩の使用量は添加する塩の種類によって変わるが、例えば、リン酸二水素ナトリウムの場合には基質に対して通常5〜20モル%が使用される。なお、これらの塩は、通常50%以内の水溶液として使用するのがよい。また、反応を促進する目的で臭化ナトリウム、臭化カリウム、沃化ナトリウム、沃化カリウムなどのハロゲン化塩を添加することができる。これらのハロゲン化塩の使用量は基質に対して通常0.1〜10モル%である。
【0013】
本発明方法にしたがう反応は、一般に、基質、N−オキシル化合物及び塩の水溶液、必要により使用される溶媒、更に反応促進のためのハロゲン化塩を予め投入した撹拌付きの反応器に、次亜塩素酸塩を徐々に添加しながら行われる。次亜塩素酸塩の滴下中及び反応中は撹拌を激しくすることが肝要である。反応温度は好ましくは0〜50℃、より好ましくは5〜20℃の温度範囲内である。反応は次亜塩素酸塩の添加と同時に進行し、滴下終了後、通常2時間以内に終了する。
【0014】
上記の方法によって反応が終了した混合物を有機溶媒による抽出に付することにより、該混合物から生成物である3−置換−3−メチルブタナールを分離する。抽出溶媒としては、例えば、トルエン、ベンゼン、シクロヘキサンなどの炭化水素溶媒;塩化メチレン、クロロホルム、四塩化炭素、ジクロルエタン、塩化ベンゼンなどのハロゲン化炭化水素溶媒;ジエチルエーテル、ジイソプロピルエーテルなどのエーテル溶媒などが使用できる。3−置換−3−メチルブタナールを含む抽出溶媒層から常圧もしくは減圧下で溶媒を留去することにより、3−置換−3−メチルブタナールを取得する。このようにして得られた3−置換−3−メチルブタナールは、段数を有する蒸留塔による減圧もしくは常圧蒸留、またはシリカゲルクロマトグラフィーなどによって更に高純度化することができる。
【0015】
【実施例】
以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
【0016】
実施例1
5リットルの三口フラスコに3−メチル−3−メトキシブタノール413.5g、水351.1g、リン酸二水素カリウム61.9g、4−ベンジルオキシ−2,2,6,6−テトラメチルピペリジニルオキシ4.6g、臭化ナトリウム9.0g及び塩化メチレン700.5gを仕込み、激しく撹拌しながら内温を6℃にセットした。次に、内温を5〜8℃に保ちながら滴下ロートから9.3%次亜塩素酸ナトリウム2947.0gを徐々に滴下した。滴下に約100分を要した。滴下終了後、30分間同じ条件下で撹拌し、静置した。塩化メチレン層を分液ロートで分液し、水層を更に698.0gの塩化メチレンで再抽出した。塩化メチレンを常圧下で留去し、粗生成物686.0gを得た。この中には目的物が53.7wt%含まれていた。純量368.4g、収率90.6%であった。
【0017】
なお、粗生成物100.0gをヘリパック充填塔(理論段数15段)で減圧蒸留し、沸点57−60℃/26−32mmHgを有する純度99%以上の目的物48.9gを得た。このものはNMR分析の結果から3−メチル−3−メトキシブタナールであることを確認した。
【0018】
NMR(CDCl、ppm):1.307(s,6H)、2.5(m,2H)、3.256(s,3H)、9.831(d,H)
【0019】
実施例2
5リットルの三口フラスコに3−メチル−3−メトキシブタノール413.5g、水351.1g、リン酸二水素カリウム61.9g、4−ベンジルオキシ−2,2,6,6−テトラメチルピペリジニルオキシ4.6g及び塩化メチレン700.5gを仕込み、激しく撹拌しながら内温を6℃にセットした。次に、内温を5〜8℃に保ちながら滴下ロートから9.3%次亜塩素酸ナトリウム2947.0gを徐々に滴下した。滴下に約100分を要した。滴下終了後、30分間同じ条件下で撹拌し、静置した。塩化メチレン層を分液ロートで分液し、水層を更に698.0gの塩化メチレンで再抽出した。塩化メチレンを常圧下で留去し、粗生成物681.1gを得た。この中には目的物が51.3wt%含まれていた。純量349.4g、収率86.0%であった。
【0020】
実施例3
5リットルの三口フラスコに3−メチル−3−メトキシブタノール413.5g、水351.1g、リン酸二水素カリウム61.9g、4−ベンジルオキシ−2,2,6,6−テトラメチルピペリジニルオキシ2.3g及び塩化メチレン700.5gを仕込み、激しく撹拌しながら内温を6℃にセットした。次に、内温を5〜8℃に保ちながら滴下ロートから9.3%次亜塩素酸ナトリウム2947.0gを徐々に滴下した。滴下に約100分を要した。滴下終了後、30分間同じ条件下で撹拌し、静置した。塩化メチレン層を分液ロートで分液し、水層を更に698.0gの塩化メチレンで再抽出した。塩化メチレンを常圧下で留去し、粗生成物690.2gを得た。この中には目的物が51.1wt%含まれていた。純量352.7g、収率86.8%であった。
【0021】
実施例4
5リットルの三口フラスコに3−ヒドロキシ−3−メチルブタノール364.1g、水351.1g、リン酸二水素カリウム61.9g、4−ベンジルオキシ−2,2,6,6−テトラメチルピペリジニルオキシ4.6g、臭化ナトリウム9.0g及び塩化メチレン700.5gを仕込み、激しく撹拌しながら内温を6℃にセットした。次に、内温を5〜10℃に保ちながら滴下ロートから9.3%次亜塩素酸ナトリウム2947.0gを徐々に滴下した。滴下に約100分を要した。滴下終了後、30分間同じ条件下で撹拌し、静置した。塩化メチレン層を分液ロートで分液し、水層を更に698.0gの塩化メチレンで2回抽出した。塩化メチレンを常圧下で留去し、粗生成物627.7gを得た。この中には目的物が50.3wt%含まれていた。純量315.7g、収率88.4%であった。
【0022】
なお、粗生成物100.0gをヘリパック充填塔(理論段数15段)で減圧蒸留し、沸点57−60℃/26−32mmHgを有する純度99%以上の目的物42.8gを得た。このものはNMR分析の結果から3−ヒドロキシ−3−メチルブタナールであることを確認した。
【0023】
【発明の効果】
本発明によれば、工業的に安価に入手できる3−置換−3−メチルブタノールをN−オキシル化合物の存在下に次亜塩素酸塩で酸化することにより、医薬、香料、農薬などの合成原料として有用な3−置換−3−メチルブタナールを容易に製造することができる。
[0001]
[Industrial application fields]
The present invention relates to a process for producing 3-hydroxy-3-methylbutanal and / or 3-methyl-3-methoxybutanal.
[0002]
3-hydroxy-3-methylbutanal and / or 3-methyl-3-methoxybutanal provided by the present invention (hereinafter referred to as 3-hydroxy-3-methylbutanal and / or 3-methyl-3-methoxybutanal) Nar 3-substituted-3-sometimes referred to as methylbutanal), for example, can be derived in Sene Sion aldehydes by subjecting to dehydration reaction or de-methanol reaction, pharmaceutical, perfume, and synthetic raw materials, such as pesticides And useful.
[0003]
[Prior art]
Conventionally, the following methods are known as methods for producing 3-hydroxy-3-methylbutanal. That is,
(1) A method for ozonolysis of 2-methyl-4-penten-2-ol (for example, J. Org . Chem. (1987), 52 (9), 1790-4) .
(2) A method in which acetone and vinyl ether are reacted under the light irradiation of a mercury lamp to obtain dimethylalkoxyoxetane, followed by hydrolysis (for example, US Pat . No. 3,709,944) .
▲ 3 ▼ natural products and is Blakeslea trispora method of isolating a 3-hydroxy-3-methylbut Na Lumpur contained in volatile component (e.g., Phytochemistry (1980), 19 ( 6), 1133-5).
However, the method {circle around (1)} must use ozone which has a risk of explosion, and the method {circle around (2)} requires very special industrial equipment such as the use of a mercury lamp. In addition, the isolation from the natural product (3) has the disadvantage that the raw material supply is not stable, and both are unsuitable for industrial production.
[0004]
In addition, although 3-methyl-3-methoxybutanal is useful as an intermediate compound of senecioic acid, which is a raw material for pharmaceuticals and agricultural chemicals, for example, primary chrysanthemic acid, its synthesis method is not known. , A novel compound.
[0005]
[Problems to be solved by the invention]
Therefore, the object of the present invention is to easily and inexpensively produce 3-substituted-3-methylbutanal, which is a compound having the above-described utility, from a raw material produced on an industrial scale. .
[0006]
[Means for Solving the Problems]
As a result of intensive studies in order to solve the above-mentioned problems, the present inventors have found that 3-hydroxy-3-methylbutanol and / or 3-methyl-3-methoxybutanol is hypochlorous in the presence of an N-oxyl compound. It has been found that by oxidizing with chlorate, 3-hydroxy-3-methylbutanal and / or 3-methyl-3-methoxybutanal can be easily produced in high yield, and the present invention has been achieved.
[0007]
The above-mentioned 3-methyl-3-methoxybutanal obtained by the present invention is a novel compound not yet published in literature, and this compound is a pharmaceutical product together with another product, 3-hydroxy-3-methylbutanal, It is useful as an intermediate for the synthesis of pesticide, for example, senesionaldehyde, which is a raw material for primary chrysanthemic acid.
[0008]
In the present invention, 3-hydroxy-3-methylbutanol and / or 3-methyl-3-methoxybutanol (hereinafter referred to as 3-hydroxy-3-methylbutanol and / or 3-methyl-3-methoxybutanol used as a reaction raw material) 3-substituted-3-methylbutanol or a substrate) may be 4,4-dimethyl-1,3-dioxane synthesized from isobutene and formaldehyde using methanol as a solvent in the presence of an ion exchange resin. It can be easily produced by decomposing (Japanese Patent Laid-Open No. 53-124205).
[0009]
In the present invention, 3-substituted-3-methylbutanol is oxidized with hypochlorite in the presence of an N-oxyl compound, and in this case, a stoichiometric amount of oxidizing agent is required for the substrate. In other words, it is recommended to use an oxidizing agent in the vicinity of an equimolar amount in order to proceed with a good yield. Hypochlorite used as an oxidizing agent is, for example, sodium hypochlorite, potassium hypochlorite, calcium hypochlorite, etc., and an aqueous solution (for example, sodium hypochlorite) that can be obtained industrially at a low price. 13% aqueous solution) or powder (for example, can be used to dilute the further and powder) as it is or with water.
[0010]
In the present invention, it is necessary to use an N-oxyl compound as a catalyst in combination with hypochlorite. The N-oxyl compound is a so-called hindered amine N-oxyl compound, for example, 2,2,6,6-tetramethylpiperidinyloxy (TEMPO), 4-acetoxy-2,2,6,6-tetramethyl. Piperidinyloxy, 4-acetamido-2,2,6,6-tetramethylpiperidinyloxy, 4-benzoyloxy-2,2,6,6-tetramethylpiperidinyloxy, 4-methoxy-2, 2,6,6-tetramethylpiperidinyloxy, 4-benzyloxy-2,2,6,6-tetramethylpiperidinyloxy and the like. The amount of the N-oxyl compound used is usually 0.01 mol% or more based on the substrate, but it is preferably 0.1 to 2 mol% from the viewpoint of reaction and economy.
[0011]
In the present invention, a solvent is not essential, but its use may be used as long as the oxidation reaction is not inhibited. Examples of the solvent that can be used include hydrocarbon solvents such as toluene, benzene, and cyclohexane; halogenated hydrocarbon solvents such as methylene chloride, chloroform, carbon tetrachloride, dichloroethane, and benzene. The halogenated hydrocarbon solvents are preferred. Although there is no restriction | limiting in particular about the usage-amount of a solvent, From the surface of the production efficiency in a reactor etc., generally use of 0.5-10 times volume with respect to a substrate is practical.
[0012]
In the present invention, the pH of the reaction system is preferably maintained in the range of 3 to 9, and the hydrogen ion concentration (pH) is preferably adjusted by adding a salt. Usable salts, e.g., sodium hydrogen carbonate, potassium hydrogen carbonate, sodium monohydrogen phosphate, potassium monohydrogen phosphate, sodium dihydrogen phosphate, potassium dihydrogen phosphate and the like. The amount of salt used varies depending on the type of salt to be added. For example, in the case of sodium dihydrogen phosphate, 5 to 20 mol% is usually used relative to the substrate. These salts are usually used as an aqueous solution within 50%. Further, for the purpose of accelerating the reaction, a halide salt such as sodium bromide, potassium bromide, sodium iodide or potassium iodide can be added. The amount of these halogenated salts used is usually 0.1 to 10 mol% with respect to the substrate.
[0013]
The reaction according to the method of the present invention is generally carried out in a reactor equipped with a stirrer in which a substrate, an aqueous solution of an N-oxyl compound and a salt, a solvent to be used if necessary, and a halogenated salt for promoting the reaction are charged in advance. It is carried out while gradually adding chlorite. It is important to stir vigorously during the addition of hypochlorite and during the reaction. The reaction temperature is preferably in the temperature range of 0-50 ° C, more preferably 5-20 ° C. The reaction proceeds simultaneously with the addition of hypochlorite, and is usually completed within 2 hours after the completion of the dropping.
[0014]
By subjecting the mixture that has been reacted by the above method to extraction with an organic solvent, the product 3-substituted-3-methylbutanal is separated from the mixture. Examples of the extraction solvent include hydrocarbon solvents such as toluene, benzene, and cyclohexane; halogenated hydrocarbon solvents such as methylene chloride, chloroform, carbon tetrachloride, dichloroethane, and benzene chloride; ether solvents such as diethyl ether and diisopropyl ether. Can be used. A 3-substituted-3-methylbutanal is obtained by distilling off the solvent from the extraction solvent layer containing 3-substituted-3-methylbutanal under normal pressure or reduced pressure. The thus obtained 3-substituted-3-methylbutanal, the vacuum Moshiku the atmospheric distillation according to a distillation column having a number of stages, or can be purified further by such as silica gel chromatography.
[0015]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these Examples.
[0016]
Example 1
In a 5-liter three-necked flask, 413.5 g of 3-methyl-3-methoxybutanol, 351.1 g of water, 61.9 g of potassium dihydrogen phosphate, 4-benzyloxy-2,2,6,6-tetramethylpiperidinyl 4.6 g of oxy, 9.0 g of sodium bromide and 700.5 g of methylene chloride were charged, and the internal temperature was set at 6 ° C. with vigorous stirring. Next, 2947.0 g of 9.3% sodium hypochlorite was gradually added dropwise from the dropping funnel while maintaining the internal temperature at 5 to 8 ° C. The dripping took about 100 minutes. After completion of dropping, the mixture was stirred for 30 minutes under the same conditions and allowed to stand. The methylene chloride layer was separated with a separatory funnel, and the aqueous layer was re-extracted with 698.0 g of methylene chloride. Methylene chloride was distilled off under normal pressure to obtain 686.0 g of a crude product. This contained 53.7 wt% of the target product. The pure amount was 368.4 g and the yield was 90.6%.
[0017]
In addition, 100.0 g of the crude product was distilled under reduced pressure in a Helipak packed column (theoretical plate number: 15) to obtain 48.9 g of a target product having a boiling point of 57-60 ° C./26-32 mmHg and a purity of 99% or more. This was confirmed to be 3-methyl-3-methoxybutanal from the results of NMR analysis.
[0018]
NMR (CDCl 3 , ppm): 1.307 (s, 6H), 2.5 (m, 2H), 3.256 (s, 3H), 9.831 (d, H)
[0019]
Example 2
In a 5-liter three-necked flask, 413.5 g of 3-methyl-3-methoxybutanol, 351.1 g of water, 61.9 g of potassium dihydrogen phosphate, 4-benzyloxy-2,2,6,6-tetramethylpiperidinyl 4.6 g of oxy and 700.5 g of methylene chloride were charged, and the internal temperature was set to 6 ° C. with vigorous stirring. Next, 2947.0 g of 9.3% sodium hypochlorite was gradually added dropwise from the dropping funnel while maintaining the internal temperature at 5 to 8 ° C. The dripping took about 100 minutes. After completion of dropping, the mixture was stirred for 30 minutes under the same conditions and allowed to stand. The methylene chloride layer was separated with a separatory funnel, and the aqueous layer was re-extracted with 698.0 g of methylene chloride. Methylene chloride was distilled off under normal pressure to obtain 681.1 g of a crude product. This contained 51.3 wt% of the target product. The pure amount was 349.4 g, and the yield was 86.0%.
[0020]
Example 3
In a 5-liter three-necked flask, 413.5 g of 3-methyl-3-methoxybutanol, 351.1 g of water, 61.9 g of potassium dihydrogen phosphate, 4-benzyloxy-2,2,6,6-tetramethylpiperidinyl 2.3 g of oxy and 700.5 g of methylene chloride were charged, and the internal temperature was set to 6 ° C. with vigorous stirring. Next, 2947.0 g of 9.3% sodium hypochlorite was gradually added dropwise from the dropping funnel while maintaining the internal temperature at 5 to 8 ° C. The dripping took about 100 minutes. After completion of dropping, the mixture was stirred for 30 minutes under the same conditions and allowed to stand. The methylene chloride layer was separated with a separatory funnel, and the aqueous layer was re-extracted with 698.0 g of methylene chloride. Methylene chloride was distilled off under normal pressure to obtain 690.2 g of a crude product. This contained 51.1 wt% of the target product. The pure amount was 352.7 g, and the yield was 86.8%.
[0021]
Example 4
In a 5-liter three-necked flask, 364.1 g of 3-hydroxy-3-methylbutanol, 351.1 g of water, 61.9 g of potassium dihydrogen phosphate, 4-benzyloxy-2,2,6,6-tetramethylpiperidinyl 4.6 g of oxy, 9.0 g of sodium bromide and 700.5 g of methylene chloride were charged, and the internal temperature was set at 6 ° C. with vigorous stirring. Next, 2947.0 g of 9.3% sodium hypochlorite was gradually added dropwise from the dropping funnel while maintaining the internal temperature at 5 to 10 ° C. The dripping took about 100 minutes. After completion of dropping, the mixture was stirred for 30 minutes under the same conditions and allowed to stand. The methylene chloride layer was separated with a separatory funnel, and the aqueous layer was further extracted twice with 698.0 g of methylene chloride. Methylene chloride was distilled off under normal pressure to obtain 627.7 g of a crude product. This contained 50.3 wt% of the target product. The pure amount was 315.7 g and the yield was 88.4%.
[0022]
In addition, 100.0 g of the crude product was distilled under reduced pressure in a Helipak packed column (theoretical plate number: 15) to obtain 42.8 g of a target product having a boiling point of 57-60 ° C./26-32 mmHg and a purity of 99% or more. This was confirmed to be 3-hydroxy-3-methylbutanal from the results of NMR analysis.
[0023]
【The invention's effect】
According to the present invention, 3-substituted-3-methylbutanol, which can be obtained industrially at low cost, is oxidized with hypochlorite in the presence of an N-oxyl compound, thereby synthesizing raw materials for pharmaceuticals, fragrances, agricultural chemicals and the like. The 3-substituted-3-methylbutanal useful as can be easily produced.

Claims (1)

3−メチル−3−メトキシブタナール。3-methyl-3-methoxybutanal.
JP33724394A 1994-12-26 1994-12-26 Process for producing 3-substituted-3-methylbutanal Expired - Fee Related JP3626520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33724394A JP3626520B2 (en) 1994-12-26 1994-12-26 Process for producing 3-substituted-3-methylbutanal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33724394A JP3626520B2 (en) 1994-12-26 1994-12-26 Process for producing 3-substituted-3-methylbutanal

Publications (2)

Publication Number Publication Date
JPH08176053A JPH08176053A (en) 1996-07-09
JP3626520B2 true JP3626520B2 (en) 2005-03-09

Family

ID=18306791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33724394A Expired - Fee Related JP3626520B2 (en) 1994-12-26 1994-12-26 Process for producing 3-substituted-3-methylbutanal

Country Status (1)

Country Link
JP (1) JP3626520B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5856584A (en) * 1997-08-06 1999-01-05 The Nutrasweet Company Preparation of 3,3-dimethylbutyraldehyde by oxidation of 3, 3-dimethylbutanol
JP2000290214A (en) 1999-04-02 2000-10-17 Kuraray Co Ltd Production of benzyloxyacetaldehyde
CN113582821B (en) * 2021-09-07 2024-02-27 泛亚(武汉)食品科技有限公司 Preparation method of 8-methyldecanal

Also Published As

Publication number Publication date
JPH08176053A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
JP6980648B2 (en) Production of 3-hydroxy-3,6-dimethylhexahydrobenzofuran-2-one and its derivatives
JP3626520B2 (en) Process for producing 3-substituted-3-methylbutanal
EP0078413B1 (en) Process for producing brominated 1,3-dioxolen-2-ones
CN114773221A (en) Preparation method of atorvastatin calcium drug intermediate
JPH0248585A (en) Phospholipid derivative and production thereof
JP2830210B2 (en) Synthesis of α, β-unsaturated ketones
JPH05310671A (en) Production of 4-chloro-3-hydroxybutyronitrile
JP3816556B2 (en) Process for producing 2- or 3- (substituted) phenylpropionic acid
EP0209905B1 (en) 1,1-(3-ethylphenyl)phenylethylene and method for its preparation
JPH10237006A (en) Production of hydroxyterpene aldehyde
US5292897A (en) Process for preparing halo acetals from enamines
JP3529876B2 (en) 3-methyl-3-methoxybutanoic acid.
JPS635037A (en) Production of 2,3-dichloro-1-propene
JPH08198795A (en) Production of senecioaldehyde
AU2004234350A1 (en) Process for preparation of (+)-p-mentha-2,8-diene-1-ol
JPH0987270A (en) Production of 3-substituted-3-methylbutanoic acid
EP1731495B1 (en) Process for producing cyclopropane monoacetal derivative and intermediate therefor
SU808502A1 (en) Method of preparing beta-trialkyl-(germyl)-alpha-halogenalkyl ethers
JPH0558953A (en) Production of 2-hydroxyisobutyric acid ester
SU1105495A1 (en) Method of obtaining dichloranhydride-2-alkoxyvinylphosphonic acids
JPS62164656A (en) Production of cyanoisophorone
SU727615A1 (en) Method of preparing methylvinylketone
KR100461571B1 (en) A process for preparing (S)-1,2,4-butanetriol
JPH0648994A (en) Alkenyl aryl carbonate
JPH0611735B2 (en) Process for producing optically active β-alkyl-γ-acyloxycarboxylic acid ester

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081210

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091210

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111210

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121210

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees