JP3624471B2 - 測光装置 - Google Patents

測光装置 Download PDF

Info

Publication number
JP3624471B2
JP3624471B2 JP17593395A JP17593395A JP3624471B2 JP 3624471 B2 JP3624471 B2 JP 3624471B2 JP 17593395 A JP17593395 A JP 17593395A JP 17593395 A JP17593395 A JP 17593395A JP 3624471 B2 JP3624471 B2 JP 3624471B2
Authority
JP
Japan
Prior art keywords
photometric
photometry
data
area
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17593395A
Other languages
English (en)
Other versions
JPH0926610A (ja
Inventor
宏之 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP17593395A priority Critical patent/JP3624471B2/ja
Publication of JPH0926610A publication Critical patent/JPH0926610A/ja
Application granted granted Critical
Publication of JP3624471B2 publication Critical patent/JP3624471B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exposure Control For Cameras (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は被写体輝度を測定する測光装置に関する。
【0002】
【従来の技術】
被写体輝度を測定する測光装置が知られている。
図14により従来の測光装置の構成を説明する。測光回路31は複数の測光領域を備えており、すべての測光領域の測光出力はいったん記憶回路32へ記憶される。測光モード設定部33は、マルチパターン測光や中央部重点測光などの複数の測光モードを有し、撮影者により選択された測光モードを領域選択部34へ出力する。領域選択部34は、測光回路31の複数の測光領域の中から選択測光モードに応じた測光領域を選択し、それらの測光領域情報を演算部35へ出力する。演算部35は、領域選択部34からの測光領域情報にしたがって露出演算に必要な測光領域のデータだけを記憶回路32から読み出し、露出演算を行なう。
【0003】
【発明が解決しようとする課題】
従来の測光装置では、測光回路のすべての測光領域の測光出力をいったん記憶回路に記憶し、それらの一部を露出演算に用いる場合には必要な領域の測光データだけを記憶回路から読み出して演算し、残りの測光領域の測光データは使用されることなく次回の測光時に廃棄されている。
【0004】
ところで、被写界をきめ細かく測光してより最適な露出値を得るために、CCD(チャージカップルドデバイス)などの測光素子を用いて被写界をさらに多くの測光領域に分割し、測光モードや主要被写体の位置に応じた測光領域を選択して露出演算に用いることが考えられる。
CCDなどの多くの測光領域を有する測光素子では、各測光領域の測光データが予め定められた順序で出力されるので、出力される順番に記憶回路に格納すれば記憶回路のアドレスと測光領域との対応関係が明確になり、処理がしやすくなる。
しかし、測光素子の測光領域数が多くなると記憶回路に格納する測光データ数も多くなるので、大容量の記録回路を用意する必要があり、装置がコストアップするという問題がある。
【0005】
本発明の目的は、多数の測光領域の測光データを記憶するメモリの容量を低減することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、被写界を複数の測光領域に分割して測光し、各測光領域ごとに測光データを所定の順序で出力する電荷蓄積型測光手段と、複数の測光モードの中から任意の測光モードを設定するモード設定手段と、前記モード設定手段により設定された測光モードに応じて測光データを記憶すべき測光領域を選択する領域選択手段と、前記電荷蓄積型測光手段から出力される測光データの出力順序に基づいて前記領域選択手段により選択された測光領域の測光データを選別し、記憶手段に記憶する制御手段とを備える測光装置であって、
前記複数の測光モードには被写界の一部を測光する部分測光モードが含まれ、前記領域選択手段は、前記モード設定手段により前記部分測光モードが選択された時は、前記測光データを記憶すべき測光領域として、露出演算に用いる測光領域を選択するとともに、露出演算に用いる測光領域を含む広い範囲の測光領域を前記電荷蓄積型測光手段の電荷蓄積時間の演算に用いる測光領域として選択し、前記制御手段は、前記電荷蓄積型測光手段から出力される測光データの出力順序に基づいて、前記領域選択手段により選択された露出演算に用いる測光領域と電荷蓄積時間の演算に用いる測光領域の測光データを選別して前記記憶手段に記憶し、前記記憶手段に記憶されている測光データに基づいて露出演算と電荷蓄積時間の演算を行なう演算手段を備える。
【0007】
【発明の実施の形態】
図1は一実施形態の構成を示す機能ブロック図である。
測光回路10は被写界を複数の領域に分割して測光し、それぞれの測光データを順次出力する。測光回路10から出力された測光データは領域判定部12により必要な領域のデータであるか否かが判定され、必要な領域の測光データはA/D変換部13により数値化されてメモリ14に記憶される。一方、不要な領域の測光データは廃棄される。必要な測光領域か否かは、測光モード設定部11により設定された測光モードにより決定されるが、この測光モードの設定に関しては後述する。
メモリ14に記憶された測光データは、蓄積時間設定部15、有効性判定部17および露出演算部22へ出力される。蓄積時間設定部15はメモリ14に記憶されている測光データと前回の蓄積時間とに基づいて次回の蓄積時間を設定し、蓄積制御部16は設定された蓄積時間だけ測光回路10により測光を行う。なお、次回の蓄積時間の算出方法については後述する。
【0008】
有効性判定部17は、メモリ14に記憶されている測光データが適正レベル内にあるか否かを判定し、判定結果を演算実行可否判定部20へ出力する。この有効性の判定方法については後述する。
演算実行可否判定部20では、有効性判定部17の判定結果と、有効性判定部17により測光データが不適正と判定された回数をカウントする第1カウンタ18のカウント値と、電源投入後からの測光回数をカウントする第2カウンタ19のカウント値とに基づいて、今回の測光データを用いて露出演算を行うべきかどうかを判定する。この判定の方法については後述する。
露出演算部22では、演算実行可否判定部20からの出力が演算実行可であった場合には、メモリ14に格納されている測光データと、レンズデータ21内に収められている撮影レンズの焦点距離、開放絞り値、射出瞳位置、ケラレ情報などのレンズデータとに基づいて、被写界の適正露出値の演算を行う。
【0009】
露出制御部23は、不図示のカメラのレリーズボタンが押されると、露出演算部22により求められた適正露出値に基づいてミラー2、絞り24、シャッター25を制御し、フィルムの露光を行なう。
ここで、領域判定部12、A/D変換部13、メモリ14、蓄積時間設定部15、蓄積制御部16、有効性判定部17、第1カウンタ18、第2カウンタ19、演算実行可否判定部20および露出演算部22は、すべて制御回路であるマイクロコンピュータ(以下、マイコンと略す)100によって実現される。マイコン100の制御プログラムについては後に詳しく説明する。
【0010】
図2は一実施形態の測光光学系の構成を示す。
撮影レンズ1を通過した光束は、クイックリターンミラー2、拡散スクリーン3、コンデンサレンズ4、ペンタプリズム5、接眼レンズ6を通って撮影者の目に達する。一方、拡散スクリーン3によって拡散された光束の一部は、コンデンサレンズ4、ペンタプリズム5、測光用プリズム7、測光用レンズ8を通って測光素子9に導かれる。
【0011】
図3は測光素子9の分割測光領域を示す。
測光素子9は、例えばCCDなどの電荷蓄積型光電変換素子により構成されており、上下方向に12分割、左右方向に20分割された合計240個の測光領域を有しており、被写界のほぼ全面を分割して測光できる。なお、この実施形態では測光素子9の右下の測光領域から左上の測光領域まで(1,1)から(20,12)のアドレスを付して区別する。
測光モード設定部11で設定された測光モードに応じて使用する測光領域が選択される。具体的には、AMP(オートマティックマルチパターン測光)モードが選択されている場合には、240領域すべての測光データを適正露出演算に用いる。また、CW(センターウエイテッド測光)モードが選択されている場合には、図3に示すように被写界の中央付近の52個の測光領域の測光データを適正露出演算に用いる。さらに、SP(スポット測光)モードが選択されている場合には、被写界の中央部付近の4個の測光領域のみを適正露出演算に用いる。
なお、SPモードではスポット測光領域の位置を変更することができ、図に示すように、SPC,SPL,SPR,SPT,SPBの5個の測光領域の中から任意の領域を選択することができる。これらのSPモードの測光領域にはそれぞれ4個の測光領域が含まれている。
【0012】
図4は測光素子9の構造を示す。
撮像画素26は上下方向に12画素、左右方向に20画素にそれぞれ分割された光電変換部から構成され、これらの各画素は図3に示す各測光領域に対応している。また、撮像画素26に隣接して補正用画素27が設置される。この補正用画素27は、上下方向に3画素、左右方向に20画素にそれぞれ分割された光電変換部から構成され、これらの光電変換部はすべて遮光される。補正用画素27の各列の出力Vopb,Vo1,Vo2は、暗電流補正、アンプゲイン補正などに用いられる。なお、暗電流補正およびアンプゲイン補正については本発明に直接関係しないので説明を省略する。
撮像画素26と補正用画素27の電荷蓄積が終了すると、それらの画素の電荷信号は各画素に隣接して配置される不図示のHレジスタによって1列ずつVレジスタ28へ転送され、さらにVレジスタ28によって1画素ずつ出力回路29へ転送される。出力回路29は各画素の電荷信号を電圧に変換し、1倍(ゲインL)または4倍(ゲインH)のシグナルアンプで増幅して順次出力する。
【0013】
図5はSPモードにおける蓄積時間算出に用いる測光領域を示す。
上述したように、SPモードでは適正露出演算に用いる測光領域は中央付近の4領域だけである。ここで、分割測光領域の測光データは適正露出演算の他に、次回測光時の蓄積時間の演算にも用いられる。次回の蓄積時間の算出方法については後述するが、前回の測光データと、前回の蓄積時間と、次回測光時の測光データの目標値とに基づいて算出する。つまり、前回の測光時と次回の測光時とで被写界輝度がほぼ同程度であると仮定すると、前回の測光データと前回の蓄積時間との比は、次回の測光データと次回の蓄積時間との比に一致することを利用して算出する。通常は測光領域内の測光データが最大の画素つまり一番明るい領域に注目し、その領域の測光データが目標値になるように次回の蓄積時間を決定する。SPモードでは、適正露出演算に用いる4領域を中心とする64領域の中の最高輝度の領域が目標値となるように、次回の蓄積時間を算出する。
SPCが選択されている場合には、(A)に示すように(7,3)〜(14,10)の測光領域の測光データを蓄積時間算出に用いる。以下同様に、SPLが選択されている場合には(B)に示すように(11,3)〜(18,10)の測光領域の測光データを、SPRが選択されている場合には(C)に示すように(3,3)〜(10,10)の測光領域の測光データを、SPTが選択されている場合には(D)に示すように(7,5)〜(14,12)の測光領域の測光データを、SPBが選択されている場合には(E)に示すように(7,1)〜(14,8)の測光領域の測光データをそれぞれ蓄積時間算出に用いる。
【0014】
ここで、次回の蓄積時間の算出に、適正露出演算に用いる4領域を中心とする64個の測光領域を用いる理由は以下の通りである。
SPモードの適正露出に用いる4領域の近傍に太陽などの4領域と比較して極めて輝度の高い被写体が存在した場合には、その高輝度被写体による光電子が周りの画素に漏れ出す、いわゆるブルーミング現象によって適正露出算出用の4領域の測光データが影響を受け測光誤差の原因となる。このような場合には、その高輝度被写体が飽和しないような蓄積時間で蓄積を制御すれば、ブルーミング現象を回避することができる。適正露出演算に用いる4領域を中心とするブルーミング現象の影響を受ける範囲は、高輝度被写体の輝度や測光光学系などにより変化するが、本実施形態では縦横それぞれ8領域の計64領域をその範囲とする。SPモードが選択されている場合には、適正露出演算に用いる4領域を中心とした64領域の測光データがメモリ14内に記憶されていれば十分であるから、領域判定部12は測光モード設定部11により設定されたスポット位置周辺の64領域に該当するか否かを判定すればよい。
一方、CWモードが選択されている場合には、ブルーミング現象の影響を回避するために240領域のすべての測光データを蓄積時間算出に用いる。また、AMPモードの場合には、もともと適正露出演算に240領域全部を用いるので、蓄積時間算出にも240領域全部を用いる。なお、AMPモードおよびCWモードが選択されている場合には、蓄積時間算出に240領域全部を用いるので領域判別する必要がなく、すべての測光データをメモリ14へ記憶すればよい。
【0015】
図6は、マイクロコンピュータ100の測光制御プログラムを示すフローチャートである。このフローチャートにより、一実施形態の動作を説明する。
カメラの不図示のレリーズボタンが半押しされると、カメラの電源が投入され、この制御プログラムの実行が開始される。まず、ステップ101において、CCDなどの測光素子9の準備ができているか、すなわち電源投入後の最初の測光であるか否かを判別する。最初の測光であればステップ102へ進み、測光素子9の初期化を行い、蓄積時間intを1mSに設定する。また同時に、カウンタ変数LPおよびFNを0にリセットする。ここで、LPは電源投入後の測光回数をカウントする変数であり、FNは測光データが不適正であると判定された回数をカウントする変数である。
ステップ103では図13に示す蓄積記憶ルーチンを実行し、設定された蓄積時間intによって測光を行い240領域それぞれの測光データを読み出す。ここで、測光モード設定部11で設定された測光モードに対して必要な測光領域の測光データであるか否かを判定し、必要な領域の測光データだけをA/D変換してメモリ14に記憶する。測光素子9からの各測光領域の測光データの出力順序は図4に示すように一定であるから、測光データの出力順序と測光領域の関係は1対1に定まっている。したがって、測光データが出力される順番により必要なデータと不要なデータとを判定する。なお、測光素子9における電荷の蓄積と測光データの読み出し方法については後述する。
ステップ104で、カウンタ変数LPが3であるか否か、すなわち電源投入後に3回の測光を行なったか否かを判定し、3回に満たなければステップ105へ進んでLPをインクリメントする。
【0016】
ステップ106で、図7に示す有効性判定ルーチンを実行し、最新の測光データが適正レベル内に収まっているかを判定する。この実施形態では、対象とする測光領域の最高輝度が飽和レベルとノイズレベルとの間にあるか否かにより測光データの有効性を判定し、適正レベル内に収まっていればその測光データを有効とし、不適正レベルであればその測光データを無効とする。続くステップ107において図9に示す蓄積時間算出ルーチンを実行し、最新の測光データとその時の蓄積時間と次回測光時の測光データの目標値とに基づいて、次回測光時の蓄積時間を算出する。
次にステップ108で、有効性判定結果を示すOKフラグにより有効の判定結果が出されたかどうかを判別し、有効であった場合はステップ111へ進み、そうでなかった場合はステップ109へ進む。最新の測光データが有効でなかった場合は、ステップ109でカウンタ変数FNをインクリメントし、続くステップ110でFN=5であるか否かを判別する。FN=5、すなわち5回連続で測光データが無効と判定された場合にはステップ111へ進み、そうでなければステップ112へ進む。つまり、5回連続で測光データが無効と判別された場合には、5回目の測光が終了した時点で測光データが無効であっても有効であった場合と同様にステップ111へ進み、カウンタ変数FNをクリヤした後、ステップ113で露出演算を行う。5回の測光の内、1回でもデータが有効であると判定されれば、必ずステップ111を通るのでFNは0にクリアされる。したがって、FN=5となるのは5回連続してデータが無効と判定された場合である。これは、何らかの影響により測光エラーが連続すると、その後の露出演算ができなくなるので、長時間にわたって適正露出値が更新されない状態が続くことになり、最新の被写界状態の適正露出が得られなくなるのを防止するためと、長期間適正露出値が更新されないことにより撮影者にカメラが故障したと思われるのを防止するためである。
【0017】
ステップ110で5回連続して測光データが無効と判定されなかった場合は、ステップ112でLP=2で且つFN=2であるか否かを判別する。電源投入後に2回測光し、2回とも測光結果が無効と判定された場合は、ステップ113へ進み、そうでなければステップ103へ戻る。電源投入直後にはまだ適正露出値が求められていないので、適正露出値が求められるまでの間は撮影者がレリーズスイッチを全押ししても撮影ができない状態にある。したがって、例えば電源投入直後にいきなりレリーズボタンを全押しする、いわゆる一気押しがなされた場合には、撮影が不可能になるかまたは撮影されてもタイムラグを生じることになり、撮影者に不快感を与えることになる。そこで、電源投入後の2回の測光で2回とも無効と判定された場合には、速写性を重視して再度測光のやり直しは行わず、ステップ113へ進んで露出演算を行う。
【0018】
ここで、電源投入後の2回目の測光で上記判定を行う理由は次の通りである。1回目の測光では前回のデータがないので所定の蓄積時間で測光を行っており、著しく不適正レベルの測光データが得られる可能性がある。2回目の測光では1回目のデータを基にして蓄積時間を調節するので適正な測光レベルで測光できる可能性が高くなり、測光精度が上がる。また、測光サイクルと、速写性の度合いのバランスも考慮する必要がある。電源投入直後の一気押しでは、速写性に必要な時間として約100mS以内にふたたびレリーズ可能となる必要がある。
詳細な説明は省略するが、この実施形態では被写界が最も暗い状態で蓄積時間が長い場合においても、100mS以内に2回の測光が可能である。もし、100mS以内に2回以上の測光が可能であれば、2回目ではなくそれ以上の回数でステップ112の判定を行ってもよい。
また、測光サイクルは、蓄積時間によっても左右されるので、測光回数ではなく、電源投入後からの経過時間を計測し、ステップ112を通過する時点での経過時間が所定値を越えたらステップ112の判定を行うようにしてもよい。
ここで、データが無効と判定されたにも係わらず適正露出演算を行うと、不正確な適正露出値が算出される可能性があるが、この場合は適正露出値の精度よりも速写性を重視するのでやむを得ない。また、後に説明するように、速写性重視の場合には特別なアルゴリズムで適正露出値を算出し、適正露出値の精度悪化をカバーする処理を行う。
【0019】
ステップ113では図12に示す露出演算ルーチンを実行し、最新の測光データを用いて適正露出値を算出する。測光モードに対応する適正露出値の演算方法については後に更に説明を加える。次にステップ114において、レリーズスイッチが全押しされているかどうかを判定し、全押しされていればステップ115へ進み、算出された適正露出値に基づいて絞り24とシャッター25を制御してフィルムの露光を行う。ステップ116では、電源の半押しタイマーがタイムアップしたか否かを判定し、タイムアップしたらプログラムを終了し、そうでなければステップ101へ戻って上記処理を繰り返す。
【0020】
図7は測光データの有効性判定ルーチンを示すフローチャートである。
ステップ201において、フラグTXおよびTNを0にクリアする。TXは蓄積時間が最長時間に達した場合にセット(1)され、TNは最短時間に達した場合にセット(1)されるフラグである。次にステップ202と203で、設定された測光モードがAMPモードであるか、あるいはCWモードであるか、そのどちらでもないSPモードであるかを判別する。AMPモードの場合にはステップ204で有効性判定レベルVokに640mVを設定し、CWモードの場合にはステップ205でVokに160mVを設定し、SPモードの場合にはステップ206でVokに80mVを設定する。
ここで、測光モードによって有効性判定レベルVokが異なる理由は次の通りである。
それぞれの測光モードでは使用する測光領域の数が異なる上に、一般に被写界内には複数の異なる輝度を持った被写体が存在するため、使用する測光領域数が多いほど測光データ間の輝度差が大きくなる。輝度差が大きいと、低輝度側の測光データが小さくなってS/N比が悪化し、測光精度が低下する。したがって、測光領域数が多いほど測光ダイナミックレンジをできるだけ広く取るために、大きな測光データを得る必要がある。
【0021】
次にステップ207で、Vomax,Vopb,Vominを求める。Vomaxは、各測光モードで適正露出演算に用いる測光領域の中の最大の測光データである。適正露出演算に用いる測光領域は、図3に示すように、AMPモードの場合は240領域すべてであり、CWモードの場合は52領域であり、SPモードの場合はスポット位置の4領域である。Vopbは、Vomaxが存在する測光領域と同列にあるVopb出力である。例えば、図4に示す撮像画素26の一番左の列にVomaxが存在した場合、Vopbは補正用画素27の一番左の列のVopbの出力となる。Vominは、各測光モードで適正露出演算に用いる測光領域の中の最小の測光データである。
次に、ステップ208で次式が成立するかどうかを判定する。
【数1】
Vomax+Vopb<Vov
ここで、Vovは測光素子9の飽和出力電圧値であり、図4の出力回路29のゲインHおよびLごとにカメラ内の不図示の不揮発性メモリに記憶されている。このVovの標準的な値は3.4V程度である。
測光素子9による測光データには、被写界輝度に依存する信号成分と被写界輝度に依存しない暗電流成分とが含まれている。ところが、測光素子9の出力は暗電流成分が取り除かれた信号成分のみであるから、測光素子9の測光データが飽和しているか否かを判定する場合には、改めて信号成分Vomaxに暗電流成分Vopbを加算して飽和出力電圧値Vovと比較しなければならない。
【0022】
測光素子9による測光データが飽和出力電圧値Vovを越えていない時は、ステップ209へ進んでオーバーフローフラグOVをクリヤ(0)する。続くステップ211で、露出演算に用いる測光領域の中で最小の測光データVominが測光素子9のノイズ電圧レベルVunよりも大きいか否かを判定する。
【数2】
Vomin>Vun
ここで、Vunは測光素子9のノイズ電圧レベルであり、ゲインHおよびLごとにカメラ内の不図示の不揮発性メモリに記憶されている。このノイズ電圧レベルVunの標準的な値は40mV程度である。
最小測光データVominがノイズ電圧レベルVunよりも大きい時は、図8のデータAに示すように、最大測光データVomaxと最小測光データVominが測光ダイナミックレンジVun〜Vov内に収まっているので、ステップ212へ進んでアンダーフローフラグUNをクリヤ(0)し、測光データの有効性を示すフラグOKをセット(1)して処理を終了する。
【0023】
一方、最小測光データVominがノイズ電圧レベルVun以下の時は、図8のデータBに示すように、オーバーフローはしていないがアンダーフローしている場合であるから、ステップ214へ進んでアンダーフローフラグUNをセットする。続くステップ215において、最大測光データVomaxが測光モードに応じた有効判定レベルよりも大きいか否かを判定する。
【数3】
Vomax>Vok
ここで、Vokは設定された測光モードに応じて上記ステップ204または205または206で設定された有効判定レベルである。
最大測光データVomaxが有効判定レベルVokよりも大きい時は、アンダーフローではあるが適正露出演算に必要なダイナミックレンジが確保されているとみなし、ステップ216でOKフラグをセットして処理を終了する。
一方、最大測光データVomaxが有効判定レベルVok以下の時は、ステップ217で、その回の蓄積時間intがint_maxか、すなわち設定可能な最長蓄積時間であったかどうかを判定する。最長蓄積時間であった場合には、これ以上測光出力レベルを上げることは不可能であるから、ステップ218で最長蓄積時間フラグTXをセットし、続くステップ219でOKフラグをセットする。なお、フラグTXは、測光ダイナミックレンジは確保されていないがこれ以上のレベル調整が不可能であることを示しているので、適正露出演算時にこのフラグTXを参照して特別な処理を行うこともできるが、それについては本発明に直接関係しないので説明を省略する。
また、蓄積時間intが最長蓄積時間int_maxでなかった時は、ステップ220へ進んでOKフラグをクリヤして処理を終了する。
【0024】
測光素子9による測光データが飽和出力電圧値Vovを越えた時は、ステップ208からステップ210へ進み、オーバーフローフラグOVをセットする。続くステップ221で、上記数式2により、露出演算に用いる測光領域の中で最小の測光データVominが測光素子9のノイズ電圧レベルVunよりも大きいか否かを判定する。VominがVunよりも大きい時は、図8のデータCに示すように、オーバーフローしているがアンダーフローしていない場合であるから、ステップ222へ進んでアンダーフローフラグUNをクリヤする。一方、VominがVun以下の時は、図8のデータDに示すように、オーバーフローもアンダーフローもしている場合であるから、ステップ223へ進んでアンダーフローフラグUNをセットする。
ステップ224において、その回の蓄積時間intがint_minか、すなわち設定可能な最短蓄積時間であったかどうかを判定する。最短蓄積時間であった場合はこれ以上測光出力レベルを下げることが不可能であるから、ステップ225へ進んで最短蓄積時間フラグTNをセットし、続くステップ226でOKフラグをセットする。なお、フラグTNは、測光ダイナミックレンジは確保されていないがこれ以上のレベル調整が不可能であることを示しているので、適正露出演算時にこのフラグを参照して特別な処理を行うこともできるが、それについては本発明に直接関係しないので説明を省略する。
一方、その回の蓄積時間intが最短蓄積時間int_minでなかった時は、ステップ227へ進んでOKフラグをクリヤし、処理を終了する。
【0025】
図9は蓄積時間intの算出ルーチンを示すフローチャートである。
この蓄積時間算出ルーチンは図6のステップ107で実行される。なお、この蓄積時間算出ルーチンが実行されるまでには、電源立ち上げ後少なくとも1回は測光が行われているので、直前の測光データがマイコン100内のメモリ14に残っている。まず、ステップ301と302で測光モードを判別する。測光モードにAMPモードが設定されている時はステップ303へ進み、蓄積時間の演算に用いる測光領域数pxに240を設定し、測光目標レベルVagcに2.56Vを設定する。CWモードが設定されている時はステップ304へ進み、測光領域数pxにAMPモードと同様の240を設定し、測光目標レベルVagcに1.28Vを設定する。SPモードが設定されている時はステップ305へ進み、測光領域数pxに64を設定し、測光目標レベルVagcに0.64Vを設定する。
このように、AMPモードとCWモードでは蓄積時間の演算に全測光領域を用い、図5に示すようにSPモードでは蓄積時間の演算に設定されたスポット位置周辺の64領域を用いる。蓄積時間演算に用いる測光領域数が、CWモードやSPモードにおいて適正露出演算に用いる測光領域数よりも大きいのは、図5によりすでに説明した通りである。測光目標レベルVagcは次回の測光時に測光領域の内の最大の測光データが取るべき目標レベルを示しており、設定された測光モードによって異なる値が設定される。
【0026】
ここで、測光モードに応じて測光目標レベルVagcが異なるのは次の理由による。AMPモードの場合には、適正露出演算時に240個すべての測光領域の輝度を算出する必要がある。適正露出値の演算方法については本出願人が特開平6−95200号公報で詳細に開示しているので説明を省略するが、写界内には輝度の異なる複数の被写体が存在することが多いので、できるだけ測光ダイナミックレンジが広くなるような測光の仕方が望ましい。したがって、最大輝度の測光領域ができるだけ飽和レベルに近くなるように蓄積時間を設定すれば、暗い被写体の出力が大きくなってノイズレベルに対してS/N比のよい出力を得ることができる。
CWモードやSPモードの場合には、適正露出演算領域内の測光データを全て加算し、その加算値に応じた輝度に基づいて適正露出値を求める。つまり、適正露出演算に用いる複数の測光領域があたかも1領域の測光セルであるかのような出力を算出する。その場合、高輝度領域の測光出力が加算値に与える影響が極めて大きく、低輝度領域のS/N比はそれほど必要としない。したがって、目標測光レベルVagcは低くてもよいことになる。
また、SPモードの場合には、CWモードに比べて測光領域が小さいので、測光領域内の輝度差も小さいことが予想される。輝度差が小さければ低輝度部の出力も高輝度部の出力に近づくので低輝度部のS/N比もよくなり、低輝度部で輝度差の大きい場合と同じS/N比を得るための目標測光レベルVagcは小さくてもよいことになる。
【0027】
次にステップ306では、次式により測光素子9により測光された最大の測光信号成分Vomax’と暗電流Vopbの和が飽和出力電圧値Vovを越えていないかを判定する。
【数4】
Vomax’+Vopb<Vov
ここで、最大測光データVomax’は蓄積時間演算に用いる測光領域の内の最大値であり、有効性判定時に用いる測光領域の内の測光データの最大値Vomaxとは必ずしも一致しない。なお、この最大測光データの求め方は検索対象の測光領域数が異なるだけで有効性判定時の最大値の求め方と同様である。
最大測光データVomax’が飽和出力電圧Vovよりも低い時はステップ307へ進み、メモリに格納されている測光データが電源立ち上げ後の初回測光時のデータであるか否かを判定する。初回測光時のデータであればステップ308へ進み、最大測光データVomax’が40mV未満か否かを判定する。最大測光データVomax’が40mVより小さい場合は、被写界がかなり暗いと予想される。また、電源投入直後にレリーズボタンが全押しされた場合を想定して、できるだけ早くに適正露出値を出力する必要があるので、この場合にはステップ309にあるように測光素子9にゲインHを設定するとともに、次回の蓄積時間に40mSを設定する。この40mSという数値は、カメラの測光装置に要求される測光下限から、1回目の測光で検出不可能であった明るさまでをできるだけカバーできるような蓄積時間として、使用する測光系に合わせて決定されたものである。したがって、この数値はカメラに要求される速写性と、測光装置に要求される低輝度限界と、測光系の明るさから最適値を決定すればよい。
【0028】
ステップ308でVomax’が40mV以上と判定された時は、次回の蓄積時間を計算によって最適化可能であるからステップ310へ進む。ステップ310では最大測光データVomax’が0Vであるか否かを判定し、そうであればステップ311で次回の蓄積時間を前回の4倍とする。一方、最大測光データVomax’が0Vの時はステップ312へ進み、次式により次回の蓄積時間の候補値int’を求める。
【数5】
int’=int・Vagc/(Vomax+Vopb)
ここで、intは前回の蓄積時間、Vagcは(Vomax+Vopb)の目標値であり、測光モードに応じてステップ303またはステップ304またはステップ305において設定された値である。
数式5は、仮に前回と次回の測光時の被写界の明るさが等しいとすると、int’の蓄積時間で次回の測光を行えば、次回の測光時に求められる(Vomax+Vopb)が目標測光レベルVagcに等しくなることを表わしている。
【0029】
次に、ステップ313では次式により次回の蓄積時間を決定する。
【数6】
int=K・int’+(1−K)・int
ここで、int’はステップ312で求めた蓄積時間の候補値、intは前回の蓄積時間、Kはフリッカー光源などの下で測光した場合に蓄積時間が急激に変化しないための安定係数であり、前回の蓄積時間値に応じて図10に示すような値をとる。例えば、前回の蓄積時間が10mS以下の場合にはK=0.25であるから、次回の蓄積時間はintが3に対してint’が1の割合での加重平均される。また、前回の蓄積時間が20mS以上の場合にはフリッカーの影響はほとんどないのでK=1となり、上記数式5により算出された蓄積時間の候補値int’のみによって新たな蓄積時間が決定される。前回の蓄積時間が10mSから20mSまでの間にある場合には次式によりKの値を求める。
【数7】
K=0.075・int−0.5
ここで、intは前回の蓄積時間値である。
蓄積時間intをフリッカーによって受ける影響の度合いによってあまり変化させないようにした方がよい理由は、本発明に直接関係しないので説明は省略する。なお、Kの値は図10に示す値に限定されず、カメラの測光系や対象とする光源の特性によって最適化することが望ましい。
【0030】
測光素子9により検出された最大測光信号成分Vomax’と暗電流成分Vopbの和が飽和出力電圧値Vovを越えている時は、ステップ306からステップ314に進み、使用する測光領域の内のオーバーフローした領域数をカウントして変数ovfに設定する。ovfの最小値は1(飽和領域が1つだけ)、最大値はpx(使用する全領域がオーバーフロー)である。
ステップ315ではオーバーフロー領域数ovfがpx/16未満か否かを判別し、そうであればステップ316で次回の蓄積時間intを前回の蓄積時間の2分の1に設定する。また、ステップ317ではオーバーフロー領域数ovfがpx/8未満か否かを判別し、そうであればステップ318で次回の蓄積時間intを前回の蓄積時間の4分の1に設定する。さらに、ステップ319ではオーバーフロー領域数ovfがpx/4未満か否かを判別し、そうであればステップ320で次回の蓄積時間intを前回の蓄積時間の8分の1に設定する。ステップ321ではオーバーフロー領域数ovfがpx/2未満か否かを判別し、そうであればステップ322で次回の蓄積時間intを前回の蓄積時間の16分の1に設定する。オーバーフロー領域数ovfがpx/2以上ある時は、ステップ323で前回の測光が電源投入後の1回目の測光であったか否かを判別し、そうであれば図6で説明したように次回の測光結果が有効無効に拘わらず適正露出演算に用いられるので、オーバーフローしないようにステップ324で次回の蓄積時間に短めの20μSを設定する。
測光データがオーバーフローしていた場合の処理では、ステップ315からステップ322までに見られるように、オーバーフローした測光領域の数が多ければ多い程被写界が明るいとみなして次回の蓄積時間を前回よりも短くするようにしている。
【0031】
図11は、次回測光時の測光素子9内の出力回路29のゲイン調整を行うルーチンである。
図6のステップ107で、図9に示す次回の蓄積時間の演算ルーチンに続いてこのルーチンが実行される。ステップ401では、出力回路29のゲイン設定がゲインLであるか否かを判定する。ゲインがLであればステップ402へ進み、次回の蓄積時間intがint_L_maxよりも大きいか否かを判定する。ここで、int_L_maxはゲイン切り換えのためのしきい値であり、40mS程度の数値を代入すればよい。次回の蓄積時間intがint_L_maxよりも大きい時はステップ403へ進み、次回の測光時はゲインHに切り換え、蓄積時間intを図9の蓄積時間演算ルーチンで求めた値の4分の1とする。
一方、現在ゲインHが設定されている時はステップ401からステップ404へ進み、次回の蓄積時間intがint_H_minより小さいか否かを判定する。int<int_H_minであればステップ405へ進み、次回の測光時のゲインをLに切り換え、蓄積時間intを図9の蓄積時間演算ルーチンで求めた値の4倍とする。ここで、int_H_minは5mS程度の数値を代入すればよい。また、int_L_maxとint_H_minの比は、ゲインH/Lの比である4倍以上の値が望ましい。これによって、ゲイン切り換えにヒステリシス特性を有することになるので、測光データに多少の揺らぎがあっても頻繁にゲイン切り換えが行われて測光データが不安定になるようなことがない。
次にステップ406では、次回の蓄積時間が予め定めた最小蓄積時間int_minよりも短いか否かを判別し、短い場合はステップ407により蓄積時間をint_minにクリップする。同様に、ステップ408では次回の蓄積時間が予め定めた最大蓄積時間int_maxよりも大きいか否かを判別し、大きい場合はステップ409で蓄積時間をint_maxにクリップする。この実施形態ではint_minを10μSとし、int_maxを100mSとするが、これらの値は使用する測光光学系および測光範囲などによって最適化するのがよい。
【0032】
図12は露出演算ルーチンを示すフローチャートである。
図6のステップ113でこの露出演算ルーチンが実行される。ステップ501において、設定された測光モードがSPモードであるかどうかを判定する。SPモードであればステップ502へ進み、設定されたスポット位置の4つの測光領域の測光データを加算して輝度値を算出し、その輝度値に基づいて適正露出値を算出する。
ステップ503ではCWモードであるか否かを判定し、CWモードであればステップ504へ進む。テップ504ではCWモードの露出演算を行なう。CWモードの露出演算方法は、図3で示した52領域の測光データを全て加算して輝度値を算出し、その輝度値に基づいて適正露出値を算出する。この方法では、上述したように測光領域内の高輝度被写体の影響が支配的になるので、AMPモードに比べて測光データの精度が低くても比較的安定した適正露出値を得ることができる。
一方、SPモードでもCWモードでもない時はAMPモードであると判断してステップ505へ進み、OKフラグがセット(1)されているか、すなわち図6ステップ106の有効性判定で測光データが有効であると判定されたかどうかを判別する。ここで、OKフラグがクリヤ(0)されている場合、つまりAMPモードで且つ測光データの有効性が否定された場合には、測光データの精度が低いことが予想されるのでステップ504へ進んでCWモードの露出演算に切り換える。また、AMPモードで有効性判定がなされた場合には、ステップ506で上述した公知の手法により適正露出演算を行い処理を終了する。
【0033】
図13は、図6のステップ103で実行される、測光素子9の電荷蓄積、データ読み出しおよび記憶ルーチンを示すフローチャートである。なおこの実施形態では、図3に示す測光素子9の測光領域のアドレスを変数(i,j)で表し、(i1,j1)から(i2,j2)までの測光領域(i1≦i≦i2,j1≦j≦j2)の測光データをA/D変換してメモリ14に記憶する。
測光モードとしてSPCモードが選択された場合はステップ601から602へ進み、アドレス変数にi1=7,j1=3,i2=14,j2=10を代入し、測光データをメモリ14に記憶する測光領域として図5(A)に太枠で示す領域を設定する。
SPLモードが選択された場合にはステップ603から604へ進み、アドレス変数にi1=11,j1=3,i2=18,j2=10を代入し、測光データをメモリ14に記憶する測光領域として図5(B)に太枠で示す領域を設定する。
SPRモードが選択された場合にはステップ605から606へ進み、アドレス変数にi1=3,j1=3,i2=10,j2=10を代入し、測光データをメモリ14に記憶する測光領域として図5(C)に太枠で示す領域を設定する。SPTモードが選択された場合にはステップ607から608へ進み、アドレス変数にi1=7,j1=5,i2=14,j2=12を代入し、測光データをメモリ14に記憶する測光領域として図5(D)の太枠で示す領域を設定する。SPBモードが選択された場合にはステップ609から610へ進み、アドレス変数にi1=7,j1=1,i2=14,j2=8を代入し、測光データをメモリ14に記憶する測光領域として図5(E)の太枠で示す領域を設定する。
一方、上記以外のAMPモードまたはCWモードが選択された場合には、ステップ611へ進み、アドレス変数i1=1,j1=1,i2=20,j2=12を代入し、測光データをメモリ14に記憶する測光領域として図3に示す全測光領域を設定する。
次にステップ612において、図9に示すサブルーチンで算出された蓄積時間だけ測光を行なう。蓄積が終了したらステップ613へ進んでアドレス変数i,jを(1,1)に初期化し、続くステップ614でi1≦i≦i2且つj1≦j≦j2、すなわち測光データをA/D変換してメモリ14に記憶すべき測光領域か否かを判別する。測光回路10からは図4で説明したように各測光領域に対応する各画素の測光データが所定の順序で出力されるから、測光データの出力順序により測光データを記憶すべき測光領域か否かを判別することができる。測光データを記憶すべき測光領域であればステップ615へ進み、測光データをA/D変換部13でA/D変換してメモリ14へ記憶する。一方、測光データを記憶すべき測光領域でなければその領域のデータを破棄してステップ616へ進む。ステップ616ではj=12かどうかを判別し、j=12であればステップ617へ進み、j=1を代入し、iをインクリメントする。また、j=12でなければステップ618へ進み、jをインクリメントする。ステップ619でi≦20であるか否かを判別し、i≦20であればステップ614へ戻って上記処理を繰り返し、i>20であればすべての測光データの読み出しが終了したので処理を終える。
【0034】
このように、測光モードに応じて複数の測光領域の中から測光データを記憶すべき測光領域を選択し、選択領域の測光データのみをメモリ14に記憶するようにしたので、被写界をきめ細かく測光してより最適な露出値を得るために、多数の測光領域を有する測光回路10を用いても、測光モードに応じた露出演算などに用いる必要な測光領域の測光データだけがメモリ14に記憶され、メモリ14の記憶容量が少なくてすみ、コストを削減することができる。
また、CCDなどの電荷蓄積型測光回路10の測光データの出力順序に基づいて測光モードに応じた選択領域の測光データを選別し、メモリ14に記憶するようにしたので、簡単な選別方法で選択領域の測光データだけをメモリ14に記憶することができる。
さらに、露出演算に用いる測光領域の測光データと電荷蓄積時間の演算に用いる測光領域の測光データとをメモリ14に記憶し、前者の測光領域の測光データに基づいて露出演算を行なうとともに、後者の測光領域の測光データに基づいて電荷蓄積時間を演算するようにしたので、被写界をきめ細かく測光してより最適な露出値を得るために、多数の測光領域を有する電荷蓄積型の測光回路10を用いても、露出演算と電荷蓄積時間演算に用いる測光領域の測光データだけがメモリ14に記憶されるので、メモリ14の記憶容量が少なくてすみ、コストを削減することができる。
さらにまた、被写界の一部を測光する、例えばスポット測光モードや中央部重点測光モードなどの部分測光モードが設定された時は、露出演算に用いる測光領域を含む広い範囲の測光領域を電荷蓄積時間演算に用いる測光領域として選択し、選択された測光領域の測光データをメモリ14に記憶して露出演算と蓄積時間演算に用いるようにしたので、露出演算に用いる測光領域の周辺に高輝度被写体が存在する場合でもブルーミング現象を回避することができる。
なお、上述した実施形態では測光回路に電荷蓄積型光電変換素子を用いた例を示したが、光電変換素子は電荷蓄積型に限定されず、SPD受光素子などを用いてもよい。
また、部分測光モードは上述した実施形態のスポット測光モードや中央部重点測光モードに限定されない。
【0035】
以上の一実施形態の構成において、測光回路10が測光手段を、測光モード設定部11がモード設定手段を、領域判定部12が領域選択手段および制御手段を、メモリ14が記憶手段を、露出演算部22および蓄積時間設定部15が演算手段をそれぞれ構成する。
【0036】
【発明の効果】
以上説明したように請求項1の発明によれば、被写界をきめ細かく測光してより最適な露出値を得るために、多数の測光領域を有する測光手段を用いても、測光モードに応じた露出演算などに用いる必要な測光領域の測光データだけが記憶手段に記憶され、記憶手段の記憶容量が少なくてすみ、コストを削減することができる上に、簡単な選別方法で選択領域の測光データだけを記憶手段に記憶することができる。さらに、露出演算に用いる測光領域の周辺に高輝度被写体が存在する場合でもブルーミング現象を回避することができる。
【図面の簡単な説明】
【図1】一実施形態の構成を示す機能ブロック図。
【図2】一実施形態の測光光学系の構成を示す図。
【図3】一実施形態の測光素子の分割測光領域を示す図。
【図4】一実施形態の測光素子の構造を示す図。
【図5】スポット測光モードにおける蓄積時間演算に用いる測光領域を示す図。
【図6】一実施形態の測光制御プログラムを示すフローチャート。
【図7】測光データの有効性判定ルーチンを示すフローチャート。
【図8】測光データと測光ダイナミックレンジとの関係を説明する図。
【図9】次回の蓄積時間の演算ルーチンを示すフローチャート。
【図10】前回の蓄積時間と安定係数Kとの関係を示す図。
【図11】測光素子のゲイン調整ルーチンを示すフローチャート。
【図12】露出演算ルーチンを示すフローチャート。
【図13】電荷蓄積、A/D変換および記憶動作を示すフローチャート。
【図14】従来の測光装置の構成を示す図。
【符号の説明】
1 撮影レンズ
2 クイックリターンミラー
3 拡散スクリーン
4 コンデンサレンズ
5 ペンタプリズム
6 接眼レンズ
7 測光用プリズム
8 測光用レンズ
9 測光素子
10 測光回路
11 測光モード設定部
12 領域判定部
13 A/D変換部
14 メモリ
15 蓄積時間設定部
16 蓄積制御部
17 有効性判定部
18 第1カウンタ
19 第2カウンタ
20 演算実行可否判定部
21 レンズデータ
22 露出演算部
23 露出制御部
24 絞り
25 シャッター
26 撮像画素
27 補正用画素
28 Vレジスタ
29 出力回路
31 測光回路
32 A/D変換器
33 記憶回路
34 判定部
35 露出演算部
36 焦点検出素子
100 マイクロプロセッサ

Claims (1)

  1. 被写界を複数の測光領域に分割して測光し、各測光領域ごとに測光データを所定の順序で出力する電荷蓄積型測光手段と、
    複数の測光モードの中から任意の測光モードを設定するモード設定手段と、
    前記モード設定手段により設定された測光モードに応じて測光データを記憶すべき測光領域を選択する領域選択手段と、
    前記電荷蓄積型測光手段から出力される測光データの出力順序に基づいて前記領域選択手段により選択された測光領域の測光データを選別し、記憶手段に記憶する制御手段とを備える測光装置であって、
    前記複数の測光モードには被写界の一部を測光する部分測光モードが含まれ、
    前記領域選択手段は、前記モード設定手段により前記部分測光モードが選択された時は、前記測光データを記憶すべき測光領域として、露出演算に用いる測光領域を選択するとともに、露出演算に用いる測光領域を含む広い範囲の測光領域を前記電荷蓄積型測光手段の電荷蓄積時間の演算に用いる測光領域として選択し、
    前記制御手段は、前記電荷蓄積型測光手段から出力される測光データの出力順序に基づいて、前記領域選択手段により選択された露出演算に用いる測光領域と電荷蓄積時間の演算に用いる測光領域の測光データを選別して前記記憶手段に記憶し、
    前記記憶手段に記憶されている測光データに基づいて露出演算と電荷蓄積時間の演算を行なう演算手段を備えることを特徴とする測光装置。
JP17593395A 1995-07-12 1995-07-12 測光装置 Expired - Lifetime JP3624471B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17593395A JP3624471B2 (ja) 1995-07-12 1995-07-12 測光装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17593395A JP3624471B2 (ja) 1995-07-12 1995-07-12 測光装置

Publications (2)

Publication Number Publication Date
JPH0926610A JPH0926610A (ja) 1997-01-28
JP3624471B2 true JP3624471B2 (ja) 2005-03-02

Family

ID=16004797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17593395A Expired - Lifetime JP3624471B2 (ja) 1995-07-12 1995-07-12 測光装置

Country Status (1)

Country Link
JP (1) JP3624471B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ513710A (en) * 2001-08-22 2003-02-28 Cardax Internat Ltd Metering system
KR20100091846A (ko) * 2009-02-11 2010-08-19 삼성전자주식회사 촬상 장치 및 촬상 방법
JP5853353B2 (ja) * 2010-08-18 2016-02-09 株式会社ニコン 測光装置及びカメラ

Also Published As

Publication number Publication date
JPH0926610A (ja) 1997-01-28

Similar Documents

Publication Publication Date Title
JPS6356966B2 (ja)
US20130258175A1 (en) Image sensing apparatus, exposure control method and recording medium
US6973262B2 (en) Camera and wide-angle field distance-measuring camera
JPS6356965B2 (ja)
US5023649A (en) Exposure controlling apparatus of a camera having a plurality of areas for measuring brightness
JPH0822031B2 (ja) 電子カメラ
US6564014B1 (en) Flash control device
JP3624471B2 (ja) 測光装置
JP3747497B2 (ja) 測光装置
JP2001091988A (ja) 閃光制御装置
JPH0466303B2 (ja)
US11503216B2 (en) Image capturing apparatus, method of controlling the same, and storage medium for controlling exposure
JP2008185821A (ja) 測光装置および撮像装置
JP3178107B2 (ja) カメラの測光制御装置
US20100322614A1 (en) Exposure control unit and imaging apparatus
JPH095821A (ja) 測光装置
JP4657543B2 (ja) 焦点検出装置
JP3601146B2 (ja) 測光装置
JP3584272B2 (ja) 測光装置
JPH08201170A (ja) 測光装置
JPH09257570A (ja) 測光装置
JP4388146B2 (ja) デジタルカメラ
JP4102201B2 (ja) 測光装置、電子カメラ
JPH03107933A (ja) 光学機器
JP2884691B2 (ja) Ttl自動調光カメラ

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071210

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term