JP3624190B2 - DC insulation monitoring device - Google Patents

DC insulation monitoring device Download PDF

Info

Publication number
JP3624190B2
JP3624190B2 JP2002292541A JP2002292541A JP3624190B2 JP 3624190 B2 JP3624190 B2 JP 3624190B2 JP 2002292541 A JP2002292541 A JP 2002292541A JP 2002292541 A JP2002292541 A JP 2002292541A JP 3624190 B2 JP3624190 B2 JP 3624190B2
Authority
JP
Japan
Prior art keywords
insulation resistance
circuit
line
gpm
gnm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002292541A
Other languages
Japanese (ja)
Other versions
JP2004125697A (en
Inventor
隆雄 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hasegawa Electric Co Ltd
Original Assignee
Hasegawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hasegawa Electric Co Ltd filed Critical Hasegawa Electric Co Ltd
Priority to JP2002292541A priority Critical patent/JP3624190B2/en
Publication of JP2004125697A publication Critical patent/JP2004125697A/en
Application granted granted Critical
Publication of JP3624190B2 publication Critical patent/JP3624190B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Testing Relating To Insulation (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば発変電所や工場の制御電源、通信用電源などを有する直流回路に設置され、主回路から分岐した複数の回線の絶縁抵抗を測定する直流用絶縁監視装置に関する。
【0002】
【従来の技術】
一般に、電気設備技術基準において、対地電圧(接地式電路では電線と大地間の電圧、非接地式電路では電線間の電圧をいう)が150V以下の場合、絶縁抵抗は、開閉器または過電流遮断器で区切ることができる電路ごとに0.1MΩ以上なければならないと規定されている。この規定を満足させるため、電源から給電される直流回路には、電路の絶縁劣化状態を把握するために絶縁抵抗を定期的に測定するようにしている。
【0003】
例えば、図4に示すように発変電所、工場の制御電源や通信電源などの直流電源1を備えた直流回路では、主回路2から分岐した複数の回線A(M=1,2,3,…)を備え、それぞれの回線Aには直流モータ等の負荷L(M=1,2,3,…)が、開閉器または過電流遮断器CB(M=1,2,3,…)を介して接続されている。
【0004】
従来、前述した直流回路では、複数の回線Aごとに絶縁抵抗を測定しているのが主である。複数の回線Aごとに絶縁抵抗を測定する場合、開閉器または過電流遮断器CBを開放して回線Aを主回路2から切り離した状態で、専用の絶縁抵抗計で回線Aの絶縁抵抗を測定するようにしている(例えば、特許文献1参照)。
【0005】
なお、複数の回線Aごとに絶縁抵抗を絶縁抵抗計により測定する以外に、絶縁監視装置を用いて直流回路の絶縁抵抗を測定することも稀にある。この場合、主回路2および複数の回線Aからなる回路全体について絶縁抵抗を測定するようにしている。
【0006】
複数の回線ごとに絶縁抵抗を測定するに際しては、絶縁抵抗計の測定値を読み取ることにより回線の絶縁抵抗を測定することができ、また、回路全体の絶縁抵抗を測定するに際しては、絶縁監視装置で絶縁抵抗の測定値を表示すると共にその測定値が、例えば電気設備技術基準で定められた規定値より小さくなると、ランプまたはブザーによる警報を発するようにしている。
【0007】
【特許文献1】
特開平6−43195号公報
【0008】
【発明が解決しようとする課題】
ところで、前述したように複数の回線Aごとに絶縁抵抗を測定する場合、開閉器または過電流遮断器CBを開放して回線Aを主回路2から切り離した状態で、専用の絶縁抵抗計で回線Aの絶縁抵抗を測定していたのでは、以下のような問題があった。つまり、回線Aの絶縁抵抗測定時、開閉器または過電流遮断器CBを開放して回線Aを主回路2から切り離していることから、回線Aの負荷Lが停電状態となる。このように回線Aを主回路2から切り離す作業が必要となり、時間と労力を要し、また、一定期間の連続運転が必要な負荷Lの場合、絶縁抵抗測定のために負荷Lを停電させることが困難であった。
【0009】
また、絶縁監視装置を用いて直流回路の絶縁抵抗を測定する場合、主回路2およびその主回路2から分岐した複数の回線Aからなる直流回路全体について絶縁抵抗を測定していたのでは、以下のような問題がある。つまり、前述した電気設備技術基準では、絶縁抵抗が開閉器または過電流遮断器で区切ることができる電路ごとに0.1MΩ以上なければならないと規定されている。このことから、前述したように複数の回線Aごとに絶縁抵抗を測定する必要がある。従って、直流回路全体の絶縁抵抗を測定していたのでは、回線Aごとの絶縁抵抗を測定していることにはならず、その直流回路の絶縁抵抗を正確に監視することが困難であり、電気設備技術基準を確実にクリアする程度の安全性を満たさない。
【0010】
そこで、本発明は前述の問題点に鑑みて提案されたもので、その目的とするところは、簡便な手段により、主回路から分岐した複数の回線ごとに絶縁抵抗を活線状態で測定し得る直流用絶縁監視装置を提供することにある。
【0011】
【課題を解決するための手段】
前記目的を達成するための技術的手段として、本発明は、直流電源を有する主回路とその主回路から分岐した複数の回線とを備えた直流回路の絶縁抵抗を前記回線ごとに活線状態で測定する直流用絶縁監視装置であって、前記直流電源の回路電圧により前記回線の正側電路または負側電路のいずれかの絶縁抵抗に電流を流すために切り替えるスイッチを前記主回路に設けると共に、前記スイッチの切り替えにより回線の正側電路または負側電路の絶縁抵抗に流れる電流を検出する直流用零相変流器を各回線に設け、その直流用零相変流器の検出出力に基づいて正側電路または負側電路の絶縁抵抗を個別に測定可能とし、前記直流用零相変流器のオフセット誤差を補正する演算処理により回線の絶縁抵抗を算出可能としたことを特徴とする。
【0012】
本発明では、主回路に設けられたスイッチの切り替えにより、各回線の正側電路または負側電路の絶縁抵抗に流れる電流を直流用零相変流器により検出し、その直流用零相変流器の検出出力に基づいて正側電路または負側電路の絶縁抵抗を個別に測定可能としたことから、簡便な手段により、主回路から分岐した複数の回線ごとに絶縁抵抗を活線状態で測定することができる。しかも、回線が絶縁劣化状態にある場合、その回線の正側電路または負側電路のいずれが絶縁劣化しているのかを判定することができる。
【0013】
さらに、本発明では、直流用零相変流器のオフセット誤差を補正する演算処理により回線の絶縁抵抗を算出可能としたことにより、回線に設けられた直流用零相変流器がその温度特性によりオフセット誤差を有する場合でも、そのオフセット誤差を正側電路と負側電路の絶縁抵抗測定で相殺することができて正確な絶縁抵抗測定が可能となる。なお、前述したように電気設備技術基準では、絶縁抵抗が電路(回線)ごとに0.1MΩ以上なければならないと規定している。ここで規定された絶縁抵抗は、回線の正側電路の絶縁抵抗と負側電路の絶縁抵抗との合成抵抗と解釈することができ、その合成抵抗を測定することは、電気設備技術基準に適合するものである。
【0014】
【発明の実施の形態】
本発明に係る直流用絶縁監視装置の実施形態を以下に詳述する。なお、図4と同一部分には同一参照符号を付す。
【0015】
図1に示す実施形態の絶縁監視装置は、例えば発変電所、工場の制御電源や通信用電源などの直流電源1を備えた直流回路の主回路2、およびその主回路2から分岐した複数の回線A(M=1,2,3,…)のそれぞれに設置され、主回路2から分岐した回線Aごとに絶縁抵抗を活線状態で測定する。それぞれの回線Aには、例えば直流モータ等の負荷L(M=1,2,3,…)が、開閉器または過電流遮断器CB(M=1,2,3,…)を介して接続されている。なお、この実施形態では、回線Aに負荷Lが接続されている場合について説明するが、回線Aに前述のような負荷が接続されていない場合もある。
【0016】
この絶縁監視装置は、直流電源1の回路電圧Vにより回線Aの正側電路SPMまたは負側電路SNMのいずれかの絶縁抵抗RGPM,RGNM(図2および図3参照)に電流IGPM,IGNMを流すために直流電源1の正側(図中ではPと表示)または負側(図中ではNと表示)のいずれかに切り替えるスイッチ3を主回路2に設けると共に、スイッチ3の切り替えにより回線Aの正側電路SPMまたは負側電路SNMの絶縁抵抗RGPM,RGNMに流れる電流IGPM,IGNMを検出する直流用零相変流器CTを各回線Aに設けた構成を具備する。
【0017】
前述したスイッチ3は常時開の第一〜第四スイッチ3a〜3dで構成され、第一スイッチ3aの一端が直流電源1の正側(図中ではPと表示)に接続され、第二スイッチ3bと第四スイッチ3dの一端が直流電源1の負側(図中ではNと表示)に接続され、第三スイッチ3cの一端が接地(図中ではEと表示)接続されている。第一〜第四スイッチ3a〜3dの他端は制限抵抗Rを介してマルチプレクサ4に接続されている。このマルチプレクサ4には、各回線Aの開閉器または過電流遮断器CBの負荷側の正側電路SPMおよび負側電路SNMに取り付けられた零相変流器CTが接続されている。このマルチプレクサ4の後段には、A/D変換器5を介してCPU6が接続され、そのCPU6の出力側には表示器7が接続されている。
【0018】
前述した第一〜第四スイッチ3a〜3d、マルチプレクサ4、A/D変換器5、CPU6および表示器7を有する装置本体8が主回路2に接続され、また、その装置本体8に接続された零相変流器CTは、リング状鉄心に巻線を装着した構造のもので、その鉄心内に回線Aの正側電路SPM(M=1,2,3,…)と負側電路SNM(M=1,2,3,…)が貫挿されている。この零相変流器CTには、本出願人が先に提案した直流地絡電流検出装置(例えば特開2000−182503等参照)の変流器を使用することが可能である。
【0019】
この実施形態の絶縁監視装置により、主回路2から分岐した回線Aごとに絶縁抵抗を活線状態で測定するに際しては、回線Aの正側電路SPMの絶縁抵抗RGPMと負側電路SNMの絶縁抵抗RGNMを測定する。以下、その測定時の絶縁監視装置の動作例を説明する。
【0020】
まず、図2に示すように第一スイッチ3aと第三スイッチ3cを閉成する。この第一スイッチ3aを閉成することにより制限抵抗Rの一端を直流電源1の正側に接続し、第三スイッチ3cを閉成することにより制限抵抗Rの他端を接地接続する。これにより、直流電源1の回路電圧Vでもって直流電源1−第一スイッチ3a−制限抵抗R−第三スイッチ3c−大地−回線Aの負側電路SNMの絶縁抵抗RGNM−負側電路SNM−直流電源1からなる経路で負側電路SNMの絶縁抵抗RGNMに電流IGNMが流れる。この絶縁抵抗RGNMに流れる電流IGNMは、直流電源1−回線Aの正側電路SPM−負荷L−負側電路SNM−直流電源1からなる経路で負側電路SNMに流れる電流I+IGNMと、正側電路SPMに流れる電流Iとの差電流である。
【0021】
そこで、回線Aの負側電路SNMの絶縁抵抗RGNMに流れる電流IGNMを直流用零相変流器CTにより検出し、その直流用零相変流器CTの検出出力、つまり、絶縁抵抗RGNMに流れる電流IGNMに基づいて負側電路SNMの絶縁抵抗RGNMを測定する。ここで、絶縁抵抗RGNMを測定するために回路電圧Vを測定する必要があるため、前述した絶縁抵抗RGNMに流れる電流IGNMの検出後、第一スイッチ3aと第四スイッチ3dを閉成する。この第一スイッチ3aを閉成することにより制限抵抗Rの一端を直流電源1の正側に接続し、第四スイッチ3dを閉成することにより制限抵抗Rの他端を直流電源1の負側に接続する。これにより、回路電圧Vを測定する。
【0022】
このようにして零相変流器CTで検出された電流IGNMと、第一スイッチ3aと第四スイッチ3dの閉成による回路電圧Vとをマルチプレクサ4に入力してA/D変換器5でデジタル変換した上で、CPU6での演算処理により負側電路SNMの絶縁抵抗RGNMを算出する。この絶縁抵抗RGNMの測定値が表示器7により例えば液晶表示され、例えば電気設備技術基準で規定されている0.1MΩの規定値より小さければ、ランプまたはブザーによる警報を出力する。
【0023】
次に、図3に示すように第二スイッチ3bと第三スイッチ3cを閉成する。この第二スイッチ3bを閉成することにより制限抵抗Rの一端を直流電源1の負側に接続し、第三スイッチ3cを閉成することにより制限抵抗Rの他端を接地接続する。これにより、直流電源1の回路電圧Vでもって直流電源1−回線Aの正側電路SPM−正側電路SPMの絶縁抵抗RGPM−大地−第三スイッチ3c−制限抵抗R−第二スイッチ3b−直流電源1からなる経路で正側電路SPMの絶縁抵抗RGPMに電流IGPMが流れる。この絶縁抵抗RGPMに流れる電流IGPMは、直流電源1−回線Aの正側電路SPM−負荷L−負側電路SNM−直流電源1からなる経路で正側電路SPMに流れる電流I+IGPMと、負側電路SNMに流れる電流Iとの差電流である。
【0024】
そこで、回線Aの正側電路SPMの絶縁抵抗RGPMに流れる電流IGPMを直流用零相変流器CTにより検出し、その直流用零相変流器CTの検出出力、つまり、絶縁抵抗RGPMに流れる電流IGPMに基づいて正側電路SPMの絶縁抵抗RGPMを測定する。ここで、絶縁抵抗RGPMを測定するために回路電圧Vを測定する必要があるため、前述した絶縁抵抗RGPMに流れる電流IGPMの検出後、第一スイッチ3aと第四スイッチ3dを閉成する。この第一スイッチ3aを閉成することにより制限抵抗Rの一端を直流電源1の正側に接続し、第四スイッチ3dを閉成することにより制限抵抗Rの他端を直流電源1の負側に接続する。これにより、回路電圧Vを測定する。
【0025】
このようにして零相変流器CTで検出された電流IGPMと、第二スイッチ3bと第三スイッチ3cの閉成による回路電圧Vとをマルチプレクサ4に入力してA/D変換器5でデジタル変換した上で、CPU6での演算処理により正側電路SPMの絶縁抵抗RGPMを算出する。この絶縁抵抗RGPMの測定値が表示器7により例えば液晶表示され、例えば電気設備技術基準で規定されている0.1MΩの規定値より小さければ、ランプまたはブザーによる警報を出力する。
【0026】
この実施形態によれば、主回路2から分岐した回線Aごとに絶縁抵抗RGPM,RGNMを活線状態で測定することができ、しかも、正側電路SPMの絶縁抵抗RGPMと負側電路SNMの絶縁抵抗RGNMを個別に測定しているので、回線Aが絶縁劣化状態にある場合、その回線Aの正側電路SPMまたは負側電路SNMのいずれが絶縁劣化しているのかを判定することができるため、正側電路SPMまたは負側電路SNMのいずれかを交換するだけで済む。
【0027】
前述したように回線Aの正側電路SPMの絶縁抵抗RGPMと負側電路SNMの絶縁抵抗RGNMを個別に測定するには、各回線Aに設けられた零相変流器CTが、例えばオフセット誤差がない高精度を有する必要がある。このオフセット誤差を有する低精度の零相変流器CTでは、直線性の出力特性を有するが、使用温度によりシフトして零点がずれる。前述したオフセット誤差とは、この零点からのずれ量という。
【0028】
オフセット誤差がない高精度の零相変流器CTであれば、直線性を有する出力特性における零点のずれがないので、正側電路SPMの絶縁抵抗RGPMと負側電路SNMの絶縁抵抗RGNMを個別に測定する場合、それら絶縁抵抗RGPM,RGNMを正確に測定できるので問題はない。
【0029】
これに対して、オフセット誤差を有する低精度の零相変流器CTを使用する場合は、出力特性における零点のずれがあるので、正側電路SPMの絶縁抵抗RGPMと負側電路SNMの絶縁抵抗RGNMを個別に測定する場合には、それら絶縁抵抗RGPM,RGNMを正確に測定することが困難となる。
【0030】
例えば、回路電圧Vが100Vの場合、絶縁抵抗RGPM,RGNMが無限大であると、オフセット誤差がない高精度の零相変流器CTで検出される電流IGPM,IGNMは0Aとなり、正側電路SPMの絶縁抵抗RGPMと負側電路SNMの絶縁抵抗RGNMを個別に測定する場合、それら絶縁抵抗RGPM,RGNMが無限大であることを正確に測定することができる。
【0031】
これに対して、例えば1mAのオフセット誤差を有する零相変流器CTを使用すると、その零相変流器CTで検出される電流IGPM,IGNMが1mAとなるため、正側電路SPMの絶縁抵抗RGPMと負側電路SNMの絶縁抵抗RGNMを個別に測定する場合、それら絶縁抵抗RGPM,RGNMが100kΩ(100V/1mA)となる。このように無限大であるべき絶縁抵抗RGPM,RGNMが、零相変流器CTにオフセット誤差があると、100kΩとなって絶縁抵抗RGPM,RGNMが無限大とならずに正確に測定することができない。
【0032】
そこで、このようなオフセット誤差を有する低精度の零相変流器CTを使用する場合には、その零相変流器CTのオフセット誤差を補正するため、回線Aの正側電路SPMの絶縁抵抗RGPMと負側電路SNMの絶縁抵抗RGNMの合成抵抗をCPU6で算出する。この合成抵抗を用いるのは以下の理由による。
【0033】
正側電路SPMの絶縁抵抗RGPMと負側電路SNMの絶縁抵抗RGNMの合成抵抗をRGMとすると、回路電圧V、正側電路SPMの絶縁抵抗RGPMに流れる電流IGPM、負側電路SNMの絶縁抵抗RGNMに流れる電流IGNMから、絶縁抵抗RGPMはV/IGPM、絶縁抵抗RGNMは−V/IGNMとなる。従って、合成抵抗RGMは、
【数1】

Figure 0003624190
で求められる。ここで、オフセット誤差△Iを有する低精度の零相変流器CTを使用した場合、正側電路SPMの絶縁抵抗RGPMに流れる電流IGPMと、負側電路SNMの絶縁抵抗RGNMに流れる電流IGNMに前記オフセット誤差△Iが加算されることになるので、合成抵抗RGMは、
【数2】
Figure 0003624190
となる。このようにオフセット誤差△Iを有する場合の▲2▼式が、オフセット誤差△Iがない場合の前記▲1▼式と等しくなる。
【0034】
例えば回路電圧Vが100Vで、絶縁抵抗RGPM,RGNMが無限大であれば、絶縁抵抗RGPM,RGNMに流れる電流IGPM,IGNMは0Aであるが、例えば1mAのオフセット誤差△Iを有する零相変流器CTからの出力は、そのオフセット誤差△Iにより1mAとなるが、CPU6の演算処理により算出される合成抵抗RGMは、前記▲2▼式から、無限大となる。
【0035】
前述のように正側電路SPMの絶縁抵抗RGPMと負側電路SNMの絶縁抵抗RGNMの合成抵抗RGMを求めれば、正側電路SPMの絶縁抵抗RGPMに流れる電流IGPMに付加されたオフセット誤差△Iと、負側電路SNMの絶縁抵抗RGNMに流れる電流IGNMに付加されたオフセット誤差△Iが相殺され、零相変流器CTのオフセット誤差△Iがあっても、正確な絶縁抵抗を得ることができる。
【0036】
【発明の効果】
本発明によれば、主回路に設けられたスイッチの切り替えにより、各回線の正側電路または負側電路の絶縁抵抗に流れる電流を直流用零相変流器により検出し、その絶縁抵抗に流れる電流に基づいて正側電路または負側電路の絶縁抵抗を個別に測定可能としたことによって、主回路から分岐した複数の回線ごとに絶縁抵抗を活線状態で測定することができる。しかも、回線が絶縁劣化状態にある場合、その回線の正側電路または負側電路のいずれが絶縁劣化しているのかを判定することができる。
【0037】
さらに、直流用零相変流器のオフセット誤差を補正する演算処理により回線の絶縁抵抗を算出可能としたことにより、回線に設けられた直流用零相変流器がその温度特性によりオフセット誤差を有する場合でも、そのオフセット誤差を正側電路と負側電路の絶縁抵抗測定で相殺することができて正確な絶縁抵抗測定が可能となる。
【図面の簡単な説明】
【図1】本発明に係る直流用絶縁監視装置の実施形態を示す回路図である。
【図2】本発明の実施形態で、各回線の負側電路の絶縁抵抗を測定する場合の動作説明をするための回路図である。
【図3】本発明の実施形態で、各回線の正側電路の絶縁抵抗を測定する場合の動作説明をするための回路図である。
【図4】主回路から分岐した複数の回線を備えた直流回路を示す回路図である。
【符号の説明】
1 電源
2 主回路
3 スイッチ
回線
CT 直流用零相変流器
PM 正側電路
NM 負側電路
GPM,RGNM 絶縁抵抗
GPM,IGNM 絶縁抵抗に流れる電流[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a DC insulation monitoring apparatus that is installed in a DC circuit having, for example, a control power source for a power generation substation or factory, a communication power source, and the like, and measures the insulation resistance of a plurality of lines branched from a main circuit.
[0002]
[Prior art]
In general, when the ground voltage (the voltage between the wire and ground in a grounded circuit or the voltage between wires in a non-grounded circuit) is 150 V or less according to the electrical equipment technical standards, the insulation resistance is a switch or overcurrent cutoff. It is stipulated that each electric circuit that can be separated by a device must be 0.1 MΩ or more. In order to satisfy this rule, the insulation resistance of a DC circuit fed from a power source is periodically measured in order to grasp the insulation deterioration state of the electric circuit.
[0003]
For example, in a DC circuit having a DC power source 1 such as a control power source or a communication power source of a power generation / substation, factory, as shown in FIG. 4, a plurality of lines A M (M = 1, 2, 3) branched from the main circuit 2 ,..., And a load L M (M = 1, 2, 3,...) Such as a DC motor is connected to each line A M by a switch or overcurrent breaker CB M (M = 1, 2, 3). ,...).
[0004]
Conventionally, in a DC circuit described above, it is mainly to measures the insulation resistance for each of a plurality of line A M. When measuring the insulation resistance for each of a plurality of lines A M, the line A M by opening the switches or overcurrent breaker CB M in a state disconnected from the main circuit 2, the line A M in a dedicated insulation resistance meter The insulation resistance is measured (for example, refer to Patent Document 1).
[0005]
Note that the insulation resistance for each of a plurality of lines A M in addition to measuring the insulation resistance tester, it is rare to measure the insulation resistance of the DC circuit by using an insulation monitoring device. In this case, so that the insulation resistance is measured for the entire circuit composed of the main circuit 2 and a plurality of line A M.
[0006]
When measuring the insulation resistance for each of multiple lines, the insulation resistance of the line can be measured by reading the measured value of the insulation resistance meter, and when measuring the insulation resistance of the entire circuit, an insulation monitoring device The measured value of the insulation resistance is displayed, and if the measured value becomes smaller than a specified value determined by, for example, the electric equipment technical standard, an alarm by a lamp or a buzzer is issued.
[0007]
[Patent Document 1]
JP-A-6-43195 gazette
[Problems to be solved by the invention]
Meanwhile, when measuring insulation resistance for each of a plurality of line A M as described above, the line A M by opening the switches or overcurrent breaker CB M in a state disconnected from the main circuit 2, a dedicated insulation resistance than was measured insulation resistance of the line a M is total, it has the following problems. That is, when the insulation resistance measurement of the line A M, the line A M by opening the switches or overcurrent breaker CB M since it is disconnected from the main circuit 2, a load L M of the line A M is a power failure state . Thus requires work to disconnect the line A M from the main circuit 2, requires time and effort, and if continuous operation is required load L M for a period of time, the load L M for insulation resistance measurement It was difficult to make a power outage.
[0009]
Also, when measuring the insulation resistance of the DC circuit by using an insulation monitoring device, in the entire series circuit composed of a plurality of line A M branched from the main circuit 2 and a main circuit 2 had been measured insulation resistance, There are the following problems. In other words, the electrical equipment technical standards described above stipulate that the insulation resistance must be 0.1 MΩ or more for each electric circuit that can be separated by a switch or an overcurrent circuit breaker. Therefore, it is necessary to measure the insulation resistance for each of a plurality of line A M as described above. Accordingly, had measured the insulation resistance of the entire DC circuit must not be measures the insulation resistance of each line A M, it is difficult to accurately monitor the insulation resistance of the DC circuit It does not meet the safety requirements to ensure that the electrical equipment technical standards are cleared.
[0010]
Therefore, the present invention has been proposed in view of the above-mentioned problems, and the object of the present invention is to measure the insulation resistance in a live state for each of a plurality of lines branched from the main circuit by a simple means. The object is to provide an insulation monitoring device for direct current.
[0011]
[Means for Solving the Problems]
As a technical means for achieving the above object, the present invention provides an insulation resistance of a DC circuit including a main circuit having a DC power supply and a plurality of lines branched from the main circuit in a live line state for each line. A DC insulation monitoring device for measuring, wherein a switch is provided in the main circuit for switching the current to flow through the insulation resistance of either the positive side circuit or the negative side circuit of the line by the circuit voltage of the DC power supply, A DC zero-phase current transformer that detects the current flowing through the insulation resistance of the positive-side circuit or negative-side circuit by switching the switch is provided in each line, and based on the detection output of the DC zero-phase current transformer The insulation resistance of the positive side circuit or the negative side circuit can be individually measured, and the insulation resistance of the line can be calculated by a calculation process for correcting the offset error of the DC zero-phase current transformer .
[0012]
In the present invention, by switching the switch provided in the main circuit, the current flowing through the insulation resistance of the positive side circuit or the negative side circuit of each line is detected by the DC zero-phase current transformer, and the DC zero-phase current transformer Since the insulation resistance of the positive or negative circuit can be measured individually based on the detector output, the insulation resistance can be measured in a live state for each of the multiple lines branched from the main circuit by a simple means. can do. In addition, when the line is in an insulation deterioration state, it can be determined which of the positive side electric circuit or the negative side electric circuit of the line has undergone insulation deterioration.
[0013]
Furthermore, in the present invention , the insulation resistance of the line can be calculated by a calculation process that corrects the offset error of the DC zero-phase current transformer, so that the DC zero-phase current transformer provided in the line has its temperature characteristics. Thus, even when there is an offset error, the offset error can be canceled out by measuring the insulation resistance between the positive side circuit and the negative side circuit, and an accurate insulation resistance measurement can be performed. As described above, the electrical equipment technical standard stipulates that the insulation resistance must be 0.1 MΩ or more for each electric circuit (line). The insulation resistance specified here can be interpreted as the combined resistance of the insulation resistance of the positive circuit of the line and the insulation resistance of the negative circuit, and measuring the combined resistance conforms to the technical standards of electrical equipment. To do.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a DC insulation monitoring apparatus according to the present invention will be described in detail below. The same parts as those in FIG. 4 are denoted by the same reference numerals.
[0015]
The insulation monitoring apparatus of the embodiment shown in FIG. 1 includes a main circuit 2 of a DC circuit provided with a DC power source 1 such as a power plant / substation, a factory control power source and a communication power source, and a plurality of branches from the main circuit 2 The insulation resistance is measured in a live line state for each line A M installed in each of the lines A M (M = 1, 2, 3,...) And branched from the main circuit 2. Each line AM has a load L M (M = 1, 2, 3,...) Such as a DC motor, for example, and a switch or overcurrent breaker CB M (M = 1, 2, 3,...). Connected through. In this embodiment, will be described the case where the load L M to the line A M is connected, there is a case where the load as described above the line A M is not connected.
[0016]
The insulation monitoring device, either the insulation resistance R GPM positive side electrical path S PM or negative path S NM line A M by the circuit voltage V of the DC power source 1, current R GNM (see FIGS. 2 and 3) The main circuit 2 is provided with a switch 3 for switching to either the positive side (indicated as P in the figure) or the negative side (indicated as N in the figure) of the DC power supply 1 in order to flow I GPM and I GNM . the third line switching a M positive-side electrical path S PM or negative path S NM insulation resistance R GPM, current flows through the R GNM I GPM, each line of the DC residual current transformer for CT M that detects the I GNM comprising a structure in which the a M.
[0017]
The aforementioned switch 3 is composed of normally open first to fourth switches 3a to 3d. One end of the first switch 3a is connected to the positive side (indicated as P in the drawing) of the DC power source 1, and the second switch 3b. And one end of the fourth switch 3d is connected to the negative side (indicated as N in the figure) of the DC power source 1, and one end of the third switch 3c is connected to ground (indicated as E in the figure). The other ends of the first to fourth switches 3a to 3d are connected to the multiplexer 4 via a limiting resistor R. This multiplexer 4, are switches or overcurrent breaker CB M of the load side of the positive-side path S connected PM and negative path S ZCT CT M attached to NM is for each line A M Yes. A CPU 6 is connected to the subsequent stage of the multiplexer 4 via an A / D converter 5, and a display 7 is connected to the output side of the CPU 6.
[0018]
The device main body 8 having the first to fourth switches 3a to 3d, the multiplexer 4, the A / D converter 5, the CPU 6 and the display 7 is connected to the main circuit 2 and also connected to the device main body 8. zero-phase current transformer CT M is of a structure equipped with a winding in a ring shape iron core, the positive-side path S PM (M = 1,2,3, ... ) of the line a M within its core the negative side An electric circuit S NM (M = 1, 2, 3,...) Is inserted. The zero-phase current transformer CT M, it is possible by the present applicant uses a current transformer of DC ground fault current detector previously proposed (see, for example, JP-2000-182503 etc.).
[0019]
The insulation monitoring device of this embodiment, when the insulation resistance is measured with a hot line state for each line A M branched from the main circuit 2, the insulation resistance R GPM and negative path of the positive side electrical path S PM line A M measuring the insulation resistance R GNM of S NM. Hereinafter, an example of the operation of the insulation monitoring apparatus during the measurement will be described.
[0020]
First, as shown in FIG. 2, the first switch 3a and the third switch 3c are closed. By closing the first switch 3a, one end of the limiting resistor R is connected to the positive side of the DC power source 1, and by closing the third switch 3c, the other end of the limiting resistor R is grounded. Thus, the DC power source 1 first switches 3a- limiting resistor R- third switch 3c- earth with the circuit voltage V of the DC power source 1 - the insulation resistance of the negative-side path S NM line A M R GNM - negative path A current I GNM flows through the insulation resistance R GNM of the negative side circuit S NM through a path composed of S NM -DC power supply 1. The current I GNM flowing through the insulation resistance R GNM includes a DC power supply 1 line A M of the positive-side path S PM - flows in the negative side electrical path S NM in the route from the DC power source 1 - the load L M - negative path S NM This is a difference current between the current I M + I GNM and the current I M flowing through the positive side circuit S PM .
[0021]
Accordingly, line A negative side electrical path S current I GNM flowing through the insulation resistance R GNM of NM detected by the DC ZCT for CT M of M, the detection output of the DC ZCT for CT M, i.e. Then, the insulation resistance R GNM of the negative side circuit S NM is measured based on the current I GNM flowing through the insulation resistance R GNM . Here, it is necessary to measure the circuit voltage V in order to measure the insulation resistance R GNM, after detection of the current I GNM flowing through the insulation resistance R GNM described above, closes the first switch 3a and the fourth switch 3d To do. By closing the first switch 3a, one end of the limiting resistor R is connected to the positive side of the DC power source 1, and by closing the fourth switch 3d, the other end of the limiting resistor R is connected to the negative side of the DC power source 1. Connect to. Thereby, the circuit voltage V is measured.
[0022]
A current I GNM detected in this manner ZCT CT M, and a circuit voltage V by closure of the first switch 3a and the fourth switch 3d is input to the multiplexer 4 A / D converter 5 Then, the insulation resistance R GNM of the negative-side electric circuit S NM is calculated by arithmetic processing in the CPU 6. The measured value of the insulation resistance RGNM is displayed on a liquid crystal display, for example, by the display 7. If the measured value is smaller than a specified value of 0.1 MΩ specified by the electrical equipment technical standard, for example, an alarm by a lamp or a buzzer is output.
[0023]
Next, as shown in FIG. 3, the second switch 3b and the third switch 3c are closed. By closing the second switch 3b, one end of the limiting resistor R is connected to the negative side of the DC power supply 1, and by closing the third switch 3c, the other end of the limiting resistor R is grounded. Thus, the positive-side path S PM of the DC power source 1 line A M with the circuit voltage V of the DC power source 1 - positive path S insulation resistance PM R GPM - earth - the third switching 3c- limiting resistor R- second switch 3b- current I GPM flows through the insulation resistance R GPM positive side electrical path S PM in the route from the DC power source 1. The insulation resistance R current flowing through the GPM I GPM is positive path S PM of the DC power source 1 line A M - flows to the positive-side path S PM in the route from the DC power source 1 - the load L M - negative path S NM This is a difference current between the current I M + I GPM and the current I M flowing in the negative side circuit S NM .
[0024]
Accordingly, line A positive a side path S current I GPM flowing through the insulation resistance R GPM of PM detected by the DC ZCT for CT M of M, the detection output of the DC ZCT for CT M, i.e. the insulation resistance R GPM positive side electrical path S PM measured on the basis of the current I GPM flowing through the insulation resistance R GPM. Here, it is necessary to measure the circuit voltage V in order to measure the insulation resistance R GPM, after detection of the current I GPM flowing through the insulation resistance R GPM described above, closes the first switch 3a and the fourth switch 3d To do. By closing the first switch 3a, one end of the limiting resistor R is connected to the positive side of the DC power source 1, and by closing the fourth switch 3d, the other end of the limiting resistor R is connected to the negative side of the DC power source 1. Connect to. Thereby, the circuit voltage V is measured.
[0025]
A current I GPM detected in this manner ZCT CT M, the second switch 3b and enter A / D converter and a circuit voltage V to the multiplexer 4 by closing the third switch 3c 5 Then, the insulation resistance R GPM of the positive side electric circuit S PM is calculated by arithmetic processing in the CPU 6. If the measured value of the insulation resistance R GPM is displayed on a liquid crystal display, for example, by the display unit 7, for example, if it is smaller than a specified value of 0.1 MΩ specified by the electrical equipment technical standards, an alarm by a lamp or buzzer is output.
[0026]
According to this embodiment, branching from the main circuit 2 line A M per the insulation resistance R GPM, can measure the R GNM live lines state, moreover, the insulation resistance R GPM and negative positive path S PM Since the insulation resistance R GNM of the side circuit S NM is individually measured, when the line A M is in an insulation deterioration state, either the positive side circuit S PM or the negative side circuit S NM of the line A M is insulated. it is possible to determine whether to have the need only to replace one of the positive path S PM or negative path S NM.
[0027]
To individually measure the insulation resistance R GNM line A insulation resistance of the positive-side path S PM of M R GPM and negative path S NM As described above, the zero-phase current transformer provided for each line A M CT M, for example should have a high accuracy there is no offset error. In the low-precision zero-phase current transformer having an offset error CT M, has the output characteristics of linearity, zero point is shifted to shift the operating temperature. The aforementioned offset error is referred to as a deviation amount from this zero point.
[0028]
If ZCT CT M without offset error high precision, since there is no deviation of the zero point in the output characteristic with linearity, the insulation resistance R GPM and negative electrical path S NM positive side paths S PM insulation When the resistance R GNM is measured individually, there is no problem because the insulation resistances R GPM and R GNM can be accurately measured.
[0029]
In contrast, when using the low-precision zero-phase current transformer CT M having an offset error, because there is a shift of zero point in the output characteristics, the positive path S insulation resistance PM R GPM and the negative path S When measuring the insulation resistance R GNM of the NM individually, it becomes difficult to accurately measure the insulation resistances R GPM and R GNM .
[0030]
For example, if the circuit voltage V is 100 V, the insulation resistance R GPM, when R GNM is infinite, the current I GPM detected by the zero-phase current transformer CT M without offset error precision, I GNM is 0A next, when measuring separately the insulation resistance R GNM positive-side path S PM insulation resistance R GPM and negative electrical path S NM, to accurately measure that they insulation resistance R GPM, R GNM is infinite Can do.
[0031]
In contrast, for example, by using the zero-phase current transformer CT M having an offset error of 1 mA, a current I GPM detected by the zero-phase current transformer CT M, it is I GNM becomes 1 mA, positive path when measuring the insulation resistance R GNM of S PM insulation resistance R GPM and negative path S NM individually, they insulation resistance R GPM, R GNM is 100kΩ (100V / 1mA). Thus infinite which should be the insulation resistance R GPM, R GNM is, when there is an offset error in the zero-phase current transformer CT M, the insulation resistance becomes 100 k.OMEGA R GPM, exactly not R GNM is infinite Cannot be measured.
[0032]
Therefore, when using such a zero-phase low-precision with an offset error current transformer CT M, in order to correct the offset error of the zero-phase current transformer CT M, positive-side electrical path S of the line A M The CPU 6 calculates a combined resistance of the insulation resistance R GPM of PM and the insulation resistance R GNM of the negative side circuit S NM . This combined resistor is used for the following reason.
[0033]
If the combined resistance of the insulation resistance R GPM of the positive side circuit S PM and the insulation resistance R GNM of the negative side circuit S NM is R GM , the circuit voltage V, the current I GPM flowing through the insulation resistance R GPM of the positive side circuit S PM , From the current I GNM flowing through the insulation resistance R GNM of the negative side circuit S NM , the insulation resistance R GPM is V / I GPM and the insulation resistance R GNM is −V / I GNM . Therefore, the combined resistance R GM is
[Expression 1]
Figure 0003624190
Is required. Here, when using the offset error △ zero-phase low-precision with I current transformer CT M, current flowing through the insulation resistance R GPM positive-side path S PM I GPM and the insulation resistance R of the negative-side path S NM Since the offset error ΔI is added to the current I GNM flowing through the GNM , the combined resistance R GM
[Expression 2]
Figure 0003624190
It becomes. Thus, the equation (2) in the case of having the offset error ΔI is equal to the equation (1) in the case of no offset error ΔI.
[0034]
For example circuit voltage V is 100 V, the insulation resistance R GPM, if R GNM is infinite, the insulation resistance R GPM, current flows through the R GNM I GPM, although I GNM is 0A, for example 1mA offset error △ I the output from the zero-phase current transformer CT M with is a 1mA by the offset error △ I, comprising the combined resistance R GM calculated by arithmetic processing CPU 6, from the ▲ 2 ▼ wherein infinity .
[0035]
By obtaining a combined resistance R GM insulation resistance R GNM insulation resistance R GPM and negative electrical path S NM the positive path S PM as described above, the current I GPM flowing through the insulation resistance R GPM positive-side path S PM and the added offset error △ I, negative path S NM offset error △ I of the added to the current I GNM flowing through the insulation resistance R GNM of offset, there is an offset error △ I of ZCT CT M However, an accurate insulation resistance can be obtained.
[0036]
【The invention's effect】
According to the present invention, by switching the switch provided in the main circuit, the current flowing through the insulation resistance of the positive side circuit or the negative side circuit of each line is detected by the DC zero-phase current transformer and flows through the insulation resistance. Since the insulation resistance of the positive side circuit or the negative side circuit can be individually measured based on the current, the insulation resistance can be measured in a live state for each of a plurality of lines branched from the main circuit. In addition, when the line is in an insulation deterioration state, it can be determined which of the positive side electric circuit or the negative side electric circuit of the line has undergone insulation deterioration.
[0037]
Further, by which enables calculating the insulation resistance of the line by the arithmetic processing for correcting an offset error of the zero-phase current transformer for direct current, the offset error zero-phase DC provided to the line current transformer by its temperature characteristic Even if it has, the offset error can be canceled out by the insulation resistance measurement of the positive side circuit and the negative side circuit, and an accurate insulation resistance measurement becomes possible.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of a DC insulation monitoring apparatus according to the present invention.
FIG. 2 is a circuit diagram for explaining the operation when measuring the insulation resistance of the negative circuit of each line in the embodiment of the present invention.
FIG. 3 is a circuit diagram for explaining the operation when measuring the insulation resistance of the positive circuit of each line in the embodiment of the present invention.
FIG. 4 is a circuit diagram showing a DC circuit including a plurality of lines branched from a main circuit.
[Explanation of symbols]
1 Power Supply 2 Main Circuit 3 Switch A M Line CT M Zero Phase Current Transformer S PM Positive Side Circuit S NM Negative Side Circuit R GPM , RGNM Insulation Resistance I GPM , I GNM Insulation Resistance

Claims (1)

直流電源を有する主回路とその主回路から分岐した複数の回線とを備えた直流回路の絶縁抵抗を前記回線ごとに活線状態で測定する直流用絶縁監視装置であって、前記直流電源の回路電圧により前記回線の正側電路または負側電路のいずれかの絶縁抵抗に電流を流すために切り替えるスイッチを前記主回路に設けると共に、前記スイッチの切り替えにより回線の正側電路または負側電路の絶縁抵抗に流れる電流を検出する直流用零相変流器を各回線に設け、その直流用零相変流器の検出出力に基づいて正側電路または負側電路の絶縁抵抗を個別に測定可能とし、前記直流用零相変流器のオフセット誤差を補正する演算処理により回線の絶縁抵抗を算出可能としたことを特徴とする直流用絶縁監視装置。A DC insulation monitoring device for measuring an insulation resistance of a DC circuit having a main circuit having a DC power supply and a plurality of lines branched from the main circuit in a live state for each line, the circuit of the DC power supply The main circuit is provided with a switch for switching the current to flow through the insulation resistance of either the positive side circuit or the negative side circuit of the line depending on the voltage, and insulation of the positive side circuit or the negative side circuit of the line by switching the switch A DC zero-phase current transformer that detects the current flowing through the resistor is installed on each line, and based on the detection output of the DC zero-phase current transformer, the insulation resistance of the positive or negative circuit can be measured individually. And a DC insulation monitoring apparatus characterized in that the insulation resistance of the line can be calculated by a calculation process for correcting an offset error of the DC zero-phase current transformer .
JP2002292541A 2002-10-04 2002-10-04 DC insulation monitoring device Expired - Lifetime JP3624190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002292541A JP3624190B2 (en) 2002-10-04 2002-10-04 DC insulation monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002292541A JP3624190B2 (en) 2002-10-04 2002-10-04 DC insulation monitoring device

Publications (2)

Publication Number Publication Date
JP2004125697A JP2004125697A (en) 2004-04-22
JP3624190B2 true JP3624190B2 (en) 2005-03-02

Family

ID=32283764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002292541A Expired - Lifetime JP3624190B2 (en) 2002-10-04 2002-10-04 DC insulation monitoring device

Country Status (1)

Country Link
JP (1) JP3624190B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007396A (en) * 2014-05-19 2014-08-27 广西电网公司电力科学研究院 Device and method for searching for loop channeling electric fault in direct current systems

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4788868B2 (en) * 2004-12-22 2011-10-05 株式会社三工社 Earthester and ground resistance measurement method
KR101238458B1 (en) 2011-05-26 2013-02-28 한국남부발전 주식회사 Apparatus for displaying the state of dc voltage source
US10031174B2 (en) * 2013-03-14 2018-07-24 Fluke Deutschland Gmbh Apparatus and method for insulation testing of an electrical supply network
CN104422897B (en) * 2013-08-23 2017-03-15 艾默生网络能源有限公司 Detection method and device that in two dc power supply system, direct current is mutually altered
CN104422896B (en) * 2013-08-23 2017-04-26 艾默生网络能源有限公司 Method and device for detecting direct current crossing in double direct-current power source systems
CN106353657A (en) * 2016-11-28 2017-01-25 国网福建省电力有限公司 High-voltage direct current cable partial discharge intelligent monitoring device and monitoring method
KR102158595B1 (en) * 2020-04-29 2020-09-22 디아이케이(주) Insulation monitoring system
KR102409587B1 (en) * 2021-08-17 2022-06-27 주식회사 케이에너지시스템 Power line insulation monitoring apparatus and method
CN114252813B (en) * 2021-11-25 2024-05-28 安徽南瑞继远电网技术有限公司 Detection method of double-section bus channeling detection device of direct current system of transformer substation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104007396A (en) * 2014-05-19 2014-08-27 广西电网公司电力科学研究院 Device and method for searching for loop channeling electric fault in direct current systems
CN104007396B (en) * 2014-05-19 2017-01-25 广西电网公司电力科学研究院 Device and method for searching for loop channeling electric fault in direct current systems

Also Published As

Publication number Publication date
JP2004125697A (en) 2004-04-22

Similar Documents

Publication Publication Date Title
TWI221906B (en) Measuring devices
US7425778B2 (en) Apparatus and method for compensating secondary currents used in differential protection to correct for a phase shift introduced between high voltage and low voltage transformer windings
US8779776B2 (en) Power supply monitoring system
AU2010264383B2 (en) Electricity Meter Having an Uninsulated Current Sensor and a Cutoff Switch
US9829519B2 (en) Method and apparatus to commission voltage sensors and branch circuit current sensors for branch circuit monitoring systems
JP3624190B2 (en) DC insulation monitoring device
JP6373019B2 (en) Simulated power supply device and normal weighing confirmation device
RU2719278C1 (en) Method of determining the point and distance to single-phase ground fault in 6-35 kv electric networks with isolated or compensated neutral line
Saha et al. Fault location method for MV cable network
RU2558266C1 (en) Method of finding of distance to places of earth faults on two power lines in networks with low earth fault currents
JP5268969B2 (en) Digital test plug and power / phase measurement method using the same
WO2020026163A2 (en) A method and a device for supervision of a voltage transformer
JP2001201519A (en) Testing device and test method of current measuring circuit
CN102455395B (en) Method for testing high-voltage power supply and power distribution system loop
RU2557375C1 (en) Determination of distance to points of earth connection at two electric power transmission lines in networks with low earth currents
JPH11304870A (en) Method for confirming polarity of tertiary winding of meter current transformer, and testing method for ground protective relay using the same
KR20090132349A (en) Current transformer checker
JP6732603B2 (en) Bus monitor
JP2012002538A (en) Measurement apparatus of ground capacitance in electric power system
RU2484570C2 (en) Method for determination of damaged feeder on bus section of three-phase grid with insulated neutral in case of single phase earth faults
US11965916B2 (en) Method and device for determining the resistive component of the leakage current impedance in the alternating current network
US20130265065A1 (en) Method and apparatus for detecting a glowing contact in a power circuit
Voloh et al. Fault locator based on line current differential relays synchronized measurements
Kadechkar et al. On-line resistance measurement of substation connectors focused on predictive maintenance
JPH11287836A (en) Compound measuring device of power supply circuit

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3624190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term