JP3624130B2 - Induction motor rotor and induction motor - Google Patents

Induction motor rotor and induction motor Download PDF

Info

Publication number
JP3624130B2
JP3624130B2 JP2000012973A JP2000012973A JP3624130B2 JP 3624130 B2 JP3624130 B2 JP 3624130B2 JP 2000012973 A JP2000012973 A JP 2000012973A JP 2000012973 A JP2000012973 A JP 2000012973A JP 3624130 B2 JP3624130 B2 JP 3624130B2
Authority
JP
Japan
Prior art keywords
surface opening
rotor
opening
induction motor
rotor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000012973A
Other languages
Japanese (ja)
Other versions
JP2001211617A (en
Inventor
賢司 佐藤
真治 若尾
天 小貫
雅人 徳久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Japan Railway Co
Original Assignee
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Japan Railway Co filed Critical Central Japan Railway Co
Priority to JP2000012973A priority Critical patent/JP3624130B2/en
Publication of JP2001211617A publication Critical patent/JP2001211617A/en
Application granted granted Critical
Publication of JP3624130B2 publication Critical patent/JP3624130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/06Magnetic cores, or permanent magnets characterised by their skew

Landscapes

  • Induction Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、誘導電動機の回転子及びこれを備えた誘導電動機に関する。
【0002】
【従来の技術】
従来より新幹線車両駆動用の電動機としては直流電動機が採用されていたが、近年、速度の向上に伴って駆動用電動機が大容量になる一方で、台車の限られたスペースに装着する必要上小型軽量化が重要な要素になってきたため、小型軽量で大容量(大出力)を達成できる誘導電動機が採用されるに至っている。
【0003】
誘導電動機は、図4に示すように、中空円筒状の固定子51と、この固定子51の中空内部に非接触状態で回転可能に配置された回転子52とを備え、固定子51に回転磁界を発生させることにより回転子52を回転させるものである。
この誘導電動機は、小型化且つ高電力密度のため発熱量が大きいことから、この発熱により誘導電動機が高温化するのを防ぐために、回転子鉄心53には冷却風を通すための貫通孔54が同心円上に2列にわたって設けられている。そして、ブロアによって冷却風を送り込むことにより、冷却風がこの貫通孔54を通過して回転子52が強制冷却される。なお、この貫通孔54は誘導電動機全体を軽量化する役割も果たしている。
【0004】
【発明が解決しようとする課題】
しかしながら、貫通孔54を設けた場合には回転子鉄心53の半径方向の厚みが一様でなくなり、固定子51と回転子52とのギャップ間の磁束の分布が変動する。図5は、固定子51の内面のうち所定の軸方向区間Sにおける磁束密度平均値(磁束密度の基本波成分の波高値の平均値のこと、以下同じ)の推移を示したものであり、グラフ横軸は回転子52の固定子51に対する回転角度、グラフ縦軸は軸方向区間Sにおけるギャップ間の磁束密度平均値を表している。
【0005】
この図から明らかなように、回転子52が回転するのに伴い、軸方向区間Sにおける磁束密度平均値はほぼ正弦カーブ状に推移する。すなわち、ギャップ間の磁束密度Bは回転方向に高調波を含んだ正弦波状に分布しているが、基本波成分だけを式で表すと、B=Asinθ(A:磁束密度の基本波成分の波高値)となり、このAの平均値が正弦カーブ状に推移する。
【0006】
この正弦カーブの周期は磁極に対する貫通孔54の配置に依存するが、ここでは同心円上に12個の貫通孔54が設けられているため、その周期は360°/12個=30°となっている。このように回転子52の回転に伴って軸方向区間Sにおける磁束密度平均値が正弦カーブ状に推移すると、トルク脈動、振動、騒音の発生原因になるおそれがある。
【0007】
本発明は上記問題点を解決することを課題とするものであり、貫通孔を備えているにもかかわらず、その貫通孔に起因したトルク脈動等が発生しない誘導電動機の回転子を提供することを目的とする。また、この回転子を備えた誘導電動機を提供することを別の目的とする。
【0008】
【課題を解決するための手段及び発明の効果】
かかる課題を解決するため、本発明は、回転子鉄心と、前記回転子鉄心の外周面にて設けられた複数の導体バーと、前記回転子鉄心の上面及び下面にて各導体バーの端部を短絡するように設けられたエンドリングと、前記回転子鉄心の上面から下面にかけて貫通し、前記回転子鉄心の上面及び下面における開口が軸中心まわりの同心円上に並んでいる複数の冷却用の貫通孔とを備えた誘導電動機の回転子において、
前記貫通孔は、前記回転子鉄心の軸方向に対して傾斜するように設けられており、
しかも、該貫通孔はN個形成され、上面に設けられた開口を第1上面開口、第2上面開口、……、第N上面開口とし、下面に設けられた開口を第1下面開口、第2下面開口、……、第N下面開口とし、第k上面開口と第k下面開口とを結んだ線が軸方向と一致する場合、各貫通孔は第k上面開口と第(k+1)下面開口とを貫通して形成され(但し、第N上面開口は第1下面開口に貫通されている)、
さらに、
前記貫通孔の上面開口及び下面開口は軸中心まわりの同心円上に二列にわたって並んでおり、大円側における隣合う開口同士の間に小円側における開口が位置するように配置されていることを特徴とする。
【0009】
本発明の誘導電動機の回転子は、中空円筒状の固定子の中空内部に非接触状態で回転可能に配置され、固定子に回転磁界を発生させることによって導体バーに誘導電流が流れ、アラゴの円板の原理により回転するものである。また、複数の貫通孔は、発熱により誘導電動機が高温になるのを防ぐと共に回転子を軽量化するために設けられている。ここで、貫通孔は回転子鉄心の軸方向に沿って平行に設けられているのではなく、回転子鉄心の軸方向に対して傾斜するように設けられている(つまりスキューが施されている)。このため、固定子の内面のうち所定の軸方向区間における磁束密度平均値は、回転子が回転するのに伴って大きく変化することはなく、貫通孔が設けられていない場合に近づく。
【0010】
なお、前述したとおり、磁束密度平均値とは磁束密度の基本波成分の波高値の平均値のことをいうが、このように基本波成分に着目する理由は、基本波成分がトルクつまり出力を生み出す重要な要素だからである。
このように本発明によれば、貫通孔が存在しているにもかかわらず、固定子と回転子との間つまりギャップ間の磁束分布が大きく変動することがないため、磁束分布の変動に起因するトルク脈動、振動、騒音が発生しないという効果が得られる。
【0011】
本発明では、貫通孔はN個形成され、上面に設けられた開口を第1上面開口、第2上面開口、……、第N上面開口とし、下面に設けられた開口を第1下面開口、第2下面開口、……、第N下面開口とし、第k上面開口と第k下面開口とを結んだ線が軸方向と一致する場合、各貫通孔は第k上面開口と第(k+1)下面開口とを貫通して形成されている(但し、第N上面開口は第1下面開口に貫通されている)。すなわち、貫通孔は1ピッチ分だけスキューされている。このため、固定子の内面のうち所定の軸方向区間における磁束密度平均値は、正弦カーブの1周期分を平均した値となり、回転子が回転したとしてもほとんど変化しない。したがって、上記効果がより有効に得られる。
【0012】
また、本発明では、貫通孔の上面開口及び下面開口は軸中心まわりの二重円上に2列にわたって並んでおり、大円側における隣合う開口同士の間に小円側における開口が位置するように配置されている。この場合、貫通孔による冷却化・軽量化が顕著になる。
【0013】
更に、本発明において、回転子鉄心は、同心円上に穴が列設された円盤状の電磁鋼板をずらしながら積層したものであることが好ましい。通常、回転子鉄心は同心円上に穴が列設された円盤状の電磁鋼板(例えばケイ素鋼板)を用いてその穴が軸方向に沿って揃うように積層したものであるが、ここではこれと同様の電磁鋼板をずらしながら積層することにより、貫通孔が軸方向に対して傾斜した回転子鉄心が得られるため、従来と同様の製造方法を踏襲できる。
【0014】
以上詳述した本発明の回転子を備えた誘導電動機は、各種用途に用いることができるが、とりわけ小型軽量化しかもハイパワーが要求される用途、例えば高速鉄道車両の駆動用等に適している。
【0015】
【発明の実施の形態】
以下に、本発明の好適な実施形態を図面に基づいて説明する。図1は誘導電動機の説明図、図2は誘導電動機の回転子の概略斜視図である。誘導電動機10は、図1に示すように固定子11と回転子21とで構成されている。
【0016】
固定子11は、円筒中空状であってその内面に複数のスロット12を有する固定子鉄心13と、このスロット12に巻かれた三相巻線14(U相、V相、W相)とを備え、三相巻線14に三相交流を通じることにより回転磁界が発生する。回転子21は、固定子鉄心13の中空内部に非接触状態で回転可能に配置されるものであり、ケイ素鋼板が積層された回転子鉄心22と、この回転子鉄心22の外周にて軸方向に沿って線状に設けられた複数の導体バー23と、回転子鉄心22の上面22a及び下面22bにて各導体バー23の端部を短絡するエンドリング24と、回転子鉄心22の中心軸に当たる回転軸25とを備えている。
【0017】
また、回転子21は、回転子鉄心22とカゴ型巻線26(導体バー23とエンドリング24からなる)とを組み合わせたものであり、回転子鉄心22の外周にて軸方向に沿って設けられた複数のスロット27にカゴ型巻線26の導体バー23を配置したものである。
【0018】
このうち回転子鉄心22は、図2に示すように、回転軸25を挿通するための挿通孔28が設けられ、更に、冷却風を通すための貫通孔29、30が多数設けられている。貫通孔29は、回転子鉄心22の上面22aにおける開口(上面開口)29aから下面22bにおける開口(下面開口)29bにかけて貫通し、回転子鉄心22の軸方向に対して傾斜するようにスキューが施されている。また、貫通孔30も、上面開口30aから下面開口30bにかけて貫通し、回転子鉄心22の軸方向に対して傾斜するようにスキューが施されている。
【0019】
そして、回転子鉄心22の上面22aにおける複数の上面開口29a、30aは軸中心まわりの同心円上に二列に列設されており、複数の下面開口29b、30bも軸中心まわりの同心円上に二列に列設されている。
ここで、貫通孔29について更に詳細に説明する。本実施形態では貫通孔29はN個(ここではN=12)設けられているが、これらを便宜上、第1貫通孔29−1、第2貫通孔29−2、……、第N貫通孔29−Nと称することとする。また、本実施形態では、回転子鉄心22の上面22aには第1上面開口29a−1、第2上面開口29a−2、……、第N上面開口29a−Nが同心円上に設けられ、下面22bには第1下面開口29b−1、第2下面開口29b−2、……、第N下面開口29b−Nが同心円上に設けられ、第k上面開口29a−kと第k下面開口29b−kとを結んだ線が軸方向と一致つまり軸方向と平行になっている。そして、N個の貫通孔29は、それぞれ第k上面開口29a−kと第(k+1)下面開口29b−(k+1)とを貫通して形成されている(但し、第N上面開口29a−Nは第1下面開口29b−1に貫通されている)。
【0020】
つまり、従来では図4に示したように貫通孔54は第k上面開口と第k下面開口とを貫通して軸方向に沿って平行に形成されていたのに対して、本実施形態の貫通孔29は下面開口を1ピッチずらして第k上面開口29a−kと第(k+1)下面開口29b−(k+1)とを貫通して軸方向に対して傾斜するように形成されている。このように1ピッチずらして貫通孔を設けることを1ピッチスキューと称する。貫通孔30についても同様に1ピッチスキューが施されている。
【0021】
回転子鉄心22の上面22aにおいて、上面開口29aは大径の同心円上に列設され、上面開口30aは小径の同心円上に列設されているが、隣合う上面開口29a、29a同士の間に上面開口30aが位置するように配置されている。また、下面22bにおいても同様に、下面開口29bは大径の同心円上に列設され、下面開口30bは小径の同心円上に列設されているが、隣合う下面開口29b、29b同士の間に下面開口30bが位置するように配置されている。
【0022】
次に、この誘導電動機10の動作について説明する。この誘導電動機10では、固定子11の三相巻線14に三相交流を通じることにより発生する回転磁界によって、回転子21の導体バー23に誘導電流が流れ、アラゴの円板の原理により回転軸25を中心として回転子21が回転する。このように回転している誘導電動機10は、小型化且つ高電力密度のため発熱量が大きいことから、この発熱により誘導電動機10が高温化するのを防ぐために、ブロアによって回転子21の貫通孔29,30へ冷却風が送り込まれて強制冷却される。
【0023】
この誘導電動機10では、貫通孔29,30は回転子鉄心22の軸方向に対して傾斜するように設けられ、特に本実施形態では1ピッチスキューが施されているため、固定子11の内面のうち所定の軸方向区間S(図2参照)における磁束密度平均値は、回転子21が回転するのに伴ってほとんど変化することはなく、貫通孔29,30が設けられていない場合とほぼ同等である。
【0024】
具体的には、図3の実線で示すように、軸方向区間Sにおける磁束密度平均値は回転子21の回転角度にかかわらずほぼ一定であり、従来例(スキューなし、図3の一点鎖線参照)が正弦カーブ状であるのと対照的である。
以上詳述したように、本実施形態の誘導電動機10によれば、貫通孔29,30が存在しているにもかかわらず、軸方向区間Sにおける固定子11と回転子21との間つまりギャップ間の磁束分布はほとんど変化しないないため、磁束分布の変動に起因するトルク脈動、振動、騒音が発生しないという効果が得られる。
【0025】
また、貫通孔29の上面開口29aと貫通孔30の上面開口30aとは軸中心まわりの同心円上に二列にわたって設けられ、貫通孔29の下面開口29bと貫通孔30の下面開口30bとは軸中心まわりの同心円上に二列にわたって設けられているため、貫通孔29、30による冷却化・軽量化が顕著になる。
【0026】
更に、本実施形態では上面開口29aと上面開口30aとは千鳥状に列設されているため、両上面開口29a、30aを半径方向に直線上に設けた場合に比べて、磁束分布の変動幅がより小さくなる。
更にまた、回転子鉄心22は、同心円上に穴が二列にわたって設けられた円盤状のケイ素鋼板をずらしながら積層することにより作製できるため、従来と同様の製造方法を踏襲できる。
【0027】
そしてまた、本実施形態の誘導電動機10は、各種用途に用いることができるが、とりわけ小型軽量化しかもハイパワーが要求される用途、例えば高速鉄道車両の駆動等に適している。
尚、本発明の実施の形態は、上記実施形態に何ら限定されるものではなく、本発明の技術的範囲に属する限り種々の形態を採り得ることはいうまでもない。
【0028】
例えば、上記実施形態の貫通孔29、30は1ピッチスキューを施したが、特に1ピッチスキューに限らず、1/2ピッチスキューであってもよいし、2ピッチスキューであってもよい。1/2ピッチスキューの場合、軸方向区間Sにおける磁束密度平均値は図3の点線で示すように推移するが、スキューなしに比べれば変動幅は小さくなるため磁束分布の変動に起因するトルク脈動等を防止することはできるものの、1ピッチスキュー(図3にて実線)の方が優れている。
【0029】
また、回転子21の外周に設けたスロット27をスキューさせたり、固定子11の内面に設けたスロット12をスキューさせたりしてもよい。
なお、上記実施形態では詳しく述べなかったが、回転子21には貫通孔29、30のほかにスロット27が設けられているため、このスロット27の影響により軸方向区間Sにおける磁束密度平均値が若干変動する。
【図面の簡単な説明】
【図1】本実施形態の誘導電動機の説明図である。
【図2】本実施形態の回転子の概略斜視図である。
【図3】本実施形態の誘導電動機に関し、所定の軸方向区間における磁束密度平均値の推移を表すグラフである。
【図4】従来の回転子の概略斜視図である。
【図5】従来の誘導電動機に関し、所定の軸方向区間における磁束密度平均値の推移を表すグラフである。
【符号の説明】
10・・・誘導電動機、11・・・固定子、12・・・スロット、13・・・固定子鉄心、14・・・三相巻線、21・・・回転子、22・・・回転子鉄心、23・・・導体バー、24・・・エンドリング、25・・・回転軸、26・・・カゴ型巻線、27・・・スロット、28・・・挿通孔、29・・・貫通孔、29a・・・上面開口、29b・・・下面開口、30・・・貫通孔、30a・・・上面開口、30b・・・下面開口。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an induction motor rotor and an induction motor including the same.
[0002]
[Prior art]
Conventionally, DC motors have been adopted as electric motors for driving Shinkansen vehicles, but in recent years, as the speed of motors has increased, the motors for driving have become larger in size, but they need to be mounted in a limited space on the bogie. Since weight reduction has become an important factor, induction motors that can achieve large capacity (large output) with small size and light weight have been adopted.
[0003]
As shown in FIG. 4, the induction motor includes a hollow cylindrical stator 51 and a rotor 52 that is rotatably arranged in a non-contact state inside the hollow of the stator 51, and rotates on the stator 51. The rotor 52 is rotated by generating a magnetic field.
Since this induction motor has a large calorific value due to its small size and high power density, in order to prevent the induction motor from being heated to a high temperature due to this heat generation, the rotor core 53 has a through hole 54 for passing cooling air. It is provided in two rows on concentric circles. And by sending cooling air with a blower, cooling air passes through this through-hole 54 and the rotor 52 is forcedly cooled. The through hole 54 also serves to reduce the weight of the entire induction motor.
[0004]
[Problems to be solved by the invention]
However, when the through hole 54 is provided, the radial thickness of the rotor core 53 is not uniform, and the distribution of magnetic flux between the gaps between the stator 51 and the rotor 52 varies. FIG. 5 shows the transition of the magnetic flux density average value (the average value of the peak values of the fundamental wave component of the magnetic flux density, the same applies hereinafter) in a predetermined axial section S of the inner surface of the stator 51. The horizontal axis of the graph represents the rotation angle of the rotor 52 relative to the stator 51, and the vertical axis of the graph represents the average value of the magnetic flux density between the gaps in the axial section S.
[0005]
As is apparent from this figure, as the rotor 52 rotates, the average magnetic flux density value in the axial section S changes in a substantially sinusoidal shape. That is, the magnetic flux density B between the gaps is distributed in a sinusoidal shape including harmonics in the rotational direction, but if only the fundamental wave component is expressed by an equation, B = Asin θ (A: wave of the fundamental wave component of the magnetic flux density) The average value of A changes to a sine curve.
[0006]
The period of the sine curve depends on the arrangement of the through holes 54 with respect to the magnetic poles. However, since 12 through holes 54 are provided concentrically here, the period is 360 ° / 12 pieces = 30 °. Yes. As described above, if the magnetic flux density average value in the axial section S changes in a sine curve as the rotor 52 rotates, there is a possibility that torque pulsation, vibration, and noise are generated.
[0007]
An object of the present invention is to provide a rotor for an induction motor in which torque pulsation or the like due to the through hole does not occur even though the through hole is provided. With the goal. Another object is to provide an induction motor provided with this rotor.
[0008]
[Means for Solving the Problems and Effects of the Invention]
In order to solve such a problem, the present invention provides a rotor core, a plurality of conductor bars provided on the outer peripheral surface of the rotor core, and end portions of the conductor bars on the upper surface and the lower surface of the rotor core. An end ring provided so as to be short-circuited, and a plurality of cooling cores penetrating from the upper surface to the lower surface of the rotor core, and openings on the upper surface and the lower surface of the rotor core are arranged concentrically around the axis center In the rotor of an induction motor with a through hole,
The through hole is provided so as to be inclined with respect to the axial direction of the rotor core ,
Moreover, N through holes are formed, and the opening provided on the upper surface is defined as the first upper surface opening, the second upper surface opening,..., The Nth upper surface opening, and the opening provided on the lower surface is defined as the first lower surface opening. 2 lower surface openings,..., The Nth lower surface opening, and when the line connecting the kth upper surface opening and the kth lower surface opening coincides with the axial direction, each through hole has the kth upper surface opening and the (k + 1) th lower surface opening. (However, the Nth upper surface opening is penetrated by the first lower surface opening),
further,
The upper surface opening and the lower surface opening of the through hole are arranged in two rows on a concentric circle around the axis center, and are arranged so that the opening on the small circle side is located between the adjacent openings on the large circle side. It is characterized by.
[0009]
The rotor of the induction motor of the present invention is rotatably arranged in a hollow state of a hollow cylindrical stator, and an induction current flows through the conductor bar by generating a rotating magnetic field in the stator. It rotates by the principle of a disk. The plurality of through holes are provided in order to prevent the induction motor from becoming high temperature due to heat generation and to reduce the weight of the rotor. Here, the through hole is not provided in parallel along the axial direction of the rotor core, but is provided so as to be inclined with respect to the axial direction of the rotor core (that is, skewed). ). For this reason, the magnetic flux density average value in a predetermined axial direction section of the inner surface of the stator does not change greatly as the rotor rotates, and approaches the case where no through hole is provided.
[0010]
As described above, the average magnetic flux density means the average value of the peak values of the fundamental wave component of the magnetic flux density. The reason for focusing on the fundamental wave component in this way is that the fundamental wave component generates torque, that is, output. Because it is an important element to produce.
As described above, according to the present invention, the magnetic flux distribution between the stator and the rotor, that is, between the gaps does not fluctuate greatly despite the presence of the through hole. The effect that no torque pulsation, vibration, or noise occurs is obtained.
[0011]
In the present invention, N through holes are formed, and the opening provided on the upper surface is defined as the first upper surface opening, the second upper surface opening,..., The Nth upper surface opening, and the opening provided on the lower surface is the first lower surface opening. When the second lower surface opening,..., Is the Nth lower surface opening, and the line connecting the kth upper surface opening and the kth lower surface opening coincides with the axial direction, each through hole has the kth upper surface opening and the (k + 1) th lower surface. (The Nth upper surface opening is penetrated by the first lower surface opening ). That is, the through hole is skewed by one pitch. For this reason, the magnetic flux density average value in a predetermined axial direction section on the inner surface of the stator is a value obtained by averaging one cycle of the sine curve, and hardly changes even if the rotor rotates. Therefore, the above effect can be obtained more effectively.
[0012]
In the present invention, the upper surface opening and the lower surface opening of the through hole are arranged in two rows on a double circle around the axis center, and the opening on the small circle side is located between the adjacent openings on the large circle side. Are arranged as follows. In this case, cooling and weight reduction due to the through-holes are remarkable.
[0013]
Furthermore, in the present invention, it is preferable that the rotor iron core is formed by laminating disc-shaped electromagnetic steel plates in which holes are arranged on concentric circles while being shifted. Normally, the rotor core is a disc-shaped electromagnetic steel plate (for example, silicon steel plate) in which holes are arranged on concentric circles and laminated so that the holes are aligned along the axial direction. By laminating the same electromagnetic steel sheets while shifting, a rotor core whose through-holes are inclined with respect to the axial direction can be obtained. Therefore, the same manufacturing method as the conventional one can be followed.
[0014]
The induction motor equipped with the rotor of the present invention described in detail above can be used for various applications, but is particularly suitable for applications that are small and light and require high power, for example, for driving a high-speed railway vehicle. .
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view of an induction motor, and FIG. 2 is a schematic perspective view of a rotor of the induction motor. As shown in FIG. 1, the induction motor 10 includes a stator 11 and a rotor 21.
[0016]
The stator 11 has a cylindrical hollow shape and includes a stator core 13 having a plurality of slots 12 on the inner surface thereof, and a three-phase winding 14 (U phase, V phase, W phase) wound around the slot 12. In addition, a rotating magnetic field is generated by passing a three-phase alternating current through the three-phase winding 14. The rotor 21 is rotatably arranged in a non-contact state in the hollow interior of the stator core 13, and the rotor core 22 in which silicon steel plates are laminated and the axial direction on the outer periphery of the rotor core 22. A plurality of conductor bars 23 linearly provided along the end, end rings 24 that short-circuit the ends of the conductor bars 23 on the upper surface 22a and the lower surface 22b of the rotor core 22, and the central axis of the rotor core 22. And a rotating shaft 25 that hits the shaft.
[0017]
The rotor 21 is a combination of a rotor core 22 and a cage winding 26 (consisting of a conductor bar 23 and an end ring 24), and is provided along the outer circumference of the rotor core 22 along the axial direction. The conductor bar 23 of the cage winding 26 is disposed in the plurality of slots 27 formed.
[0018]
Among these, as shown in FIG. 2, the rotor core 22 is provided with an insertion hole 28 through which the rotary shaft 25 is inserted, and is further provided with a number of through holes 29 and 30 through which cooling air is passed. The through hole 29 penetrates from the opening (upper surface opening) 29a in the upper surface 22a of the rotor core 22 to the opening (lower surface opening) 29b in the lower surface 22b, and is skewed so as to be inclined with respect to the axial direction of the rotor core 22. Has been. The through hole 30 also penetrates from the upper surface opening 30 a to the lower surface opening 30 b and is skewed so as to be inclined with respect to the axial direction of the rotor core 22.
[0019]
The plurality of upper surface openings 29a and 30a on the upper surface 22a of the rotor core 22 are arranged in two rows on a concentric circle around the axis center, and the plurality of lower surface openings 29b and 30b are also arranged on a concentric circle around the axis center. It is arranged in a row.
Here, the through hole 29 will be described in more detail. In the present embodiment, N through holes 29 (N = 12 in this case) are provided, but for the sake of convenience, the first through holes 29 −1 , the second through holes 29 −2 ,... 29- N . In the present embodiment, the upper surface 22a of the rotor core 22 is provided with a first upper surface opening 29a- 1 , a second upper surface opening 29a- 2 , ..., an Nth upper surface opening 29a- N on a concentric circle. the first surface opening 29 b -1 to 22b, the second surface opening 29 b -2, ......, N-th surface opening 29 b -N are provided on a concentric circle, the k upper opening 29a -k and the k lower surface opening 29 b - The line connecting k is coincident with the axial direction, that is, parallel to the axial direction. The N through holes 29 are formed through the kth upper surface opening 29a- k and the (k + 1) lower surface opening 29b- (k + 1) , respectively (however, the Nth upper surface opening 29a- N is The first lower surface opening 29b- 1 is penetrated).
[0020]
That is, conventionally, as shown in FIG. 4, the through-hole 54 is formed in parallel along the axial direction through the k-th upper surface opening and the k-th lower surface opening. The hole 29 is formed so as to be inclined with respect to the axial direction through the kth upper surface opening 29a- k and the (k + 1) th lower surface opening 29b- (k + 1) while shifting the lower surface opening by one pitch. Providing the through holes with a shift of 1 pitch in this way is referred to as a 1 pitch skew. Similarly, the through hole 30 is also subjected to 1 pitch skew.
[0021]
On the upper surface 22a of the rotor core 22, the upper surface openings 29a are arranged on a large-diameter concentric circle, and the upper surface openings 30a are arranged on a small-diameter concentric circle, but between the adjacent upper surface openings 29a, 29a. It arrange | positions so that the upper surface opening 30a may be located. Similarly, in the lower surface 22b, the lower surface openings 29b are arranged on a large-diameter concentric circle, and the lower surface openings 30b are arranged on a small-diameter concentric circle, but between the adjacent lower surface openings 29b, 29b. It arrange | positions so that the lower surface opening 30b may be located.
[0022]
Next, the operation of the induction motor 10 will be described. In this induction motor 10, an induction current flows through the conductor bar 23 of the rotor 21 by a rotating magnetic field generated by passing a three-phase alternating current through the three-phase winding 14 of the stator 11, and the rotation is performed according to the principle of Arago's disk. The rotor 21 rotates about the shaft 25. The induction motor 10 rotating in this way has a large heat generation due to its small size and high power density. Therefore, in order to prevent the induction motor 10 from being heated to a high temperature due to this heat generation, the through hole of the rotor 21 is blown by a blower. Cooling air is sent to 29 and 30 and forced cooling is performed.
[0023]
In this induction motor 10, the through holes 29 and 30 are provided so as to be inclined with respect to the axial direction of the rotor core 22, and in particular in this embodiment, one pitch skew is applied. Of these, the average value of the magnetic flux density in a predetermined axial section S (see FIG. 2) hardly changes as the rotor 21 rotates, and is almost equivalent to the case where the through holes 29 and 30 are not provided. It is.
[0024]
Specifically, as shown by the solid line in FIG. 3, the average value of the magnetic flux density in the axial section S is substantially constant regardless of the rotation angle of the rotor 21, and the conventional example (no skew, see the one-dot chain line in FIG. ) In contrast to the sinusoidal shape.
As described above in detail, according to the induction motor 10 of the present embodiment, the gap between the stator 11 and the rotor 21 in the axial section S, that is, the gap, despite the presence of the through holes 29 and 30. Since there is almost no change in the magnetic flux distribution between them, there is an effect that torque pulsation, vibration, and noise caused by fluctuations in the magnetic flux distribution do not occur.
[0025]
In addition, the upper surface opening 29a of the through hole 29 and the upper surface opening 30a of the through hole 30 are provided in two rows on a concentric circle around the axis center, and the lower surface opening 29b of the through hole 29 and the lower surface opening 30b of the through hole 30 are Since it is provided in two rows on a concentric circle around the center, cooling and weight reduction by the through holes 29 and 30 become remarkable.
[0026]
Furthermore, since the upper surface openings 29a and the upper surface openings 30a are arranged in a staggered manner in this embodiment, the fluctuation range of the magnetic flux distribution is larger than when both the upper surface openings 29a and 30a are linearly provided in the radial direction. Becomes smaller.
Furthermore, since the rotor core 22 can be manufactured by laminating a disc-shaped silicon steel plate in which holes are provided in two rows on concentric circles, the manufacturing method similar to the conventional method can be followed.
[0027]
In addition, the induction motor 10 of the present embodiment can be used for various applications, and is particularly suitable for applications that are small and light and require high power, such as driving a high-speed railway vehicle.
The embodiment of the present invention is not limited to the above-described embodiment, and it goes without saying that various forms can be adopted as long as it belongs to the technical scope of the present invention.
[0028]
For example, the through holes 29 and 30 of the above embodiment have been subjected to 1 pitch skew, but are not limited to 1 pitch skew, and may be 1/2 pitch skew or 2 pitch skew. In the case of the 1/2 pitch skew, the average value of the magnetic flux density in the axial section S changes as indicated by the dotted line in FIG. 1 pitch skew (solid line in FIG. 3) is superior.
[0029]
Further, the slot 27 provided on the outer periphery of the rotor 21 may be skewed, or the slot 12 provided on the inner surface of the stator 11 may be skewed.
Although not described in detail in the above embodiment, since the rotor 21 is provided with the slot 27 in addition to the through holes 29 and 30, the magnetic flux density average value in the axial section S is influenced by the slot 27. Fluctuates slightly.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an induction motor according to an embodiment.
FIG. 2 is a schematic perspective view of a rotor according to the present embodiment.
FIG. 3 is a graph showing a transition of an average magnetic flux density value in a predetermined axial section for the induction motor of the present embodiment.
FIG. 4 is a schematic perspective view of a conventional rotor.
FIG. 5 is a graph showing the transition of the average magnetic flux density in a predetermined axial section for a conventional induction motor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Induction motor, 11 ... Stator, 12 ... Slot, 13 ... Stator core, 14 ... Three-phase winding, 21 ... Rotor, 22 ... Rotor Iron core, 23 ... conductor bar, 24 ... end ring, 25 ... rotary shaft, 26 ... cage winding, 27 ... slot, 28 ... insertion hole, 29 ... through Hole, 29a ... upper surface opening, 29b ... lower surface opening, 30 ... through hole, 30a ... upper surface opening, 30b ... lower surface opening.

Claims (4)

回転子鉄心と、
前記回転子鉄心の外周面に設けられた複数の導体バーと、
前記回転子鉄心の上面及び下面にて各導体バーの端部を短絡するように設けられたエンドリングと、
前記回転子鉄心の上面から下面にかけて貫通し、前記回転子鉄心の上面及び下面における開口が軸中心まわりの同心円上に並んでいる複数の冷却用の貫通孔と
を備えた誘導電動機の回転子において、
前記貫通孔は、前記回転子鉄心の軸方向に対して傾斜するように設けられており
しかも、該貫通孔はN個形成され、上面に設けられた開口を第1上面開口、第2上面開口、……、第N上面開口とし、下面に設けられた開口を第1下面開口、第2下面開口、……、第N下面開口とし、第k上面開口と第k下面開口とを結んだ線が軸方向と一致する場合、各貫通孔は第k上面開口と第(k+1)下面開口とを貫通して形成され(但し、第N上面開口は第1下面開口に貫通されている)、
さらに、
前記貫通孔の上面開口及び下面開口は軸中心まわりの同心円上に二列にわたって並んでおり、大円側における隣合う開口同士の間に小円側における開口が位置するように配置されていることを特徴とする誘導電動機の回転子。
The rotor core,
A plurality of conductor bars provided on the outer peripheral surface of the rotor core;
End rings provided so as to short-circuit the ends of the conductor bars at the upper and lower surfaces of the rotor core;
In an induction motor rotor comprising a plurality of cooling through holes penetrating from an upper surface to a lower surface of the rotor core, and openings in the upper surface and the lower surface of the rotor core being arranged concentrically around an axis center ,
The through hole is provided so as to be inclined with respect to the axial direction of the rotor core ,
Moreover, N through holes are formed, and the opening provided on the upper surface is defined as the first upper surface opening, the second upper surface opening,..., The Nth upper surface opening, and the opening provided on the lower surface is defined as the first lower surface opening. 2 lower surface openings,..., The Nth lower surface opening, and when the line connecting the kth upper surface opening and the kth lower surface opening coincides with the axial direction, each through hole has the kth upper surface opening and the (k + 1) th lower surface opening. (However, the Nth upper surface opening is penetrated by the first lower surface opening),
further,
The upper surface opening and the lower surface opening of the through hole are arranged in two rows on a concentric circle around the axis center, and are arranged so that the opening on the small circle side is located between the adjacent openings on the large circle side. An induction motor rotor characterized by the above.
前記回転子鉄心は、同心円上に穴が列設された円盤状の電磁鋼板をずらしながら積層したものである請求項1に記載の誘導電動機の回転子。The rotor of an induction motor according to claim 1 , wherein the rotor core is formed by laminating disc-shaped electromagnetic steel plates in which holes are arranged on concentric circles while being shifted. 請求項1〜2のいずれかに記載の回転子を備えた誘導電動機。An induction motor comprising the rotor according to claim 1 . 高速鉄道車両駆動用である請求項3記載の誘導電動機。The induction motor according to claim 3 , which is used for driving a high-speed railway vehicle.
JP2000012973A 2000-01-21 2000-01-21 Induction motor rotor and induction motor Expired - Fee Related JP3624130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000012973A JP3624130B2 (en) 2000-01-21 2000-01-21 Induction motor rotor and induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000012973A JP3624130B2 (en) 2000-01-21 2000-01-21 Induction motor rotor and induction motor

Publications (2)

Publication Number Publication Date
JP2001211617A JP2001211617A (en) 2001-08-03
JP3624130B2 true JP3624130B2 (en) 2005-03-02

Family

ID=18540630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000012973A Expired - Fee Related JP3624130B2 (en) 2000-01-21 2000-01-21 Induction motor rotor and induction motor

Country Status (1)

Country Link
JP (1) JP3624130B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3764375B2 (en) 2001-11-15 2006-04-05 三菱電機株式会社 Synchronous induction motor rotor, motor rotor, synchronous induction motor, induction motor, DC brushless motor, hermetic compressor, refrigerator, air conditioner, and synchronous induction motor rotor manufacturing method
BRPI0418917A (en) * 2004-06-14 2007-11-27 Juan Jose Azurmendi Inchausti traction system for lifts, escalators, walkways and wind turbines of the type powered by an electric motor consisting of a stator and rotor and, in the case of lifts, an emergency system when the power fails
KR100845122B1 (en) * 2006-07-05 2008-07-10 이명산 Ac motor magnetic rotor
KR101581952B1 (en) * 2009-05-25 2015-12-31 현대모비스 주식회사 Low noise type motor
KR101303493B1 (en) * 2011-12-29 2013-09-03 주식회사 효성 Roter of motor having twisted air hole
JP6101550B2 (en) * 2013-04-25 2017-03-22 アイシン精機株式会社 Superconducting rotating machine
JP6844957B2 (en) 2016-05-19 2021-03-17 東海旅客鉄道株式会社 Squirrel-cage induction motor
KR102023535B1 (en) * 2018-04-18 2019-09-20 김병국 load motor

Also Published As

Publication number Publication date
JP2001211617A (en) 2001-08-03

Similar Documents

Publication Publication Date Title
EP2418756B1 (en) Permanent magnet rotating electric machine
US6340857B2 (en) Motor having a rotor with interior split-permanent-magnet
US4536672A (en) Flat type rotary electric machine
US7705503B2 (en) Rotating electrical machine
KR100983862B1 (en) Dynamo-electric machine
US6987343B2 (en) Motor
US5973436A (en) Electrical machine
EP0726638B1 (en) Electromagnetic rotary machine comprising an electromagnetic bearing
EP2403107B1 (en) Permanent magnet type rotary machine
JP3624130B2 (en) Induction motor rotor and induction motor
MX2011001263A (en) Interior permanent magnet motor including rotor with unequal poles.
JP2011504089A (en) Generator / induction motor with concentric multi-stage rotors
US20160294236A1 (en) System and method for supporting laminations of synchronous reluctance motors
US7205695B2 (en) High speed rotor
JPWO2014199769A1 (en) Rotating electric machine
CA1170302A (en) Reduced operating loss rotor for induction motor
TWM607141U (en) Disk type generator
US20230025203A1 (en) Rotary electric machine
EP2477313B1 (en) An electric machine
JP2013099036A (en) Rotary electric machine
EP0133571A2 (en) Flat type rotary electric machine
KR101660893B1 (en) Rotor of electric motor
JP4008314B2 (en) High speed induction motor
JP2020137151A (en) Squirrel-cage induction motor and squirrel-cage rotator
KR102687237B1 (en) Rotor for hybrid motor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041129

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees