JP3623309B2 - Defpinion tapered roller bearing device - Google Patents

Defpinion tapered roller bearing device Download PDF

Info

Publication number
JP3623309B2
JP3623309B2 JP10126496A JP10126496A JP3623309B2 JP 3623309 B2 JP3623309 B2 JP 3623309B2 JP 10126496 A JP10126496 A JP 10126496A JP 10126496 A JP10126496 A JP 10126496A JP 3623309 B2 JP3623309 B2 JP 3623309B2
Authority
JP
Japan
Prior art keywords
tapered roller
roller bearing
housing
outer ring
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10126496A
Other languages
Japanese (ja)
Other versions
JPH09287617A (en
Inventor
邦彦 横田
博文 百々路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koyo Seiko Co Ltd
Original Assignee
Koyo Seiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Seiko Co Ltd filed Critical Koyo Seiko Co Ltd
Priority to JP10126496A priority Critical patent/JP3623309B2/en
Publication of JPH09287617A publication Critical patent/JPH09287617A/en
Application granted granted Critical
Publication of JP3623309B2 publication Critical patent/JP3623309B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/56Systems consisting of a plurality of bearings with rolling friction in which the rolling bodies of one bearing differ in diameter from those of another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/36Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers
    • F16C19/364Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with a single row of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C25/00Bearings for exclusively rotary movement adjustable for wear or play
    • F16C25/06Ball or roller bearings
    • F16C25/08Ball or roller bearings self-adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H48/42Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon
    • F16H2048/423Constructional details characterised by features of the input shafts, e.g. mounting of drive gears thereon characterised by bearing arrangement

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Support Of The Bearing (AREA)
  • General Details Of Gearings (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、デフピニオン(差動小歯車)の円すいころ軸受装置に関する。
【0002】
【従来の技術】
従来、デフピニオンの円すいころ軸受装置としては、軸とハウジングとの間に軸方向に所定の間隔を隔てて2つの円すいころ軸受を配置したものがある。上記ハウジングは径方向内方に突き出した内周凸部を有し、この内周凸部が上記2つの円すいころ軸受の2つの外輪の間に嵌合して間座の役目を果たしている。また、上記2つの円すいころ軸受の内輪の間には、内輪間座が嵌合されている。従来、軸とハウジングおよび2つの円すいころ軸受は鋼製である。
【0003】
【発明が解決しようとする課題】
ところで、軽量化の目的で、上記ハウジングを鋼製からアルミ合金製に変えることが検討されている。
【0004】
しかし、上記ハウジングをアルミ合金製にした場合には、ハウジングの線膨張係数が軸や軸受や内輪間座の線膨張係数よりも大きなことに起因して、使用温度の上下変動により、円すいころ軸受のアキシャル隙間が増減して、予圧不足で円すいころ軸受にガタが発生したり、予圧過大で焼き付いたりするという問題がある。
【0005】
そこで、この発明の目的は、使用温度の変化による円すいころ軸受の予圧不足や予圧過大を招くことなく、ハウジングをアルミ合金製にして軽量化することができるデフピニオンの円すいころ軸受装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、請求項1の発明のデフピニオンの円すいころ軸受装置は、軸と、軸方向に所定の間隔を隔てて上記軸に嵌合されている2つの円すいころ軸受と、一方の円すいころ軸受の内輪と他方の円すいころ軸受の内輪との間に嵌合された内輪間座と、一方の外輪の外周面と他方の外輪の外周面に嵌合されており、かつ、一方の外輪と他方の外輪の間で、一方の外輪の軸方向の端面と他方の外輪の軸方向の端面とに当接する内周凸部を含んだハウジングとを備えたデフピニオンの円すいころ軸受装置において、上記ハウジングがアルミ合金で作製されている一方、上記内輪間座と2つの円すいころ軸受とが鋼で作製されていて、使用温度が上下に変化したときに、上記ハウジングの軸方向寸法の増減に起因する上記円すいころ軸受のアキシャル隙間の減増量を、上記ハウジングの径方向寸法の増減に起因する上記円すいころ軸受のアキシャル隙間の増減量でもって相殺するように、上記ハウジングの内の上記2つの外輪の端面に挟まれた内周凸部の軸方向寸法Lと、上記円すいころ軸受のころと外輪との接触角θと、外輪とハウジングとの径方向の締め代Dとが設定されていることを特徴としている。
【0007】
したがって、この請求項1の発明によれば、使用温度の変化による円すいころ軸受の予圧不足や予圧過大を招くことなく、ハウジングをアルミ合金製にして軽量化することができる。
【0008】
また、請求項2の発明は、請求項1に記載のデフピニオンの円すいころ軸受装置において、上記ハウジングの軸方向寸法Lと上記接触角θと上記締め代Dとを、次の(1)式と(2)式と(3)式を満足するような範囲に設定したことを特徴としている。
【0009】
40mm≦L≦60mm ……… (1)
18°≦θ≦25° ……… (2)
30μm≦D≦80μm ……… (3)
【発明の実施の形態】
以下、この発明を図示の実施の形態により詳細に説明する。
【0010】
図1に、この発明のデフピニオンの円すいころ軸受装置の実施の形態の要部断面を示す。この円すいころ軸受装置は、軸1とアウター側の円すいころ軸受2とインナー側の円すいころ軸受3と内輪間座5とハウジング6とを有している。
【0011】
上記ハウジング6はアルミ合金製であり、軸1と円すいころ軸受2および3と内輪間座5は鋼製である。
【0012】
上記軸1は、小径部7と大径部8とを有している。この小径部7には上記アウター側の円すいころ軸受2が締まり嵌めされている。また、上記大径部8にはインナー側の円すいころ軸受3が締まり嵌めされている。この円すいころ軸受2の内輪10の小径部11の軸方向端面11aと、上記円すいころ軸受3の内輪12の小径部13の軸方向端面13aとは対面している。そして、上記軸方向端面11aと13aに端面5aと5bとが当接するように、内輪間座5が軸1に嵌合されている。
【0013】
また、円すいころ軸受2の外輪15は、上記ハウジング6のアウター側の内周面6aに押圧されており、ハウジング6に対して締まり嵌めされている。また、円すいころ軸受3の外輪16は、上記ハウジング6のインナー側の内周面6bに押圧されており、ハウジング6に対して締まり嵌めされている。そして、上記外輪15の厚肉部17の軸方向端面17aと上記外輪16の厚肉部18の軸方向端面18aとは対面している。そして、上記ハウジング6の径方向内方に突き出している円環形状の内周凸部20が外輪15と16との間に嵌合していて、内周凸部20の軸方向端面20aと20bは、外輪15の軸方向端面17aと外輪16の軸方向端面18aに当接している。
【0014】
上記構成のデフピニオンの円すいころ軸受装置は、ハウジング6がアルミ合金製であるのに対して、軸1と円すいころ軸受2,3と内輪間座5が鋼製であるから、軸1や円すいころ軸受2,3や内輪間座5の線膨張係数よりも、ハウジング6の線膨張係数の方が大きい。具体的には、ハウジング6の線膨張係数は約20.0〔10−6/deg〕であり、軸1や軸受2,3の線膨張係数は約11.2〔10−6/deg〕である。
【0015】
したがって、周囲温度が上昇すると、上記ハウジング6のアウター側の内周面6aは円すいころ軸受2の外輪15に対して緩み、ハウジング6のインナー側の内周面6bは円すいころ軸受3の外輪16に対して緩む。この緩みは、円すいころ軸受2と3のアキシャル隙間AC2とAC3を増加させる方向に働く。そして、ころ21と外輪15との接触角θ1が小さいほど、上記緩み量に対するアキシャル隙間AC2の増加量が大きく、ころ22と外輪16との接触角θ2が小さいほど、上記緩み量に対するアキシャル隙間AC3の増加量が大きい。なお、接触角とは、軸方向に対する外輪の軌道面の傾斜角度である。
【0016】
また、上記周囲温度の上昇によって、上記ハウジング6の内周凸部20の端面20aは円すいころ軸受2の外輪15の厚肉部17の軸方向端面17aに対して締まり、上記内周凸部20の端面20bは円すいころ軸受3の外輪16の厚肉部18の軸方向端面18aに対して締まる。この締まりは、円すいころ軸受2と3のアキシャル隙間AC2とAC3を減少させる方向に働く。
【0017】
また、周囲温度が下降したときには、上述とは逆に、ハウジング6の外輪15,16に対する径方向の締まりに起因してアキシャル隙間AC2,AC3が減少し、ハウジング6の内周凸部20の外輪15,16に対する軸方向の緩みに起因してアキシャル隙間AC2,AC3が増加する。
【0018】
このように、周囲温度が変化したときに、アキシャル隙間AC2とAC3とを増加させる要因と、減少させる要因とがあるから、この増加量と減少量とを拮抗させるように、上記増加要因と減少要因とを設定することによって、温度変化した時にアキシャル隙間AC2とAC3が変化しないようにすることができる。
【0019】
具体的には、上記要因としては、上記2つの外輪15と16に挟まれた内周凸部20の軸方向の寸法Lと、外輪15とハウジング6との径方向の締め代D1と、外輪16とハウジング6との径方向の締め代D2、さらには、上記接触角θ1,θ2がある。上記内周凸部20の軸方向の寸法Lが大きいほど、周囲温度の増加に対するアキシャル隙間AC2およびAC3の増加量が大きくなる。また、上記締め代D1が大きいほど、周囲温度の増加に対するアキシャル隙間AC2の減少量が大きくなる。また、締め代D2が大きいほど、周囲温度の増加に対するアキシャル隙間AC3の減少量が大きくなる。
【0020】
また、ころ21と外輪15との接触角θ1が大きいほど、ハウジング6の径方向への拡大(周囲温度の増加による)に起因するアキシャル隙間AC2の増加量が小さくなる。また、ころ22と外輪16との接触角θ2が大きいほど、ハウジング6の径方向への拡大(周囲温度の増加による)に起因するアキシャル隙間AC3の増加量が小さくなる。
【0021】
したがって、たとえば、上記内周凸部20の軸方向の寸法Lの増加に起因するAC2とAC3の減少量に、締め代D1とD2の減少に起因するAC2とAC3の増加量が略等しくなるように、上記L,D1,D2および接触角θ1とθ2を設定することによって、使用温度が変化してもアキシャル隙間AC2,AC3が変化することを防止することができる。したがって、使用温度の変化による円すいころ軸受2および3が予圧不足や予圧過大になることを防止できる。したがって、この形態によれば、予圧不足によるガタや予圧過大による焼付を招くことなく、ハウジング6をアルミ合金製にして軽量化することができる。
【0022】
次に、上記要因としての上記2つの外輪15と16に挟まれた内周凸部20の軸方向の寸法Lと、外輪15とハウジング6との径方向の締め代D1と、外輪16とハウジング6との径方向の締め代D2、さらには、上記接触角θ1,θ2の具体的な設定数値を説明する。
【0023】
この実施の形態では、上記内周凸部20の軸方向の寸法Lを58mmとし、上記締め代D1を31μm〜80μmとし、上記締め代D2を31〜80μmとした。更には、上記接触角θ1を20°とし、上記接触角θ2を20°とした。そして、この実施の形態の円すいころ軸受装置の周囲温度の変化(0℃〜120℃)に対するアキシャル隙間AC2とAC3の変動値を、図2に示す。この図2に示されたような、アキシャル隙間の変動範囲では、予圧不足でガタが発生することがなく、かつ、予圧過大で焼き付くことがない。
【0024】
尚、上記実施の形態では、凸部20の軸方向の寸法Lを58mmとし、締め代D1を31〜80μmとし、締め代D2を31〜80μmとし、接触角θ1を20°とし、接触角θ2を20°としたが、凸部20の軸方向の寸法Lが次の(1)式を満足しており、締め代D1,D2が次の(2)式を満足しており、接触角θ1,θ2が次の(3)式を満足していればよい。このように設定すれば、上述の周囲温度の変化に対するアキシャル隙間AC2とAC3の変動量を、予圧不足や予圧過大を招かないような値に抑えることができる。上記式(1),(2),(3)の1つでも満足しない場合には、予圧不足や予圧過大になることが実験により分かった。なお、外輪とハウジングとの嵌め合いの隙間減少率Keは0.2ないし0.3を選んだ。
【0025】
40mm≦L≦60mm ……… (1)
18°≦θ≦25° ……… (2)
30μm ≦D≦80μm ……… (3)
【発明の効果】
以上より明らかなように、請求項1の発明のデフピニオンの円すいころ軸受装置は、軸と、軸方向に所定の間隔を隔てて上記軸に嵌合されている2つの円すいころ軸受と、一方の円すいころ軸受の内輪と他方の円すいころ軸受の内輪との間に嵌合された内輪間座と、一方の外輪の外周面と他方の外輪の外周面に嵌合されており、かつ、一方の外輪と他方の外輪との間で一方の外輪の軸方向の端面と他方の外輪の軸方向の端面とに当接する内周凸部を含んだハウジングとを備えたデフピニオンの円すいころ軸受装置において、上記ハウジングがアルミ合金で作製されている一方、上記内輪間座と2つの円すいころ軸受とが鋼で作製されていて、使用温度が上下に変化したときに、上記ハウジングの軸方向寸法の増減に起因する上記円すいころ軸受のアキシャル隙間の減増量を、上記ハウジングの径方向寸法の増減に起因する上記円すいころ軸受のアキシャル隙間の増減量でもって相殺するように、上記ハウジングの内の上記2つの外輪の端面に挟まれた内周凸部の軸方向寸法Lと、上記円すいころ軸受のころと外輪との接触角θと、外輪とハウジングとの径方向の締め代Dとが設定されている。
【0026】
したがって、この請求項1の発明によれば、使用温度の変化による円すいころ軸受の予圧不足や予圧過大を招くことなく、ハウジングをアルミ合金製にして軽量化することができる。
【0027】
また、請求項2の発明は、請求項1に記載のデフピニオンの円すいころ軸受装置において、上記ハウジングの軸方向寸法Lと上記接触角θと上記締め代Dとを、次の(1)式と(2)式と(3)式を満足するような範囲に設定している。
【0028】
40mm≦L≦60mm ……… (1)
18°≦θ≦25° ……… (2)
30μm ≦D≦80μm ……… (3)
この請求項2の発明によれば、周囲温度の変化に対する円すいころ軸受のアキシャル隙間の変動量を、予圧不足や予圧過大を招かないような値に抑えることができる。
【図面の簡単な説明】
【図1】この発明のデフピニオンの円すいころ軸受装置の実施の形態の要部断面図である。
【図2】上記実施の形態において、周囲温度の変化に対するアキシャル隙間の変化量を表す特性図である。
【符号の説明】
1…軸、2,3…円すいころ軸受、5…内輪間座、6…ハウジング、
6a,6b…内周面、7…小径部、8…大径部、10,12…内輪、
11…小径部、11a…軸方向端面、13…小径部、
13a…軸方向端面、15,16…外輪、17…厚肉部、
17a…軸方向端面、18…厚肉部、18a…軸方向端面、
20…内周凸部、21,22…ころ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tapered roller bearing device for a differential pinion (differential small gear).
[0002]
[Prior art]
Conventionally, as a tapered roller bearing device of a differential pinion, there is one in which two tapered roller bearings are arranged between a shaft and a housing at a predetermined interval in the axial direction. The housing has an inner circumferential convex portion protruding radially inward, and the inner circumferential convex portion is fitted between the two outer rings of the two tapered roller bearings to serve as a spacer. An inner ring spacer is fitted between the inner rings of the two tapered roller bearings. Conventionally, the shaft and housing and the two tapered roller bearings are made of steel.
[0003]
[Problems to be solved by the invention]
By the way, for the purpose of weight reduction, changing the housing from steel to aluminum alloy has been studied.
[0004]
However, when the housing is made of an aluminum alloy, the linear expansion coefficient of the housing is larger than the linear expansion coefficient of the shaft, the bearing, or the inner ring spacer. There is a problem that the axial gap increases and decreases, and the tapered roller bearing is loose due to insufficient preload or seizes due to excessive preload.
[0005]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a differential pinion tapered roller bearing device capable of reducing the weight by making the housing made of an aluminum alloy without causing insufficient preload or excessive preload of the tapered roller bearing due to a change in operating temperature. It is in.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, a tapered roller bearing device of a differential pinion of the invention of claim 1 includes a shaft, two tapered roller bearings fitted to the shaft at a predetermined interval in the axial direction, and one of the tapered roller bearings. An inner ring spacer fitted between the inner ring of the tapered roller bearing and the inner ring of the other tapered roller bearing; fitted to the outer circumferential surface of one outer ring and the outer circumferential surface of the other outer ring; A tapered pinion bearing device for a differential pinion comprising a housing including an inner peripheral convex portion that contacts an axial end surface of one outer ring and an axial end surface of the other outer ring between the outer ring and the other outer ring. Is made of aluminum alloy, while the inner ring spacer and the two tapered roller bearings are made of steel, and when the operating temperature changes up and down, it is caused by the increase or decrease of the axial dimension of the housing The above tapered roller shaft The amount of increase / decrease in the axial clearance is offset by the increase / decrease amount in the axial clearance of the tapered roller bearing caused by the increase / decrease in the radial dimension of the housing. the axial dimension L 0 of the circumferential projection portion in the is characterized in that the contact angle θ between the roller and the outer ring of the tapered roller bearing, the interference D in the radial direction between the outer ring and the housing are set.
[0007]
Therefore, according to the first aspect of the present invention, the housing can be made of an aluminum alloy and can be reduced in weight without causing the preload of the tapered roller bearing to be insufficient or excessively preloaded due to the change in operating temperature.
[0008]
According to a second aspect of the present invention, in the tapered roller bearing device of the differential pinion according to the first aspect, the axial dimension L 0 of the housing, the contact angle θ, and the tightening allowance D are expressed by the following formula (1): And (2) and (3) are set in a range that satisfies the expressions.
[0009]
40 mm ≦ L 0 ≦ 60 mm (1)
18 ° ≦ θ ≦ 25 ° ……… (2)
30 μm ≦ D ≦ 80 μm (3)
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
[0010]
FIG. 1 shows a cross-section of the main part of an embodiment of a tapered roller bearing device of a differential pinion according to the present invention. This tapered roller bearing device includes a shaft 1, an outer tapered roller bearing 2, an inner tapered roller bearing 3, an inner ring spacer 5, and a housing 6.
[0011]
The housing 6 is made of an aluminum alloy, and the shaft 1, the tapered roller bearings 2 and 3, and the inner ring spacer 5 are made of steel.
[0012]
The shaft 1 has a small diameter portion 7 and a large diameter portion 8. The outer tapered roller bearing 2 is tightly fitted to the small diameter portion 7. Further, the inner diameter tapered roller bearing 3 is tightly fitted to the large diameter portion 8. The axial end surface 11a of the small diameter portion 11 of the inner ring 10 of the tapered roller bearing 2 and the axial end surface 13a of the small diameter portion 13 of the inner ring 12 of the tapered roller bearing 3 face each other. The inner ring spacer 5 is fitted to the shaft 1 so that the end faces 5a and 5b abut against the axial end faces 11a and 13a.
[0013]
Further, the outer ring 15 of the tapered roller bearing 2 is pressed against the inner peripheral surface 6 a on the outer side of the housing 6 and is tightly fitted to the housing 6. Further, the outer ring 16 of the tapered roller bearing 3 is pressed against the inner peripheral surface 6 b on the inner side of the housing 6 and is tightly fitted to the housing 6. The axial end surface 17a of the thick portion 17 of the outer ring 15 and the axial end surface 18a of the thick portion 18 of the outer ring 16 face each other. An annular inner convex portion 20 protruding radially inward of the housing 6 is fitted between the outer rings 15 and 16, and the axial end faces 20 a and 20 b of the inner peripheral convex portion 20 are the outer rings 15. Are in contact with the axial end surface 17a of the outer ring 16 and the axial end surface 18a of the outer ring 16.
[0014]
Since the housing 6 is made of an aluminum alloy, the differential pinion tapered roller bearing device having the above configuration is made of the shaft 1, the tapered roller bearings 2, 3 and the inner ring spacer 5 made of steel. The linear expansion coefficient of the housing 6 is larger than the linear expansion coefficient of the bearings 2 and 3 and the inner ring spacer 5. Specifically, the linear expansion coefficient of the housing 6 is about 20.0 [10 −6 / deg], and the linear expansion coefficients of the shaft 1 and the bearings 2 and 3 are about 11.2 [10 −6 / deg]. is there.
[0015]
Therefore, when the ambient temperature rises, the inner peripheral surface 6a on the outer side of the housing 6 is loosened with respect to the outer ring 15 of the tapered roller bearing 2, and the inner peripheral surface 6b on the inner side of the housing 6 is outer ring 16 of the tapered roller bearing 3. Loose against. This loosening acts in the direction of increasing the axial gaps AC2 and AC3 of the tapered roller bearings 2 and 3. As the contact angle θ1 between the roller 21 and the outer ring 15 is smaller, the increase amount of the axial gap AC2 with respect to the loosening amount is larger, and as the contact angle θ2 between the roller 22 and the outer ring 16 is smaller, the axial gap AC3 with respect to the loosening amount. The amount of increase is large. The contact angle is the inclination angle of the raceway surface of the outer ring with respect to the axial direction.
[0016]
Further, due to the increase in the ambient temperature, the end surface 20a of the inner peripheral convex portion 20 of the housing 6 is tightened against the axial end surface 17a of the thick portion 17 of the outer ring 15 of the tapered roller bearing 2, and the end surface 20b of the inner peripheral convex portion 20 is The tapered roller bearing 3 is tightened against the axial end surface 18 a of the thick portion 18 of the outer ring 16. This tightening works in the direction of reducing the axial gaps AC2 and AC3 between the tapered roller bearings 2 and 3.
[0017]
When the ambient temperature is lowered, the axial gaps AC2 and AC3 are reduced due to the radial tightening of the housing 6 with respect to the outer rings 15 and 16 and the outer rings 15 and 16 of the inner peripheral convex portion 20 of the housing 6 are reduced. The axial gaps AC2 and AC3 increase due to the loosening in the axial direction with respect to 16.
[0018]
As described above, when the ambient temperature changes, there are a factor for increasing the axial gaps AC2 and AC3 and a factor for decreasing the axial gaps. Therefore, the increase factor and the decrease factor are antagonized with each other. By setting the factor, the axial gaps AC2 and AC3 can be prevented from changing when the temperature changes.
[0019]
Specifically, as the above factors, the axial dimension L 0 of the inner circumferential convex portion 20 sandwiched between the two outer rings 15 and 16, the radial allowance D 1 between the outer ring 15 and the housing 6, and the outer ring 16 There is a radial allowance D2 between the housing 6 and the contact angle θ1, θ2. As dimensions L 0 in the axial direction on the inner circumferential protrusion 20 is large, increasing the amount of axial clearance AC2 and AC3 is increased with respect to the increase in the ambient temperature. Moreover, the amount of reduction of the axial gap AC2 with respect to the increase in the ambient temperature increases as the tightening allowance D1 increases. Moreover, the amount of reduction of the axial gap AC3 with respect to the increase in the ambient temperature increases as the tightening allowance D2 increases.
[0020]
Further, as the contact angle θ1 between the roller 21 and the outer ring 15 increases, the increase amount of the axial gap AC2 due to the expansion of the housing 6 in the radial direction (due to an increase in the ambient temperature) decreases. Further, as the contact angle θ2 between the roller 22 and the outer ring 16 is larger, the increase amount of the axial gap AC3 due to the radial expansion of the housing 6 (due to an increase in the ambient temperature) becomes smaller.
[0021]
Thus, for example, to decrease the amount of AC2 and AC3 due to an increase in the axial dimension L 0 of the inner circumferential projection part 20, as increasing amounts of AC2 due to a decrease in interference D1 and D2 and AC3 are substantially equal By setting the above L 0 , D 1, D 2 and the contact angles θ 1 and θ 2, it is possible to prevent the axial gaps AC 2 and AC 3 from changing even if the operating temperature changes. Accordingly, it is possible to prevent the tapered roller bearings 2 and 3 from being insufficiently preloaded or excessively preloaded due to a change in operating temperature. Therefore, according to this embodiment, the housing 6 can be made of an aluminum alloy and reduced in weight without causing play due to insufficient preload or seizure due to excessive preload.
[0022]
Next, the axial dimension L 0 of the peripheral projecting portion 20 sandwiched between the above two outer rings 15 and 16 as the factors, and radial interference D1 of the outer ring 15 and the housing 6, and the outer ring 16 housing 6 A specific set numerical value of the contact angle θ2 and the contact angle θ1 will be described.
[0023]
In this embodiment, the dimension L 0 in the axial direction on the inner circumferential projections 20 and 58 mm, the interference D1 and 31Myuemu~80myuemu, was the interference D2 and 31~80Myuemu. Furthermore, the contact angle θ1 was 20 °, and the contact angle θ2 was 20 °. FIG. 2 shows fluctuation values of the axial gaps AC2 and AC3 with respect to a change in ambient temperature (0 ° C. to 120 ° C.) of the tapered roller bearing device of this embodiment. In the fluctuation range of the axial gap as shown in FIG. 2, there is no play due to insufficient preload, and there is no seizure due to excessive preload.
[0024]
In the above embodiment, the axial dimension L 0 of the convex portion 20 is 58 mm, the fastening allowance D1 is 31 to 80 μm, the fastening allowance D2 is 31 to 80 μm, the contact angle θ1 is 20 °, and the contact angle Although θ2 is set to 20 °, the dimension L 0 in the axial direction of the convex portion 20 satisfies the following expression (1), and the fastening allowances D1 and D2 satisfy the following expression (2). It is only necessary that the angles θ1 and θ2 satisfy the following expression (3). By setting in this way, the fluctuation amount of the axial gaps AC2 and AC3 with respect to the change in the ambient temperature described above can be suppressed to a value that does not cause insufficient preload or excessive preload. When even one of the above formulas (1), (2), and (3) is not satisfied, it has been experimentally found that the preload is insufficient or the preload is excessive. The clearance reduction rate Ke for fitting between the outer ring and the housing was selected to be 0.2 to 0.3.
[0025]
40 mm ≦ L 0 ≦ 60 mm (1)
18 ° ≦ θ ≦ 25 ° ……… (2)
30 μm ≦ D ≦ 80 μm (3)
【The invention's effect】
As is clear from the above, the tapered roller bearing device of the differential pinion of the invention of claim 1 includes a shaft, two tapered roller bearings fitted to the shaft at a predetermined interval in the axial direction, and one of the tapered roller bearings. An inner ring spacer fitted between the inner ring of the tapered roller bearing and the inner ring of the other tapered roller bearing; fitted to the outer circumferential surface of one outer ring and the outer circumferential surface of the other outer ring; A tapered pinion bearing device for a differential pinion comprising a housing including an inner peripheral convex portion that abuts against an axial end face of one outer ring and an axial end face of the other outer ring between the outer ring and the other outer ring. Is made of aluminum alloy, while the inner ring spacer and the two tapered roller bearings are made of steel, and when the operating temperature changes up and down, it is caused by the increase or decrease of the axial dimension of the housing The above tapered roller shaft The amount of increase / decrease in the axial clearance is offset by the increase / decrease amount in the axial clearance of the tapered roller bearing caused by the increase / decrease in the radial dimension of the housing. Further, an axial dimension L 0 of the inner peripheral convex portion, a contact angle θ between the roller of the tapered roller bearing and the outer ring, and a radial tightening margin D between the outer ring and the housing are set.
[0026]
Therefore, according to the first aspect of the present invention, the housing can be made of an aluminum alloy and can be reduced in weight without causing the preload of the tapered roller bearing to be insufficient or excessively preloaded due to the change in operating temperature.
[0027]
According to a second aspect of the present invention, in the tapered roller bearing device of the differential pinion according to the first aspect, the axial dimension L 0 of the housing, the contact angle θ, and the tightening allowance D are expressed by the following formula (1): And a range that satisfies the expressions (2) and (3).
[0028]
40 mm ≦ L 0 ≦ 60 mm (1)
18 ° ≦ θ ≦ 25 ° ……… (2)
30 μm ≦ D ≦ 80 μm (3)
According to the second aspect of the present invention, the amount of change in the axial gap of the tapered roller bearing with respect to the change in ambient temperature can be suppressed to a value that does not cause insufficient preload or excessive preload.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an essential part of an embodiment of a tapered roller bearing device of a differential pinion according to the present invention.
FIG. 2 is a characteristic diagram showing a change amount of an axial gap with respect to a change in ambient temperature in the embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Shaft, 2, 3 ... Tapered roller bearing, 5 ... Inner ring spacer, 6 ... Housing,
6a, 6b ... inner peripheral surface, 7 ... small diameter part, 8 ... large diameter part, 10, 12 ... inner ring,
11 ... Small diameter part, 11a ... Axial end surface, 13 ... Small diameter part,
13a ... Axial end face, 15, 16 ... Outer ring, 17 ... Thick part,
17a ... Axial end face, 18 ... Thick part, 18a ... Axial end face,
20 ... inner peripheral convex part, 21, 22 ... roller.

Claims (2)

軸と、軸方向に所定の間隔を隔てて上記軸に嵌合されている2つの円すいころ軸受と、一方の円すいころ軸受の内輪と他方の円すいころ軸受の内輪との間に嵌合された内輪間座と、一方の外輪の外周面と他方の外輪の外周面に嵌合されており、かつ、一方の外輪と他方の外輪の間で、一方の外輪の軸方向の端面と他方の外輪の軸方向の端面とに当接する内周凸部を含んだハウジングとを備えたデフピニオンの円すいころ軸受装置において、
上記ハウジングがアルミ合金で作製されている一方、上記内輪間座と2つの円すいころ軸受とが鋼で作製されていて、
使用温度が上下に変化したときに、上記ハウジングの軸方向寸法の増減に起因する上記円すいころ軸受のアキシャル隙間の減増量を、上記ハウジングの径方向寸法の増減に起因する上記円すいころ軸受のアキシャル隙間の増減量でもって相殺するように、上記ハウジングの内の上記2つの外輪の端面に挟まれた内周凸部の軸方向寸法Lと、上記円すいころ軸受のころと外輪との接触角θと、外輪とハウジングとの径方向の締め代Dとが設定されていることを特徴とするデフピニオンの円すいころ軸受装置。
Fitted between a shaft, two tapered roller bearings fitted to the shaft at a predetermined interval in the axial direction, and an inner ring of one tapered roller bearing and an inner ring of the other tapered roller bearing The inner ring spacer is fitted to the outer peripheral surface of one outer ring and the outer peripheral surface of the other outer ring, and between the outer ring and the other outer ring, the axial end surface of one outer ring and the other outer ring In a tapered roller bearing device of a differential pinion, comprising a housing including an inner peripheral convex portion that abuts against an axial end face of
While the housing is made of an aluminum alloy, the inner ring spacer and the two tapered roller bearings are made of steel,
When the service temperature changes up and down, the amount of increase in the axial clearance of the tapered roller bearing caused by the increase or decrease of the axial dimension of the housing is the same as the axial amount of the tapered roller bearing caused by the increase or decrease of the radial dimension of the housing. The axial dimension L 0 of the inner peripheral convex portion sandwiched between the end faces of the two outer rings in the housing, the contact angle θ between the roller of the tapered roller bearing and the outer ring, so as to cancel out with the increase / decrease amount of the gap A tapered roller bearing device for a differential pinion, characterized in that a radial interference allowance D between the outer ring and the housing is set.
請求項1に記載のデフピニオンの円すいころ軸受装置において、
上記ハウジングの軸方向寸法Lと上記接触角θと上記締め代Dとを、次の(1)式と(2)式と(3)式を満足するような範囲に設定したことを特徴とするデフピニオンの円すいころ軸受装置。
40mm≦L≦60mm ……… (1)
18°≦θ≦25° ……… (2)
30μm ≦D≦80μm ……… (3)
In the differential pinion tapered roller bearing device according to claim 1,
And characterized in that the axial dimension L 0 and the contact angle θ and the interference D of the housing was set to a range that satisfies the following equation (1) and (2) and (3) Def pinion tapered roller bearing device.
40 mm ≦ L 0 ≦ 60 mm (1)
18 ° ≦ θ ≦ 25 ° ……… (2)
30 μm ≦ D ≦ 80 μm (3)
JP10126496A 1996-04-23 1996-04-23 Defpinion tapered roller bearing device Expired - Fee Related JP3623309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10126496A JP3623309B2 (en) 1996-04-23 1996-04-23 Defpinion tapered roller bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10126496A JP3623309B2 (en) 1996-04-23 1996-04-23 Defpinion tapered roller bearing device

Publications (2)

Publication Number Publication Date
JPH09287617A JPH09287617A (en) 1997-11-04
JP3623309B2 true JP3623309B2 (en) 2005-02-23

Family

ID=14296051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10126496A Expired - Fee Related JP3623309B2 (en) 1996-04-23 1996-04-23 Defpinion tapered roller bearing device

Country Status (1)

Country Link
JP (1) JP3623309B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003172345A (en) 2001-12-07 2003-06-20 Koyo Seiko Co Ltd Axle pinion bearing device and vehicular final reduction gear
JP5891720B2 (en) * 2011-11-09 2016-03-23 日本精工株式会社 Hub unit bearing
FR3029992B1 (en) * 2014-12-12 2017-06-16 Ntn-Snr Roulements BEARING BEARING
CN111673424B (en) * 2020-05-29 2021-06-25 中国航发南方工业有限公司 Mounting method of engine driven bevel gear

Also Published As

Publication number Publication date
JPH09287617A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
EP2142816B1 (en) Mounting assembly
US4729252A (en) Bearing for the shaft of a machine element
US9222508B2 (en) Bearing race with integrated spring
JP3623309B2 (en) Defpinion tapered roller bearing device
JP7151533B2 (en) hub unit bearing
JP2005076660A (en) Anti-friction bearing device
CN115614393A (en) Sealing assembly for a truck hub with radial labyrinth
JPH08270663A (en) Automatic alignment rolling bearing with seal
JP2003130059A (en) Tapered roller bearing
US5645356A (en) Bush and integral seal
JP2006300079A (en) Roller bearing
JPH08312760A (en) Bearing support device for transmission case
JP2004068844A (en) Seal ring and rolling bearing unit with seal ring
JPH06109025A (en) Split type bearing
JPH0830492B2 (en) Bearing device
JP2020133682A (en) Rolling bearing
WO2024127741A1 (en) Rolling bearing
US11668348B2 (en) Secondary sealing device for wheel bearing assemblies
JP2000065050A (en) Needle bearing
JPH0610207Y2 (en) Sealed rolling bearing
JPH0814265A (en) Expansion correcting conical roller bearing
JPH0481043B2 (en)
JP2002155955A (en) Cylindrical roller bearing with collar
US20230160435A1 (en) Rotatable shield for wheel bearing assemblies
JP2008082352A (en) Wheel bearing

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041124

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees