JP3622246B2 - Method for producing extremely thick H-section steel with excellent strength, toughness and weldability - Google Patents

Method for producing extremely thick H-section steel with excellent strength, toughness and weldability Download PDF

Info

Publication number
JP3622246B2
JP3622246B2 JP897595A JP897595A JP3622246B2 JP 3622246 B2 JP3622246 B2 JP 3622246B2 JP 897595 A JP897595 A JP 897595A JP 897595 A JP897595 A JP 897595A JP 3622246 B2 JP3622246 B2 JP 3622246B2
Authority
JP
Japan
Prior art keywords
toughness
weight
weldability
section steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP897595A
Other languages
Japanese (ja)
Other versions
JPH08197105A (en
Inventor
清 内田
明博 松崎
虔一 天野
隆文 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP897595A priority Critical patent/JP3622246B2/en
Publication of JPH08197105A publication Critical patent/JPH08197105A/en
Application granted granted Critical
Publication of JP3622246B2 publication Critical patent/JP3622246B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、建築、土木構造物などに用いられる板厚40mm以上の強度、靭性及び溶接性に優れた所謂極厚H形鋼の製造方法に関する。
【0002】
【従来の技術】
建築や土木などの分野では、JIS G 3101で規定される一般構造用圧延鋼材やJIS G 3106で規定される溶接構造用圧延鋼材を熱間圧延したH形鋼が広く利用されている。一方、近年の構造物大型化の要請に伴ない、大型構造物に使用されるH形鋼は、厚肉化および高強度化の傾向にある。
【0003】
しかしながら、板厚が40mmを超える極厚H形鋼を、素材として引張強度(TS)が490MPa以上の高張力鋼を用いて従来通りの熱間圧延法で製造しようとすると、その製品の目標強度を確保するには、素材のC当量を高くせざるを得なかった。その結果、該製品の極厚H形鋼を溶接する際には、溶接割れが発生しやすくなったり、溶接熱影響部(以下、HAZ部という)の靭性が低くなる等の問題が生じた。
【0004】
一方、極厚H形鋼で高強度と溶接性を確保する方法としては、所謂TMCP(Thermo Mechanical Controlled Process,水冷による加速冷却)を活用して、素材中のC当量を低減する方法が知られている。例えば、特公昭56−35734号公報は、C 0.01〜0.30%、Mn 0.30〜1.50%を含有する鋼材をオーステナイト域でH形鋼に熱間加工し、そのフランジ温度をAr 点〜Ms点の温度範囲に急冷した後、空冷して微細な低温変態生成物を形成せしめるフランジ強化H形鋼の製造方法を開示した。また、特公昭58−10442号公報は、C 0.005〜0.2%、Si1.0%以下、Nb,Vの1種又は2種を0.005〜0.2%含有し、残部が鉄及び不可避不純物からなる鋼材を1000〜1300℃に加熱し、少なくとも980℃〜Ar 点の温度範囲で減面率30%以上加工してフェライトを析出させた後、急冷によってフェライトとマルテンサイトの2相層状組織とする加工性に優れた高靭性高張力鋼の製造方法を提案している。
【0005】
しかしながら、これらの公報に記載の技術は、熱間圧延後にフランジ外面側から急冷するため、フランジの板厚断面で強度や靭性に差が生じたり、低温まで急冷することにより残留応力、歪が発生するなど、極厚H形鋼の製造に適用した場合には、多くの問題が発生した。
【0006】
【発明が解決しようとする課題】
本発明は、かかる事情に鑑み、強度、靭性のばらつき及び残留応力、歪を発生させることなく、強度、靭性及び溶接性に優れた極厚H形鋼の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
発明者は、上記目的を達成するために、種々の実験、研究を鋭意行った結果、以下の新しい知見を得た。
1.Nb及びVの炭窒化物析出による極厚H形鋼の強化は、圧延冷却中の600〜700℃温度域で最大に起きる。700℃以上の高温域では、Nb及びVの炭窒化物が粗大析出し、また600℃以下の低温域ではNb及びVの炭窒化物の析出量が減少するためである。従って、700℃以上の高温域を0.2℃/s以上で急冷すれば、Nb及びVの炭窒化物の粗大析出は防止できるので、その後の空冷中(700〜600℃)に起こる上記Nb及びVの析出強化を十分に発揮させることができる。
2.700℃以下の冷却は、空冷でもNb及びVの炭窒化物を微細析出させることができ、Nb及びVの析出強化を十分に発揮させることができる。しかし、冷却停止温度が600℃以下になると、その後の空冷中にNb及びV炭窒化物が析出できないため、Nb及びVの析出強化が十分に発揮できない。また、600℃以下を空冷することによって、フランジの板厚断面での強度、靭性のばらつき及び残留応力、歪の発生はほぼ防止できる。
3.上記(1)式のC当量を0.40%以下になるように合金成分を調整することによって、600〜700℃温度域を急冷した場合にフェライト粒が微細化し良好な母材靭性が得られるとともに、良好な溶接性が確保できる。
4.Ti,REMの添加により圧延加熱時のγ(オーステナイト)結晶粒の粗大化を抑制し、さらにTi,Bの添加により圧延後のγ結晶粒からTiN及び析出BNを核としてフェライトを析出させるとともに、フェライトの粗大化を抑制して細粒化することにより、通常の熱間圧延条件でも極厚H形鋼に良好な靭性が得られる。
5.溶接HAZ部も,TiN、REM及びBNによる結晶粒の微細化作用によって靭性が向上できる。
【0008】
本発明は、以上の知見に基づきなされたもので、具体的には、C:0.05〜0.15重量%,Si:0.20重量%以下,Mn:1.00〜1.80重量%,Al:0.005〜0.050重量%,Nb:0.003〜0.015重量%,V:0.010〜0.080重量%,N:0.0020〜0.0070重量%を含有し、且つ、上記(1)式で規定するC当量が0.40%以下で残部Fe及び不可避的不純物からなる鋼片を、1200〜1350℃に加熱し、1200℃以下の温度で40%以上の累積圧下を与え、950〜1050℃の温度で熱間圧延を終了した後、直ちにフランジの板厚1/4t部を内外面から0.2〜3.0℃/sの冷却速度で700〜600℃まで急冷し、その後空冷することを特徴とする強度、靭性及び溶接性に優れた極厚H形鋼の製造方法である。また、本発明は、上記鋼片が、Cu:0.05〜0.60重量%,Ni:0.05〜0.60重量%,Cr:0.05〜0.50重量%,Mo:0.02〜0.30重量%,Ca:0.0010〜0.0100重量%,Ti:0.005〜0.020重量%,REM:0.0010〜0.020重量%,B:0.0002〜0.003重量%の1種または2種以上を含有することを特徴とする強度、靭性及び溶接性に優れた極厚H形鋼の製造方法でもある。
【0009】
【作用】
本発明では、C:0.05〜0.15重量%,Si:0.20重量%以下,Mn:1.00〜1.80重量%,Al:0.005〜0.050重量%,Nb:0.003〜0.015重量%,V:0.010〜0.080重量%,N:0.0020〜0.0070重量%を含有し、且つ、(1)式で規定するC当量が0.40%以下で残部Fe及び不可避的不純物からなる鋼片を、1200〜1350℃に加熱し、1200℃以下の温度で40%以上の累積圧下を与え、950〜1050℃の温度で熱間圧延を終了した後、直ちにフランジの板厚1/4t部を内外面から0.2〜3.0℃/sの冷却速度で700〜600℃まで急冷し、その後空冷するようにしたので、強度、靭性のばらつき及び残留応力、歪を発生させることなく、強度、靭性及び溶接性に優れた極厚H形鋼の製造が可能になる。また、本発明では、上記鋼片が、Cu:0.05〜0.60重量%,Ni:0.05〜0.60重量%,Cr:0.05〜0.50重量%,Mo:0.02〜0.30重量%,Ca:0.0010〜0.0100重量%,Ti:0.005〜0.020重量%,REM:0.0010〜0.020重量%,B:0.0002〜0.0030重量%の1種または2種以上を含有するようにしたので、上記効果は確実に達成できるようになる。
【0010】
以下に、本発明に係る製造方法における構成要素の限定理由を説明する。
まず、素材鋼片の化学組成に関してであるが、Cは、母材(主にフランジ部)および溶接部の強度を確保するために、0.05重量%以上必要であるが、0.15重量%を超えると、母材靭性および溶接性が劣化するので、0.05〜0.15重量%の範囲に限定した。
【0011】
Siは、上記強度の向上に有効な元素であるが、その量が多くなると製品の極厚H形鋼の溶接性およびHAZ部靭性が悪くなるとともに、1200℃以上の圧延加熱において素材の酸化が顕著になり、圧延後の該H形鋼の表面性状が悪くなるので、0.20重量%を上限とした。
Mnも、上記強度を確保する上で不可欠な元素であり、その下限は1.00重量%とした。しかし、その量が1.80重量%を超えると製品の溶接性やHAZ部靭性の劣化が大きくなるので、上限を1.80重量%とした。
【0012】
Alは、素材の脱酸の為に通常0.005重量%以上必要であるが、0.050重量%を超えて必要以上に添加しても該脱酸効果は向上しないので、上限を0.050重量%とした。
Nbは、母材のγ(オーステナイト)結晶粒中に固溶して、α(フェライト)変態後のα地に析出して母材を強化する。これらの強化作用を発揮させるためには、少なくとも0.003重量%以上の添加が必要であり、一方、その添加量が0.015重量%を超えると、熱間圧延時の再結晶細粒化が起こり難くなり、圧延冷却後に粗大ベイナイトが生成して靭性を低下させるとともに、製品の溶接性およびHAZ部靭性を低下させるので、0.003〜0.015重量%の範囲とした。
【0013】
Cu,Ni,Cr,Moは、いずれも焼入性向上に有効な元素であり、熱間圧延後の空冷で製品強度を高める。該強度向上にためには、それぞれ0.05重量%,0.05重量%,0.05重量%,0.02重量%以上が必要である。また、Cu,Niは製品の溶接性をほとんど劣化させないが、Cuは熱間加工性を劣化させる欠点もある。Cuのこの熱間加工性低下を抑制するにはほぼ等量のNi添加を必要とするが、Niは0.60重量%を超えて添加すると、製造コストが高価となりすぎるため、Cu,Niの上限は0.60重量%とした。Cr,Moは、それぞれ0.50重量%,0.30重量%を超えると、製品の溶接性や低温靭性を損なうなどの弊害をもたらすので、その数値を上限とした。
【0014】
Vは、所謂析出強化型の元素であり、空冷後の母材強度を向上させる。特に、0.003重量%以上のNbを含む鋼にVを添加した場合は大きな析出強化が得られる。また、0.010重量%以下の添加ではその効果がなく、0.080重量%を超えると、製品のHAZ部靭性を劣化させるので、0.010〜0.080重量%の範囲に制限した。
【0015】
Caは、母材中に生成したMnSの形態を制御し、とくに板厚方向の延性、靭性を向上させる。しかし、0.0010重量%以下では実用上効果がなく、0.0100重量%を超えると、CaOあるいはCaSが多く生成し、かえって母材の清浄性や靭性を劣化させるので、Caの添加範囲は0.0010〜0.010重量%とした。
【0016】
Tiは、熱間圧延したままでの極厚H形鋼において良好な靭性を得るために有効な元素である。すなわち、母材中にTiNを形成して、1200〜1350℃加熱時のγ結晶粒の粗大化を抑制するとともに、γ→α変態時のフェライト結晶粒の成長を抑制し、該フェライト結晶粒を微粒化し、母材靭性を向上させる。また、同様の理由でHAZ部靭性も向上させる。そのためには、Tiは0.005重量%以上の添加が必要であるが、0.020重量%を超えて添加すると、かえって母材およびHAZ部の靭性を劣化させる。
【0017】
Nは、母材中にTiNを形成し、上記フェライト結晶粒の微細化効果を得るためには、0.0020重量%以上必要であるが、0.0070重量%を超えると、母材およびHAZ部の靭性が劣化するので、0.0020〜0.0070重量%の範囲に限定した。
REMは、高温においても安定でTiNと同様に、フェライト結晶粒の微細化に効果がある。この効果を発揮させるには、0.0010重量%以上の添加が必要であるが、0.020重量%を超えると、かえって母材の清浄性および靭性を劣化する。
【0018】
Bは、圧延冷却中に母材中にBNとして析出し、フェライト変態の核として結晶粒の細粒化に有効に作用する。特に、REM,TiNとの共存でフェライト粒を細かくするが、その効果は0.0002重量%以上で得られる。しかし、0.0030重量%を超えると、母材の靭性がかえって低下するので、0.0002〜0.0030重量%の範囲に限定した。なお、Tiの存在下でBNを形成させるためには、Ti(TiN)に対し過剰のNが必要である。Ti/Nの比は、TiNの化学量論的組み合わせよりも、Nが若干過剰に存在する組み合わせ、すなわち、Ti/Nの比で2〜4であることが望ましい。
【0019】
(1)式で規定するC当量が40%を超えると、熱間圧延後の700〜600℃域を急冷した場合にベイナイト主体の組織となる。その結果、フェライト析出による細粒化が図れず、母材の靭性が低下するとともに、溶接HAZ部に島状マルテンサイトが生成しやすくなって該靭性が劣化するので、0.40%以下に限定した。
【0020】
次に、上記素材を圧延する条件の限定理由を述べる。熱間圧延のための加熱温度は、通常の極厚でないH形鋼の圧延に適用する1200〜1350℃であれば十分である。そして、1200℃以上の加熱で、0.003重量%以上あるNbの固溶は十分達成されるが、1350℃を超えると母材中の結晶粒が粗大化して靭性が劣化するので,加熱温度は1200〜1350℃の範囲とした。
【0021】
また、熱間圧延において、1200℃以下温度で累積圧下率を40%以上とするのは、再結晶細粒化によって粗大な結晶粒を微細化し、母材の高靭性を確保するためである。
さらに、仕上温度が1050℃を超えると、微細な結晶粒が得られず、950℃未満に低下すると、Nb炭化物が析出し固溶Nbが減少するために、Nbによる強化が減少する。そこで、本発明では、仕上温度を1050〜950℃に限定した。
【0022】
圧延を終了した後、冷却速度を0.2℃/s以上として急冷するのは、700℃以上の高温域でのNb炭化物の析出を抑制でき、Nbによる析出強化を高めるためである。冷却速度が3.0℃/s以上になると、ベーナイト主体の組織となり、母材靭性が低下するとともに、フランジ板厚方向の強度、靭性のバラツキが大きくなり残留応力も大きくなる。したがって、冷却速度は0.2〜3.0℃/sに限定した。そして、冷却停止温度が700℃を超える高温では、Nb炭化物が粗大析出するため、母材の強度が充分でなくなる。一方、冷却停止温度が600℃を下回ると、Nb炭化物が析出強化を活用できず、母材の表面と内部とでα変態時の冷却速度差が大きくなり、板厚方向の特性値に差が生じる。そのため、冷却停止温度は700〜600℃範囲とした。なお、その後の冷却は、空冷とすることによって、フェライトを含む微細組織が得られるとともに、Nbの析出強化も達成できる。
【0023】
【実施例】
表1及び表2に化学組成を示す鋼片を1250〜1350℃に加熱後、表3及び表4に示す種々の圧延条件および冷却条件でフランジ板厚80〜90mmの極厚H形鋼を製造した。その際、冷却方法は、フランジ部の外面から図1に示すように断続的に水を吹きつけ(水冷−空冷を繰り返す)ることによって、フランジ1/4t部の冷却速度を0.3〜0.6℃/sに調整した。そして、各極厚H形鋼のフランジ幅の1/4部位置で表面下8mm部分および1/2t(tは板厚)部分より、日本工業規格に規定する4号引張試験片および4号衝撃試験片を採取し、それぞれの試験片で機械的性質(降伏強度(YS),引張強度(TS),降伏比(YR)及び衝撃靭性値(vE ))を調査した。その調査結果は、表3及び表4に同時に示してある。
【0024】
【表1】

Figure 0003622246
【0025】
【表2】
Figure 0003622246
【0026】
【表3】
Figure 0003622246
【0027】
【表4】
Figure 0003622246
【0028】
なお、表1及び表2の英文字記号のA〜Fは、本発明に係る製造方法の実施例に対応する鋼片で、G,Iは、比較例のための鋼片である。但し、表3及び表4に示すA5,B2,C2は、圧延後の冷却が通常の空冷であり、A6およびI1は、累積圧下率小さく、本発明条件から外れ比較例としてある。。
表3及び表4に示すように、すべての本発明例では、表層と中心との強度、靭性の差が小さく、TSで530MPa以上の高強度と、vEoで90J以上の高靭性とが得られている。しかし、比較例のGは、C量およびC当量が高いため、衝撃靭性がvE0で46J以下と低く、また、比較例Hは、Mn量が低く、Nbを含まないため、1/4t部の強度はTSで476MPaと低い。さらに、比較例Iは、Nb量が多いため細粒が得られず、良好な母材靭性確保できない。
【0029】
次に、溶接割れ感受性を評価するため、JIS Z 3158に規定する「斜めy形溶接割れ試験」を行った。本発明例中で、C当量の高いB,D,Eについて、フランジから(板厚×長さ200×幅150mm)の試験片を切り出し、高張力鋼用被覆アーク溶接棒を用いて、170アンペア、24ボルト、溶接速度150mm/minの条件で試験した。その際の溶接予熱温度は50℃としたが、上記いずれの試験片も割れの発生は皆無であった。しかし、比較例のGから同じサイズで採取した試験片では、同一の溶接条件で割れが発生した。
【0030】
【発明の効果】
以上述べたように、本発明に係る製造方法を採用すれば、建築、土木構造物用鋼材として強度、靭性及び溶接性に優れた極厚H形鋼の製造が可能になった。
【図面の簡単な説明】
【図1】本発明の実施における冷却方法を説明する図である。
【符号の説明】
1 ウエブ
2 フランジ
3 水の吹きつけ方向
4 試料採取位置[0001]
[Industrial application fields]
The present invention relates to a method for producing a so-called extra-thick H-shaped steel excellent in strength, toughness, and weldability with a plate thickness of 40 mm or more used in buildings, civil engineering structures, and the like.
[0002]
[Prior art]
In fields such as architecture and civil engineering, rolled steel for general structure defined by JIS G 3101 and H-section steel obtained by hot rolling a rolled steel for welded structure defined by JIS G 3106 are widely used. On the other hand, with the recent demand for larger structures, H-section steels used for large structures tend to be thicker and stronger.
[0003]
However, if an ultra-thick H-section steel with a plate thickness exceeding 40 mm is manufactured by a conventional hot rolling method using a high-tensile steel with a tensile strength (TS) of 490 MPa or more as a material, the target strength of the product In order to ensure this, the C equivalent of the material had to be increased. As a result, when the extremely thick H-section steel of the product was welded, problems such as the occurrence of weld cracking and the lowering of the toughness of the weld heat affected zone (hereinafter referred to as HAZ zone) occurred.
[0004]
On the other hand, as a method of ensuring high strength and weldability with an ultra-thick H-section steel, a method of reducing the C equivalent in the material by utilizing so-called TMCP (Thermo Mechanical Controlled Process, accelerated cooling by water cooling) is known. ing. For example, Japanese Examined Patent Publication No. 56-35734 discloses that a steel material containing C 0.01 to 0.30% and Mn 0.30 to 1.50% is hot-worked into an H-shaped steel in the austenite region, and its flange temperature Has disclosed a method for producing a flange-reinforced H-section steel that is cooled rapidly to a temperature range of Ar 1 point to Ms point and then air-cooled to form a fine low-temperature transformation product. Japanese Examined Patent Publication No. 58-10442 contains 0.005 to 0.2% of C 0.005 to 0.2%, Si 1.0% or less, and one or two of Nb and V, with the balance remaining. A steel material composed of iron and inevitable impurities is heated to 1000 to 1300 ° C., processed at a temperature reduction of 30% or more in a temperature range of at least 980 ° C. to Ar 3 points to precipitate ferrite, and then rapidly cooled to form ferrite and martensite. A method for producing a high toughness and high strength steel excellent in workability with a two-phase layered structure is proposed.
[0005]
However, since the techniques described in these publications are rapidly cooled from the outer surface side of the flange after hot rolling, differences in strength and toughness occur in the thickness cross section of the flange, or residual stress and strain are generated by rapid cooling to a low temperature. Many problems occurred when applied to the production of extra-thick H-section steel.
[0006]
[Problems to be solved by the invention]
In view of such circumstances, an object of the present invention is to provide a method for producing an extremely thick H-section steel having excellent strength, toughness, and weldability without generating variations in strength, toughness, residual stress, and strain. .
[0007]
[Means for Solving the Problems]
The inventor diligently conducted various experiments and researches in order to achieve the above object, and as a result, obtained the following new knowledge.
1. The strengthening of the extra-thick H-section steel by precipitation of Nb and V carbonitrides occurs at a maximum in the temperature range of 600 to 700 ° C. during rolling cooling. This is because Nb and V carbonitrides are coarsely precipitated at a high temperature range of 700 ° C. or higher, and the precipitation amounts of Nb and V carbonitrides are reduced at a low temperature range of 600 ° C. or lower. Accordingly, if the high temperature region of 700 ° C. or higher is rapidly cooled at 0.2 ° C./s or higher, coarse precipitation of Nb and V carbonitrides can be prevented, so that the above Nb occurring during the subsequent air cooling (700 to 600 ° C.). And the precipitation strengthening of V can fully be exhibited.
Cooling at 2.700 ° C. or lower can finely precipitate Nb and V carbonitrides even by air cooling, and can sufficiently exhibit precipitation strengthening of Nb and V. However, when the cooling stop temperature is 600 ° C. or lower, Nb and V carbonitrides cannot be precipitated during the subsequent air cooling, so that the precipitation strengthening of Nb and V cannot be sufficiently exhibited. In addition, by cooling at 600 ° C. or less, it is possible to substantially prevent the occurrence of strength, toughness variation, residual stress, and strain in the plate thickness section of the flange.
3. By adjusting the alloy components so that the C equivalent of the above formula (1) is 0.40% or less, when the temperature range of 600 to 700 ° C. is rapidly cooled, the ferrite grains are refined and good base material toughness is obtained. At the same time, good weldability can be secured.
4). The addition of Ti and REM suppresses the coarsening of γ (austenite) crystal grains during heating by heating, and further precipitates ferrite from the γ crystal grains after rolling by adding Ti and B, using TiN and precipitated BN as nuclei, By suppressing the coarsening of ferrite and making it finer, good toughness can be obtained in an extremely thick H-section steel even under normal hot rolling conditions.
5. The welded HAZ part can also be improved in toughness by the grain refinement effect of TiN, REM and BN.
[0008]
The present invention has been made based on the above findings. Specifically, C: 0.05 to 0.15 wt%, Si: 0.20 wt% or less, Mn: 1.00 to 1.80 wt% %, Al: 0.005 to 0.050 wt%, Nb: 0.003 to 0.015 wt%, V: 0.010 to 0.080 wt%, N: 0.0020 to 0.0070 wt% And a steel slab comprising the balance Fe and inevitable impurities with a C equivalent specified by the above formula (1) of 0.40% or less, heated to 1200 to 1350 ° C., and 40% at a temperature of 1200 ° C. or less. After the above cumulative reduction was applied and hot rolling was completed at a temperature of 950 to 1050 ° C., the flange thickness ¼ t was immediately increased to 700 from the inner and outer surfaces at a cooling rate of 0.2 to 3.0 ° C./s. Strength, toughness and solution characterized by rapid cooling to ~ 600 ° C, followed by air cooling A method for producing a superior heavy gauge H-shaped steel sex. In the present invention, the steel slab is composed of Cu: 0.05 to 0.60% by weight, Ni: 0.05 to 0.60% by weight, Cr: 0.05 to 0.50% by weight, Mo: 0. 0.02 to 0.30 wt%, Ca: 0.0010 to 0.0100 wt%, Ti: 0.005 to 0.020 wt%, REM: 0.0010 to 0.020 wt%, B: 0.0002 It is also the manufacturing method of the ultra-thick H-section steel excellent in the intensity | strength, toughness, and weldability characterized by containing 1 type, or 2 or more types of-0.003 weight%.
[0009]
[Action]
In the present invention, C: 0.05 to 0.15 wt%, Si: 0.20 wt% or less, Mn: 1.00 to 1.80 wt%, Al: 0.005 to 0.050 wt%, Nb : 0.003 to 0.015 wt%, V: 0.010 to 0.080 wt%, N: 0.0020 to 0.0070 wt%, and the C equivalent defined by the formula (1) is A steel slab composed of Fe and unavoidable impurities at 0.40% or less is heated to 1200 to 1350 ° C., given a cumulative reduction of 40% or more at a temperature of 1200 ° C. or less, and hot at a temperature of 950 to 1050 ° C. Immediately after the rolling was completed, the 1/4 t part of the flange thickness was rapidly cooled from the inner and outer surfaces to 700 to 600 ° C. at a cooling rate of 0.2 to 3.0 ° C./s, and then air cooled. , Strength without generating toughness variation and residual stress, distortion, Production of sex and weldability superior extremely thick H-section steel is possible. In the present invention, the steel slab is composed of Cu: 0.05 to 0.60% by weight, Ni: 0.05 to 0.60% by weight, Cr: 0.05 to 0.50% by weight, Mo: 0. 0.02 to 0.30 wt%, Ca: 0.0010 to 0.0100 wt%, Ti: 0.005 to 0.020 wt%, REM: 0.0010 to 0.020 wt%, B: 0.0002 The above effect can be surely achieved because it contains ˜0.0030 wt% of one or more.
[0010]
Below, the reason for limitation of the component in the manufacturing method which concerns on this invention is demonstrated.
First, regarding the chemical composition of the material billet, C is 0.05% by weight or more in order to ensure the strength of the base material (mainly the flange part) and the welded part, but 0.15% by weight. If it exceeds 50%, the base metal toughness and weldability deteriorate, so it was limited to the range of 0.05 to 0.15% by weight.
[0011]
Si is an element effective for improving the strength. However, when the amount of Si increases, the weldability and the HAZ part toughness of the extremely thick H-shaped steel of the product deteriorate, and the material is oxidized by rolling and heating at 1200 ° C. or higher. Since it becomes remarkable and the surface properties of the H-shaped steel after rolling deteriorate, 0.20% by weight was made the upper limit.
Mn is also an indispensable element for securing the above strength, and its lower limit is set to 1.00% by weight. However, if the amount exceeds 1.80% by weight, deterioration of the weldability and HAZ part toughness of the product becomes large, so the upper limit was made 1.80% by weight.
[0012]
Al is usually required in an amount of 0.005% by weight or more for deoxidation of the raw material, but even if it is added more than necessary exceeding 0.050% by weight, the deoxidation effect is not improved, so the upper limit is set to 0.005%. The content was 050% by weight.
Nb dissolves in the γ (austenite) crystal grains of the base material and precipitates in the α ground after the α (ferrite) transformation to strengthen the base material. In order to exert these strengthening effects, it is necessary to add at least 0.003% by weight or more. On the other hand, if the added amount exceeds 0.015% by weight, recrystallized fine grains during hot rolling Since coarse bainite is generated after rolling and cooling to reduce toughness, and the weldability and HAZ toughness of the product are also reduced, the range of 0.003 to 0.015% by weight is set.
[0013]
Cu, Ni, Cr, and Mo are all effective elements for improving hardenability, and increase product strength by air cooling after hot rolling. In order to improve the strength, 0.05% by weight, 0.05% by weight, 0.05% by weight, and 0.02% by weight or more are required. Further, Cu and Ni hardly degrade the weldability of the product, but Cu also has a drawback of deteriorating hot workability. In order to suppress this hot workability degradation of Cu, an approximately equal amount of Ni is required. However, if Ni is added in excess of 0.60% by weight, the manufacturing cost becomes too expensive. The upper limit was 0.60% by weight. If Cr and Mo exceed 0.50% by weight and 0.30% by weight, respectively, the weldability and low temperature toughness of the product are impaired.
[0014]
V is a so-called precipitation strengthening element and improves the strength of the base material after air cooling. In particular, when V is added to steel containing 0.003% by weight or more of Nb, large precipitation strengthening is obtained. Addition of 0.010% by weight or less has no effect, and if it exceeds 0.080% by weight, the HAZ part toughness of the product is deteriorated, so it is limited to a range of 0.010 to 0.080% by weight.
[0015]
Ca controls the form of MnS produced in the base material, and in particular improves the ductility and toughness in the thickness direction. However, if it is 0.0010% by weight or less, there is no practical effect, and if it exceeds 0.0100% by weight, a large amount of CaO or CaS is generated, and on the contrary, the cleanliness and toughness of the base material are deteriorated. It was 0.0010 to 0.010% by weight.
[0016]
Ti is an effective element for obtaining good toughness in the ultra-thick H-section steel as hot-rolled. That is, TiN is formed in the base metal to suppress the coarsening of γ crystal grains when heated at 1200 to 1350 ° C., and to suppress the growth of ferrite crystal grains during the γ → α transformation. Atomized to improve the base material toughness. Further, the HAZ toughness is also improved for the same reason. For that purpose, Ti needs to be added in an amount of 0.005% by weight or more, but if added over 0.020% by weight, the toughness of the base material and the HAZ part is deteriorated.
[0017]
N is required to form TiN in the base material and obtain the effect of refining the ferrite crystal grains in an amount of 0.0020% by weight or more, but if it exceeds 0.0070% by weight, the base material and the HAZ Since the toughness of the part deteriorates, it is limited to the range of 0.0020 to 0.0070% by weight.
REM is stable even at high temperatures and is effective in reducing the size of ferrite crystal grains in the same manner as TiN. In order to exhibit this effect, addition of 0.0010% by weight or more is necessary. However, if it exceeds 0.020% by weight, the cleanliness and toughness of the base material are deteriorated.
[0018]
B precipitates as BN in the base material during rolling cooling, and acts effectively as a nucleus of ferrite transformation to refine the crystal grains. In particular, the ferrite grains are made fine by coexistence with REM and TiN, but the effect can be obtained at 0.0002% by weight or more. However, when it exceeds 0.0030% by weight, the toughness of the base material is lowered, so it is limited to the range of 0.0002 to 0.0030% by weight. In addition, in order to form BN in the presence of Ti, excess N is necessary with respect to Ti (TiN). The Ti / N ratio is desirably a combination in which N is present in a slight excess rather than a stoichiometric combination of TiN, that is, a Ti / N ratio of 2 to 4.
[0019]
When the C equivalent defined by the formula (1) exceeds 40%, a bainite-based structure is obtained when the 700 to 600 ° C. region after hot rolling is rapidly cooled. As a result, it is not possible to reduce the grain size by ferrite precipitation, the toughness of the base material is lowered, and island-like martensite is easily generated in the welded HAZ part, so that the toughness is deteriorated. did.
[0020]
Next, the reasons for limiting the conditions for rolling the material will be described. It is sufficient that the heating temperature for hot rolling is 1200 to 1350 ° C., which is applied to rolling of an ordinary H-shaped steel having a non-extreme thickness. When heating at 1200 ° C. or higher, the solid solution of Nb of 0.003% by weight or more is sufficiently achieved, but if it exceeds 1350 ° C., the crystal grains in the base material become coarse and toughness deteriorates. Was in the range of 1200-1350 ° C.
[0021]
In addition, the reason why the cumulative rolling reduction is set to 40% or more at a temperature of 1200 ° C. or less in hot rolling is to make coarse crystal grains fine by recrystallization refinement and to ensure high toughness of the base material.
Further, when the finishing temperature exceeds 1050 ° C., fine crystal grains cannot be obtained, and when the temperature falls below 950 ° C., Nb carbide precipitates and the solid solution Nb decreases, so the strengthening by Nb decreases. Therefore, in the present invention, the finishing temperature is limited to 1050 to 950 ° C.
[0022]
The reason why the cooling is rapidly performed at a cooling rate of 0.2 ° C./s or higher after the rolling is completed is to suppress the precipitation of Nb carbide in a high temperature region of 700 ° C. or higher and increase the precipitation strengthening by Nb. When the cooling rate is 3.0 ° C./s or more, it becomes a structure mainly composed of bainite, the base material toughness is lowered, the strength and toughness variation in the flange plate thickness direction is increased, and the residual stress is also increased. Therefore, the cooling rate was limited to 0.2 to 3.0 ° C./s. When the cooling stop temperature is higher than 700 ° C., Nb carbides are coarsely precipitated, so that the strength of the base material becomes insufficient. On the other hand, if the cooling stop temperature is below 600 ° C., Nb carbide cannot utilize precipitation strengthening, and the difference in cooling rate during the α transformation between the surface of the base metal and the inside increases, resulting in a difference in the characteristic value in the plate thickness direction. Arise. Therefore, the cooling stop temperature is set in the range of 700 to 600 ° C. The subsequent cooling is air cooling, whereby a microstructure containing ferrite can be obtained and Nb precipitation strengthening can be achieved.
[0023]
【Example】
After the steel slabs having chemical compositions shown in Tables 1 and 2 are heated to 1250 to 1350 ° C., ultra-thick H-section steels with a flange plate thickness of 80 to 90 mm are manufactured under various rolling and cooling conditions shown in Tables 3 and 4. did. At that time, the cooling method is as follows. Water is intermittently blown from the outer surface of the flange portion as shown in FIG. Adjusted to 6 ° C./s. And from the 8mm part below the surface and 1 / 2t (t is the plate thickness) part at the 1/4 part position of the flange width of each extremely thick H-section steel, No. 4 tensile test piece and No. 4 impact Test specimens were collected, and the mechanical properties (yield strength (YS), tensile strength (TS), yield ratio (YR), and impact toughness value (vE 0 )) of each test specimen were examined. The survey results are shown in Tables 3 and 4 simultaneously.
[0024]
[Table 1]
Figure 0003622246
[0025]
[Table 2]
Figure 0003622246
[0026]
[Table 3]
Figure 0003622246
[0027]
[Table 4]
Figure 0003622246
[0028]
In addition, alphabetical characters A to F in Tables 1 and 2 are steel slabs corresponding to examples of the manufacturing method according to the present invention, and G and I are steel slabs for comparative examples. However, A5, B2, and C2 shown in Tables 3 and 4 are normal air cooling after rolling, and A6 and I1 are small cumulative reduction ratios and are out of the conditions of the present invention, and are comparative examples. .
As shown in Tables 3 and 4, in all the inventive examples, the difference in strength and toughness between the surface layer and the center is small, and high strength of 530 MPa or more in TS and high toughness of 90 J or more in vEo are obtained. ing. However, since G of the comparative example has a high C amount and C equivalent, the impact toughness is as low as 46 J or less at vE0, and Comparative Example H has a low amount of Mn and does not contain Nb. The strength is as low as 476 MPa in TS. Furthermore, since Comparative Example I has a large amount of Nb, fine grains cannot be obtained, and good base material toughness cannot be ensured.
[0029]
Next, in order to evaluate the weld crack sensitivity, the “oblique y-shaped weld crack test” defined in JIS Z 3158 was performed. In the examples of the present invention, for B, D, and E having high C equivalents, a test piece (plate thickness × length 200 × width 150 mm) was cut out from the flange and 170 amperes using a high-strength steel covered arc welding rod. , 24 volts, and a welding speed of 150 mm / min. At that time, the welding preheating temperature was 50 ° C., but none of the above-mentioned test pieces was cracked. However, in the test piece collected at the same size from G of the comparative example, cracking occurred under the same welding conditions.
[0030]
【The invention's effect】
As described above, if the manufacturing method according to the present invention is employed, it is possible to manufacture an extremely thick H-section steel having excellent strength, toughness and weldability as a steel material for construction and civil engineering structures.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a cooling method in an embodiment of the present invention.
[Explanation of symbols]
1 Web 2 Flange 3 Water spray direction 4 Sampling position

Claims (2)

C:0.05〜0.15重量%,Si:0.20重量%以下,Mn:1.00〜1.80重量%,Al:0.005〜0.050重量%,Nb:0.003〜0.015重量%,V:0.010〜0.080重量%,N:0.0020〜0.0070重量%を含有し、且つ、下記式で規定するC当量が0.40%以下で残部Fe及び不可避的不純物からなる鋼片を、1200〜1350℃に加熱し、1200℃以下の温度で40%以上の累積圧下を与え、950〜1050℃の温度で熱間圧延を終了した後、直ちにフランジの板厚1/4t部を外面から0.2〜3.0℃/sの冷却速度で700〜600℃まで急冷し、その後空冷することを特徴とする強度、靭性及び溶接性に優れた極厚H形鋼の製造方法。
C当量(%)=C(%)+Si(%)/24+Mn(%)/6+Ni(%)/40+Cu(%)/5+Mo(%)/4+V(%)/14・・・・(1)式
C: 0.05 to 0.15 wt%, Si: 0.20 wt% or less, Mn: 1.00 to 1.80 wt%, Al: 0.005 to 0.050 wt%, Nb: 0.003 -0.015 wt%, V: 0.010-0.080 wt%, N: 0.0020-0.0070 wt%, and the C equivalent defined by the following formula is 0.40% or less After heating the steel slab consisting of the remaining Fe and inevitable impurities to 1200 to 1350 ° C., giving a cumulative reduction of 40% or more at a temperature of 1200 ° C. or less, and finishing hot rolling at a temperature of 950 to 1050 ° C., Immediately cool the flange thickness 1 / 4t from the outer surface to 700-600 ° C at a cooling rate of 0.2-3.0 ° C / s, and then air-cooled. Excellent strength, toughness and weldability A manufacturing method for extra thick H-section steel.
C equivalent (%) = C (%) + Si (%) / 24 + Mn (%) / 6 + Ni (%) / 40 + Cu (%) / 5 + Mo (%) / 4 + V (%) / 14 (1) formula
さらに、上記鋼片が、Cu:0.05〜0.60重量%,Ni:0.05〜0.60重量%,Cr:0.05〜0.50重量%,Mo:0.02〜0.30重量%,Ca:0.0010〜0.010重量%,Ti:0.005〜0.020重量%,REM:0.001〜0.02重量%,B:0.0002〜0.0030重量%の1種または2種以上を含有することを特徴とする請求項1記載の強度、靭性及び溶接性に優れた極厚H形鋼の製造方法。Further, the steel slab is composed of Cu: 0.05 to 0.60 wt%, Ni: 0.05 to 0.60 wt%, Cr: 0.05 to 0.50 wt%, Mo: 0.02 to 0 .30 wt%, Ca: 0.0010 to 0.010 wt%, Ti: 0.005 to 0.020 wt%, REM: 0.001 to 0.02 wt%, B: 0.0002 to 0.0030 The method for producing an ultra-thick H-section steel having excellent strength, toughness and weldability according to claim 1, comprising one or more of wt%.
JP897595A 1995-01-24 1995-01-24 Method for producing extremely thick H-section steel with excellent strength, toughness and weldability Expired - Fee Related JP3622246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP897595A JP3622246B2 (en) 1995-01-24 1995-01-24 Method for producing extremely thick H-section steel with excellent strength, toughness and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP897595A JP3622246B2 (en) 1995-01-24 1995-01-24 Method for producing extremely thick H-section steel with excellent strength, toughness and weldability

Publications (2)

Publication Number Publication Date
JPH08197105A JPH08197105A (en) 1996-08-06
JP3622246B2 true JP3622246B2 (en) 2005-02-23

Family

ID=11707696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP897595A Expired - Fee Related JP3622246B2 (en) 1995-01-24 1995-01-24 Method for producing extremely thick H-section steel with excellent strength, toughness and weldability

Country Status (1)

Country Link
JP (1) JP3622246B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471523B2 (en) * 2010-01-29 2014-04-16 新日鐵住金株式会社 High-strength ultrathick H-section steel with excellent toughness and method for producing the same
KR101298699B1 (en) * 2011-04-27 2013-08-21 현대제철 주식회사 High strength steel and method for manufacturing the same
JP6662156B2 (en) * 2016-04-04 2020-03-11 日本製鉄株式会社 H-shaped steel for low temperature and method for producing the same
CN108504924A (en) * 2018-03-28 2018-09-07 马钢(集团)控股有限公司 A kind of 460MPa grades of hot rolled H-shaped and its production methods of yield strength containing vanadium with good low-temperature toughness

Also Published As

Publication number Publication date
JPH08197105A (en) 1996-08-06

Similar Documents

Publication Publication Date Title
JP3509603B2 (en) Extra-thick H-section steel with excellent toughness and yield strength of 325 MPa or more
CN113862558B (en) Low-cost high-toughness high-strength tempered steel with yield strength of 700MPa and manufacturing method thereof
EP1375694B1 (en) Hot-rolled steel strip and method for manufacturing the same
EP0761824B1 (en) Heavy-wall structural steel and method
JP3045856B2 (en) Method for producing high toughness Cu-containing high tensile steel
JP5194572B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP2008075107A (en) Method for manufacturing high-strength/high-toughness steel
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JPH093609A (en) Niobium-containing rolled steel sheet having high strengths and excellent drawability and its production
JP3410241B2 (en) Method for producing ultra-thick H-section steel excellent in strength, toughness and weldability
JPH09143612A (en) High strength hot rolled steel plate member low in yield ratio
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP2007191785A (en) Method for manufacturing high-tensile steel material superior in weld cracking resistance
JP3622246B2 (en) Method for producing extremely thick H-section steel with excellent strength, toughness and weldability
JP2007277622A (en) Method for manufacturing thick steel plate having high tensile strength of 780 mpa grade and superior weldability
JP2002363685A (en) Low yield ratio high strength cold rolled steel sheet
JP2023045253A (en) Steel plate and method for producing the same
JPH08197102A (en) Manufacture of extremely thick wide-flange steel excellent in toughness and weldabitlity
JP6673320B2 (en) Thick steel plate and method for manufacturing thick steel plate
JP5935678B2 (en) High toughness high strength steel and method for producing the same
JP5831196B2 (en) Manufacturing method of thick taper plate with tensile strength of 510 MPa or more and thickness part of 60 mm or more
JPS589815B2 (en) Manufacturing method of high-strength steel plate with excellent low-temperature toughness and weldability
JP7493138B2 (en) Ultra-low yield ratio high tensile steel plate and its manufacturing method
JPH06145786A (en) Production of wide flange shape minimal in difference in mechancal property in plate thickness direction
KR20040004137A (en) STRUCTURAL Fe-Cr STEEL SHEET, MANUFACTURING METHOD THEREOF, AND STRUCTURAL SHAPED STEEL

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Effective date: 20041115

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20071203

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20081203

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20091203

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees