JP3622013B2 - Ground injection method for grout using multiple unit pumps. - Google Patents

Ground injection method for grout using multiple unit pumps. Download PDF

Info

Publication number
JP3622013B2
JP3622013B2 JP2001172438A JP2001172438A JP3622013B2 JP 3622013 B2 JP3622013 B2 JP 3622013B2 JP 2001172438 A JP2001172438 A JP 2001172438A JP 2001172438 A JP2001172438 A JP 2001172438A JP 3622013 B2 JP3622013 B2 JP 3622013B2
Authority
JP
Japan
Prior art keywords
injection
grout
ground
tube
core tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001172438A
Other languages
Japanese (ja)
Other versions
JP2002363967A (en
Inventor
俊介 島田
忠雄 小山
完洋 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hara Kougyou Co Ltd
Original Assignee
Hara Kougyou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hara Kougyou Co Ltd filed Critical Hara Kougyou Co Ltd
Priority to JP2001172438A priority Critical patent/JP3622013B2/en
Publication of JP2002363967A publication Critical patent/JP2002363967A/en
Application granted granted Critical
Publication of JP3622013B2 publication Critical patent/JP3622013B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【0001】
【産業上の利用分野】
開示技術は、広大な面積を有する地盤の改良エリアの地盤良工事において長ゲルタイムのグラウトを確実に且つ短い工期で注入する技術の技術分野に属する。
【0002】
【従来の技術】
周知の如く、国土面積が狭隘で、多くの山間林野部が多く、しかも、複雑に入り組んだ長い海岸線に近接している特殊な姿勢条件の我国にあっては、土地を有効利用し得るよう地下構造物を構築し、そのための掘削工事は極めて重要であり、そのために、注入に先立って止水や強化を行うため、或いは、基礎地盤の強化のための注入工法が多数開発されてきた。
【0003】
しかし、これらの従来技術に基づく改良工事はゲルタイムの調整が複雑であり、且つ、施行能率が悪いため、コスト高につく等の問題があった。
【0004】
薬液注入工法は近時地盤内にケーシングパイプ等を挿入埋設し、ステップダウン方式やボトムアップ方式により、該ケーシングパイプを回転しながら当該ステップでの掘削時において、該ケーシングパイプの吐出口からグラウト等の改良材を地盤中に噴出注入し、固結させて所定の改良領域を形成させ造成するようにする態様や所謂ダブルパッカー方式によるストレーナー注入工法が開発採用されている。
【0005】
それに対処するに、例えば、特開平7−300849号公報発明等に開示されている如く、所謂多点注入方式による当該広大な領域を有する地盤エリア全体に一挙に立体的な注入を低圧浸透注入方式により行うような技術が開発され、更に、低圧浸透注入を同時に圧送コントロール出来る多点注入用の圧送ポンプを用いた工法が、例えば、特開平11−81296号公報発明に開示されている如く開発され、実用に供されるようになってきてはいる。
【0006】
かかる新規な技術は低圧浸透注入で土粒子間浸透を可能にし、しかも、数十個の吐出口から同時に注入できるため、急速施行が可能なことにより経済性に優れているという画期的技術であるが、更に研究開発すべき課題が存在している。
【0007】
【発明が解決しようとする課題】
而して、該種多点注入による地盤注入工法ではグラウト管として軸方向の異なる部位に吐出口が位置するように注入細管を一体的に結束して用いるが、該注入細管は合成樹脂製等のものであり、その限り、可撓性であって、例えば、トンネル等の側方削孔から上方、或いは、斜め上方等に注入を行うに際しては、当該合成樹脂製の多数の注入細管の湾曲等が生じて、その直進性が保てないということから施工精度と作業性が劣る欠点があった。
【0008】
又、注入細管がポンププラントから注入孔まで長距離を要するため、低粘土で長いゲルタイムの注入液を用いる必要があった。ところが、長いゲルタイムの時間の注入液は一度地表面、或いは、地盤中の粗い層に逸脱を始める、とゲル化時間を短縮できないため注入を中止せざるを得ず、その間に注入細管内でグラウトがゲル化してしまう等の不都合さの問題があった。
【0009】
【発明の目的】
この出願の発明の目的は上述従来技術に基づく、これまでに開発されている広域な地盤に対するグラウトの低圧浸透注入による多点注入ポンプの利点を生かしながらも、各グラウト注入細管の剛性を確実に保って、その直進性を注入態様の如何を問わず、安定して行え、しかも、注入の前後において、地盤に対する透水試験も行って注入速度の適切な設定、注入効果の確認、当該透水試験の効果確認の様子によっては、再注入が行え得るようにし、更に、注入細管からの注入に先立って一次注入による粗詰注入や注入中に長いゲル化時間のグラウトが逸脱し始めた場合は、ゲル化時間の短いグラウトを注入してそれを防ぐこと等を可能にし、多連装重連ポンプによるグラウト注入の実用性を飛躍的に発展させるようにした技術を提供せんとするものである。
【0010】
【課題を解決するための手段】
前述課題を解決するために、注入用透孔を設けた金属製又は硬質プラスティック製の芯管の周囲に一体的に沿って設けた軟質の複数の注入細管から地盤内へグラウトを低圧での浸透注入をさせる工法であって、上記各注入細管に対するグラウトの圧送を地盤上から多連装重連ユニットポンプにより同時に行うようにすることを基幹とし、而して、上記グラウトの注入細管への圧送に際し、上記注入細管による長いゲルタイムのグラウトの注入の前に先立って短いゲルタイムのグラウトの注入、或いは、時は懸濁グラウトを上記芯管から一次注入して、上記注入細管からの二次注入の逸脱を防止するようにし、或いは、上記注入細管による注入前に上記芯管等からの低粘性のゲル化時間の長いグラウト注入、或いは、水による透水試験を行って、原地盤の透水性を確認して注入細管からの最適の注入速度を確認した上で注入を行うようにし、更に上記注入細管による注入後、芯管から水、又は、低粘度のゲル化時間の長いグラウトで透水試験を行うようにもし、加えて、上記注入後の透水試験による効果が不十分であることが確認された場合に、上記芯管を介して再注入を行うようにもし、又、上記注入細管からのゲル化時間の長いグラウトが地層面、又は、粗い土層から逸脱している場合に、上記芯管を介してゲル化時間の短いグラウトの注入を行って注入細管からのグラウトの逸脱を防止し、又、前記芯管が上記結束注入細管の剛性を高めて作業性を向上するようにした技術的手段を講じたものである。
【0011】
【作用】
上述構成において、広大なエリアを有する地盤に対し、設計通りに可及的に均一にグラウトの改良材を低圧浸透注入により、立体的等の地盤改良を行うに際し、注入用透孔を設けた一個の硬質の芯管の周囲に可撓性のある合成樹脂製等の注入細管を環設して、その強度剛性を高め、更に該各注入細管に対し、多連装重連ユニットポンプを介し、グラウト等の改良材を圧送することが出来るようにし、該注入細管による長ゲルタイムのグラウトの二次注入の前に先立って芯管から短いゲルタイムのグラウト又は、懸濁グラウトによる一次注入を行う等して、或いは、透水試験を行い、当該注入細管からの二次注入の後に透水試験を行うようにもし、該透水試験による効果確認が不十分である場合には芯管、又は、注入細管を介して再注入を行うようにもし、又、これらの作業の際の芯管が結束した注入細管の剛性を強めて作業性を向上するようにもしたものである。
【0012】
【発明が実施しようとする形態】
次ぎにこの出願の発明の実施しようとする形態を実施例の態様として図面に従って説明すれば以下の通りである。
【0013】
図1に示す態様において、1はこの出願の発明の重要なポイントとなる注入管であり、その中央には大径の所定の剛性を有する金属製又は硬質合成樹脂製の注入用透孔を側面に複数個設けた芯管2が設置され、当該芯管2の周囲に図2に示す様に、所定数複数本の注入細管3が所定のバンド、或いは、接着剤等を介して全周的に環設されており、該各注入細管3は注入管1の先端から所定スパンに亘って長さ方向に相互に設計態様で位置をずらして吐出口4が図3に示す様に、ゴム等によって作成されたフィッシュテール型の逆止弁5を外装して有して開口して設けられており、図3の(イ)に示す様に、注入細管3からのグラウトの非注入時には逆止弁5が閉じて吐出口4を閉じ、又、(ロ)に示す様に、注入時には開口するように機能する。尚、当該図3の(ハ)に示す態様は芯管2より地盤15中へグラウトを注入する時点でのゴムスリーブ19の取合断面図、(ニ)に示す態様は、注入時の断面を示すものであり、而して、芯管2を抱き込んだ各注入細管3の剛性が、例えば、トンネル施工に際して該トンネル本体から、上方に向けての側方注入に際して、その剛性を保持し、湾曲等せず、直進性が充分に維持され得るようにされており、該注入管1は所定の広大なエリアの地盤領域に所定ユニット数、例えば、マトリックス状に立体的に配置される。そして、該各ユニットの注入管1は図6,7に示す様に、圧送通路16を介し、それぞれ圧力検知器9と流量検知器6を設けられ、それらの各々の圧力、流量、検知がなされ、該流量検知器6と圧力検知器9が検知箱8に収められ、各圧力、流量のデータは電気信号でコントローラー10に送られて各注入細管3の注入が管理されている。これらの注入細管3は前期特開平11−21296号公報に開示されている様に、多連装重連のユニットポンプ12にも接続されて改良材タンク13内のグラウト14を当該図6に示す様に、圧送通路16を介して圧送して所定の地盤15中に挿入された各注入管1の芯管2の注入細管3の各長さ方向に位置をずらして設けた吐出口4から当該地盤15中に均一にグラウト14を低圧浸透して一挙に当該広大なエリアの地盤15中に立体的に注入することが出来るようにされている。
【0014】
而して、注入管1の詳細は図1,図4,図5,図6,図7に示す様に、グラウト管1は当該所定エリアの地盤15中に設計に従って、掘削された削孔7´ 中にシールグラウト17を介して挿入され、芯管2は図4に示す様に、在来態様のダブルパッカー工法に用いられる注入用外管(商標登録出願済)タイプのもので、スリット等の注入用透孔23の外側にゴムスリーブ19が外装巻装され、当該図4に示す様に、芯管2の外側にダブルパッカ20を内装された注入細管3が配設され、任意の深度での細管3の注入用透孔23に位置するように芯管2が配設され、該芯管2からの注入液又は水がその該透孔23を通し、シールグラウト17を介し地盤15中に注入される。注入細管3には図3に示す様に、先端に吐出口4を有し、図1に示す様に、ゴムスリーブや袋体や可撓性テープ等の逆止弁5で覆われている。注入に当たってはこれらの可撓性逆止弁5が送流圧で開口して、グラウトを抽出し、注入後は閉塞する。そして、該芯管2には図5に示す様に、所定ピッチで周公知のパッカー20を有する芯管2が挿脱自在に設けられるようにされており、当該図5に示す様に、23は芯管2の注入透孔であり、該芯管2の注入透孔23に所定深度で臨まされるようにされている。
【0015】
そして、上述した如く該注入細管3は勿論のこと、注入管1の芯管2にあっても、グラウトは勿論のこと、透水試験用の試験水又は試験注入液をも圧送することが出来るようにされている。
【0016】
而して、透水試験は一次注入の前、二次注入の前後のいずれで行ってよい。
【0017】
又、上記多連装重連式のユニット式のポンプ12は前述特開平11−81296号公報発明に開示されている如く、上述の態様において、図7,8,9に示す態様の如く、12はこの出願の発明の1つの要しの中心を成す地盤15への超多点注入装置であって、ポンププラントの多連装重連式のユニットポンプ12を成すものであり、該ユニットポンプ12は、例えば、実態様においては図9に示すカム作動方式の50連装の態様であるが、例えば、図7,8に示すものにおいては図示の都合上、3連装の重連タイプの態様で示されている。
【0018】
そして、各ユニットポンプ12あっては、図示しないインバータモータ等の駆動源に連結されている回転シャフト23にキー23´ により、この出願の発明の多連重連ユニットポンプ12の重要な構成要素を成す所定形状のカム24が一体的に連結されており、該カム24によるカム駆動方式のものにされている。
【0019】
而して、図8,9に示す様に、多連重連ユニット式のポンプ1のベース25に一体的に設けられた支持ブラケット26にはグラウト等の改良材14の吸引口27と吐出口28を有するシリンダー29がスライド自在に設けられており、該ベース25に一体的に設け新た支持ブラケット30に対しては該シリンダー29の進退調整装置してのスクリュウネジ32が調整ナット31を基端部に有して該支持ブラケット7に対し進退動調整自在に設けられており、該シリンダー29内にはピストン33がサクションバルブとしての自動開閉バルブ34を設けられており、該ピストン33の軸方向に穿設された吸引吐出するグラウト14の前後の吐出室,排出室に対する吸排孔35に対して該ピストン33の進退動に応じて自動開閉して該シリンダー29の加圧室にする改良材のグラウト14の自動的供給を行うようにされている。
【0020】
而して、該ピストン33に一体的に連結されて前延されているピストンロッド36の先端には一体的に図8に示す様に、ブラケット37が固設されて上記カム24に当接せて転動するカムフォロワーとしてのタペット38を枢支している。
【0021】
而して、該ブラケット37には当該図8に示す様に、支持機構としてのガイドバー41がガイドのケース40に一体的に設けられ、その内部には多数のスライドベアリング39が設けられてベース25に固設された支持ブラケット26に一体的に設けられたスライドバー41にスライド自在に設けられてカム24の回転による斜め方向の分力を介してのピストンロッド36の上下の揺動や変形や撓みが防止されてスムーズなピストン33の進退作動がなされてグラウト14の吸排がスムーズに行われるようにされている。
【0022】
而して、各ユニットポンプ12のカム24による稼働に際しては進退調整装置としてのスクリュウネジ32をその調整ナット31を回転させることにより、シリンダー29が進退動し、該シリンダー29とカムフォロワーとしてのタペット38の取り付けブラケット37との間に介装している弾圧スプリング42を介しユニットポンプ12のストロークが調整されてカム24のカムフォロワータペット38に対する当接、非当接を選択自在にし、且つ、その進退動ストロークを調整自在にされている。
【0023】
かかるシリンダー29の進退自在にした点はこの出願の発明の多連重連ポンプ12のこの出願の発明の重要なメカニズムの1つである。
【0024】
そして、該シリンダー29の吐出口28は図6に示す態様の如く、圧送通路16、及び、ヘッダーを介して各改良材のグラウト14の圧送通路16に接続されており(設計によっては圧力ポットを介在させ)該改良材14のゲルタイムを調整するに際しては、カム24の前後のカム24のカム面に一対のユニットポンプ12を配設し、改良材のグラウト14のゲルタイムを調整するA剤とB剤等を適宜に調整した改良材14を吸排口27,28を介して改良材圧送通路16を通し、吐出口3から当該地盤15の所定地層に該してグラウト14を吐出して注入することが出来るようにされている。
【0025】
そして、多連装重連ユニットポンプ12に於ける各カム24のカム面の加圧面と吸引面の形状を適宜に選択設計することにより加圧時間を長く、排出時間を短く、或いは、逆にして改良材14の圧送通路16を介しての吐出口4からの吐出圧を急速,中速,低速に適宜に調整することが出来るようにされており、当該実施例においては少量の低圧の低速噴出が成されるようにされている。
【0026】
したがって、該カム24はこの出願の発明の1つの要旨の中心を成す該多点注入装置の多連装重連式のユニット式ポンプの重要な構成部分を成しているものである。
【0027】
上述構成において、所定エリアの広大な面積の地盤15に対し、図4に示す様に予め、掘削削孔7´ にシールモルタル17を充填して内部に芯管2をその外周に細径の注入管3を環設した状態で挿入し、液状の圧送プラントにグラウト14の圧送管16を介して接続して用意をし、多連装重連式のユニット式ポンプ12を介しグラウト14を圧送して細径注入管3に圧送してそれらの軸方向の位置を異ならせて開口した吐出口4´ からシールモルタル17を介して地盤15中に立体的に注入する。
【0028】
その際、該注入は所定の低圧浸透注入であるために、又、予め芯管2より懸濁グラウト、或いは、短いゲルタイムのグラウトで粗詰め注入されているため、地盤15内に於ける割裂や突起した***は生ぜず、地表面や注入領域外へは逸脱せず、吐出口4から一斉に地盤15中にグラウト14の低圧浸透による注入が行われるために、均一の注入による所定通りの均一な立体的等の地盤改良が立体的に行われる。
【0029】
尚、この出願の発明においては、当該グラウト14の一次注入の前に予め、芯管2を介し透水試験水を圧送して所定の透水試験を行い、当該グラウト注入の際逸脱が生じるかどうかの試験を行い、一次注入の注入設計を行い、又、二次注入の注入圧力、注入速度の訂正を行い、又、二次注入後の該試験が不十分な不適合の場合には注入細管3から、或いは、芯管2からグラウト14の再注入を行って確実な地盤改良を行うことが出来る。
【0030】
もし、注入用芯管がない場合、注入細管3からの注入を行うが、いづれかのものに逸脱が生じた場合には、多連装重連式のユニットポンプ12を一斉に停止しなければならないがため、注入細管3内のゲル化によるトラブルが生じ易いが、芯管2からゲルタイムの短いグラウトを注入して二次注入を中断する事なく、該二次注入のの逸脱を防止出来、多連装重連式のユニットポンプ12の一斉の連続注入が可能となり、稼働効率の向上が図れる。
【0031】
尚、上記芯管2からの注入は多連装重連式ユニットポンプ12とは別の通常の注入ポンプを使用するのが一般的であるが、該ユニットポンプの一部のポンプを必要に応じて別に稼働出来るようにしておいてもよいものである。
【0032】
そして、上記二次注入の後に、予め、透水試験水による透水試験を行って、そのテストを行うが、当該テストが不十分の場合には、注入細管3を介し、再注入を行うか、或いは、芯管2による再注入を行う。
【0033】
このようにして、当該グラウト14の地盤15に対する低圧浸透注入が設計通りに均一に一斉に行われることにより該地盤15に対しては割裂や地盤***の無い、良好な地盤改良施工が行われる。
【0034】
上述一次注入に際しては、グラウト14の懸濁状態のゲルタイムの長いグラウトを一次注入用として用い、グラウト14の二次注入の逸脱を防ぐようにすると、極めて強固な地盤を形成出来る。
【0035】
尚、当該施工プロセスにおいて、注入管1が芯管2の周囲に合成樹脂製の注入管3,3…を環設してあるために、その剛性が多きくされてトンネル施工等に際してその側部上方への注入プロセスにおいても湾曲等が生ぜず、直進性を維持し、その作業性がより良く保つことが出来るものである。
【0036】
尚、この出願の発明の実施態様は上述実施例に限るものでないことは勿論であり、例えば、合成樹脂製の注入細管3の吐出口4には袋や栓体の他に任意の逆止弁の機能をもたせてグラウト14の注入時に吐出口を開くようにする事により他の注入管からの逆流を防ぐ事が出来る。
【0037】
【発明の効果】
以上、この出願の発明によれば、基本的に広大で不均値な地層を有する地盤に対し、当該地盤中にグラウトの低圧浸透注入を介して、立体的な地盤改良施工を行うに際し、全体的に全てのエリアに於いて、地盤中に注入する注入管を用いることにより浸透注入が確実に設計通りに行われるために、当該施工の前後において、地盤に割裂や地盤の***等が生ぜず、設計通りの地盤改良が行えるという優れた効果が奏される。
【0038】
又、ゴムスリーブを有する二重管ダブルパッカ挿入用の外管タイプの剛性の高い芯管の周囲に合成樹脂製の可撓性を有する注入細管を複数本環設してあることにより、而も、該注入細管にその吐出口を軸方向位置を異ならせて、設けてあることにより、吐出するグラウトを地盤中に注入するに際し、前もって、予め、芯管からゲルタイムの短いグラウト等の懸濁液を注入して、ゲルタイムの長いグラウトの本注入の際において、逸脱を防止することが出来るという優れた効果が奏される。
【0039】
而して、二次注入のゲルタイムが長いグラウトを用いるに、地表面や粗い層に逸脱する場合、芯管からの懸濁状態のゲルタイムの短いグラウトを注入して、上記本注入の逸脱を防止出来るという優れた効果が奏される。
【0040】
又、上記一次注入により地盤を粗詰めしての注入細管により二次注入の注入を行うことが出来ることから、全ての注入管から全地盤中へ設計通りに均一に低圧浸透注入が行えるという優れた効果が奏される。
【0041】
又、地盤注入において、起こりがちな注入中のトラブル、例えば、機器の調整のトラブルにより注入細管のいずれかが注入不能になったり、或いは、シールグラウトにより注入細管の吐出口が閉塞してしまい、そのステージの注入が不能となってしまった場合、芯管により補充注入する事が出来、このため極めてトラブルに強い注入工が可能となる。即ち、安全機能を備えた注入工法と言える。
【0042】
又、本注入の前に、透水試験を行って、グラウトの逸脱等の透水性の確認を行って、適切にゲルタイムを調整したグラウトの低圧浸透注入を行うことが出来るという優れた効果が奏される。
【0043】
而して、環設する注入管のに中心に金属製又は硬質合成樹脂製の剛性の高い、芯管を設け、該芯管の周囲の適宜範囲に軟質性樹脂等の柔らかい柔軟性のある注入細管を複数設けることにより、該注入管全体の剛性が高められ、トンネルの周囲等の地盤の改良を行うに際し、即ち、上向き等の浸透注入等に際し、注入管が湾曲等せず、直進性が保たれ、作業能率がより向上するという優れた効果が奏される。更に、注入ポンプから注入孔に至るまで長い工程があってもその区間は軟質な結束注入細管からなるためにフレキシブルに変形して地形に対応出来るという効果がある。
【0044】
更に、注入ポンプから注入口に至るまでの長い距離があっても、その区間は柔軟な結束注入細管から成るためにフレキシブルに変形して地形に対応出来るという優れた効果が奏される。
【0045】
そして、この出願の発明によれば、地盤の広大なエリアに凹凸のある地盤中に多連装重連式のユニットポンプを介し、一斉に浸透注入が出来るために、設計通りの均一なグラウトの低圧浸透注入が行われて当該地盤の割裂や***が起こらず、信頼性の高い施工が行え、後工事における建造物の構築等の信頼性を高めることにもプラスするという優れた効果が奏される。
【0046】
而して、本注入の二次注入の前に芯管等を介しての、透水試験を行ってグラウトの一次注入の効果を確認をした後に二次注入を行うことが出来るために、合理的な二次注入が可能となるという効果がある。
【0047】
又、芯管からの一次注入による急速固結により注入細管を介しての施工に際し、ゲル化時間が長く浸透性に優れ地上部の長い経路でもゲル化の長いグラウトを用いても地盤中に於いてグラウトの逸脱が防げ、注入を続行出来るという効果もある。
【図面の簡単な説明】
【図1】この出願の発明の一実施例の注入管の部分拡大側面図である。
【図2】同横断平断面図である。
【図3】注入細管の吐出口の横断面図であり、(イ)は吐出口からの注入前の部分拡大断面図、(ロ)は注入時の吐出口の部分拡大断面図、(ハ)は注入細管に対するゴムスリーブ注入前の断面図、(ニ)は同注入時の断面図である。
【図4】注入前の地盤中へのグラウト管の挿入状態部分拡大横断面図である。
【図5】図4の部分拡大部分断面図である。
【図6】この出願の発明の多点注入のプラントの部分概略模式図である。
【図7】この出願の発明のプラントの全体模式図である。
【図8】この出願の発明の多連装重連式のユニットポンプの概略平断面図である。
【図9】この出願の発明の多連装重連式のユニットポンプの概略縦断面図である。。
【符号の説明】
2 芯管
3 注入細管
15 地盤
14 グラウト
12 多連装重連式のユニットポンプ
4 吐出口
4´ 浸孔
20 パッカ
19 ゴムスリーブ
5 スリーブ
2´ 内管
[0001]
[Industrial application fields]
The disclosed technology belongs to a technical field of a technique for reliably injecting a long gel time grout in a good ground in an improved area of a ground having a large area with a short construction period.
[0002]
[Prior art]
As is well known, in Japan, where the land area is small, there are many mountain forests, and there are special posture conditions close to the long and complicated coastline, Excavation work for constructing a structure and for that purpose is extremely important. For this reason, many injection methods have been developed to stop or strengthen water prior to injection or to strengthen the foundation ground.
[0003]
However, the improvement work based on these conventional techniques has problems such as high cost due to complicated adjustment of gel time and poor efficiency.
[0004]
In the chemical injection method, a casing pipe or the like is recently inserted and buried in the ground, and when excavating at the step while rotating the casing pipe by a step-down method or bottom-up method, grout or the like from the discharge port of the casing pipe An improved material is injected into the ground and solidified to form a predetermined improved region and a strainer injection method using a so-called double packer method has been developed and adopted.
[0005]
In order to cope with this, for example, as disclosed in Japanese Patent Application Laid-Open No. 7-300849, etc., a low-pressure osmotic injection method is used to apply a three-dimensional injection to the entire ground area having the vast area by a so-called multi-point injection method. In addition, a technique using a multi-point injection pump capable of simultaneously controlling low-pressure osmotic injection is developed, for example, as disclosed in Japanese Patent Application Laid-Open No. 11-81296. It is becoming practically used.
[0006]
This new technology is an epoch-making technology that enables low-pressure infiltration to infiltrate between soil particles, and can be injected simultaneously from several tens of discharge ports, so that it can be implemented quickly and is economical. There are more issues to research and develop.
[0007]
[Problems to be solved by the invention]
Thus, in the ground injection method by the seed multi-point injection, the injection tubule is integrally bound and used as a grout tube so that the discharge ports are located at different sites in the axial direction. As long as it is flexible, for example, when injecting upward from a side drilling hole such as a tunnel or obliquely upward, the bending of many injection capillaries made of the synthetic resin As a result, the accuracy of the construction and workability are inferior.
[0008]
In addition, since the injection capillary tube requires a long distance from the pump plant to the injection hole, it is necessary to use an injection solution having a low clay and a long gel time. However, the injection solution with a long gel time starts to deviate once on the ground surface or a rough layer in the ground, and the gelation time cannot be shortened. There is a problem of inconvenience such as gelation.
[0009]
OBJECT OF THE INVENTION
The object of the invention of this application is to ensure the rigidity of each grout injection capillary while taking advantage of the multi-point infusion pump by low pressure osmotic injection of grout for the wide area ground developed so far based on the above-mentioned prior art. It is possible to maintain the straight running performance stably regardless of the injection mode, and also to conduct a water permeability test on the ground before and after the injection to appropriately set the injection speed, confirm the injection effect, Depending on how the effect is confirmed, re-injection can be performed.In addition, if the grout with a long gelation time starts to deviate during coarse injection or primary injection prior to injection from the injection capillary, It is possible to inject grout with a short time to prevent it, etc., and to provide a technology that dramatically improves the practicality of grout injection with multiple-stacked multiple pumps It is intended.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the grout is penetrated into the ground from a plurality of soft injection capillaries integrally provided around the core pipe made of metal or hard plastic provided with injection holes. It is a method of injecting, and is based on the fact that the grout is pumped to each of the injection capillaries simultaneously from the ground by a multi-unit multi-unit pump, and therefore, when the grout is pumped to the injection capillaries. A short gel time grout injection prior to the injection of a long gel time grout by the injection capillary, or sometimes a suspension grout is primarily injected from the core tube and a deviation from the secondary injection from the injection capillary. Or, before the injection by the injection capillary tube, injecting the grout with a low viscosity from the core tube or the like for a long time or performing a water permeability test with water. After confirming the water permeability of the original ground and confirming the optimum injection speed from the injection capillary, the injection is performed, and after the injection by the injection capillary, water from the core tube or gelation time of low viscosity A permeation test may be performed with a long grout, and in addition, if the effect of the permeation test after the injection is confirmed to be insufficient, a re-injection may be performed through the core tube. When the grout with a long gelation time from the injection capillary tube deviates from the formation surface or the rough soil layer, the grout with a short gelation time is injected through the core tube to A technical measure is taken in which the grouting is prevented and the core tube increases the rigidity of the bundling injection thin tube to improve workability.
[0011]
[Action]
In the above configuration, when the ground improvement such as three-dimensional is performed by the low pressure osmotic injection of the grout improving material as uniformly as possible to the ground having a large area, one piece provided with injection holes. An injection capillary tube made of a flexible synthetic resin or the like is provided around the hard core tube of the tube to increase its strength and rigidity, and each injection capillary tube is grouting through a multi-unit multiple unit pump. It is possible to pump an improved material such as a short gel time grout from the core tube prior to the secondary injection of the long gel time grout by the injection capillary, or the primary injection by the suspension grout, etc. Alternatively, a water permeability test is performed, and the water permeability test is performed after the secondary injection from the injection capillary tube. If the effect confirmation by the water permeability test is insufficient, the core tube or the injection capillary tube is used. Do reinjection Unimoshi also one in which the core tube during these operations is also to improve workability strengthen the rigidity of the injection capillary was unity.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the invention of this application will be described as embodiments of the present invention with reference to the drawings as follows.
[0013]
In the embodiment shown in FIG. 1, reference numeral 1 denotes an injection tube which is an important point of the invention of this application, and an injection through-hole made of metal or hard synthetic resin having a large diameter and a predetermined rigidity is provided at the center. A plurality of core tubes 2 are installed, and a predetermined number of a plurality of injection capillaries 3 are arranged around the core tube 2 through a predetermined band or adhesive as shown in FIG. The injection capillaries 3 are shifted from each other in the design direction in the longitudinal direction over the predetermined span from the tip of the injection tube 1 so that the discharge ports 4 are made of rubber or the like as shown in FIG. The fishtail-type check valve 5 prepared by the above is provided with an exterior and has an opening, and as shown in FIG. 3 (a), when the grout is not injected from the injection capillary 3, The valve 5 is closed and the discharge port 4 is closed, and as shown in (b), it functions to open at the time of injection. . 3 (C) is a sectional view of the rubber sleeve 19 when the grout is injected from the core tube 2 into the ground 15, and the embodiment shown in FIG. Thus, the rigidity of each injection tubule 3 embracing the core tube 2 is maintained at the time of lateral injection upward from the tunnel body, for example, during tunnel construction, The injection tube 1 is three-dimensionally arranged in a predetermined number of units, for example, in a matrix, in a ground area of a predetermined large area without being bent or the like. As shown in FIGS. 6 and 7, the injection pipe 1 of each unit is provided with a pressure detector 9 and a flow rate detector 6 through a pressure feed passage 16, respectively, and the pressure, flow rate and detection of each of them are made. The flow rate detector 6 and the pressure detector 9 are housed in the detection box 8, and the data of each pressure and flow rate are sent to the controller 10 by an electric signal, and the injection of each injection capillary 3 is managed. These injection tubules 3 are also connected to a unit pump 12 of a multi-stack system as disclosed in JP-A-11-21296, and the grout 14 in the improvement material tank 13 is shown in FIG. In addition, the ground is discharged from the discharge port 4 provided by shifting the position in the length direction of each of the injection thin tubes 3 of the core tube 2 of each injection tube 1 that is pressure-fed through the pressure-feed passage 16 and inserted into the predetermined ground 15. 15 so that the grout 14 can penetrate into the ground 15 in a vast area at low pressure by uniformly penetrating the grout 14 at a low pressure.
[0014]
Thus, as shown in detail in FIG. 1, FIG. 4, FIG. 5, FIG. 6 and FIG. 7, the grout tube 1 is formed in the ground 15 in the predetermined area according to the design. ′ Is inserted through a seal grout 17, and the core tube 2 is an injection outer tube (trademark registered application) type used in the conventional double packer method as shown in FIG. A rubber sleeve 19 is externally wound on the outside of the injection through hole 23, and as shown in FIG. 4, an injection thin tube 3 with a double packer 20 is provided on the outside of the core tube 2 at an arbitrary depth. The core tube 2 is disposed so as to be located in the injection through hole 23 of the thin tube 3, and the injection liquid or water from the core tube 2 passes through the through hole 23 and enters the ground 15 through the seal grout 17. Injected. As shown in FIG. 3, the injection tubule 3 has a discharge port 4 at the tip, and is covered with a check valve 5 such as a rubber sleeve, a bag or a flexible tape as shown in FIG. In the injection, these flexible check valves 5 are opened by the flow pressure to extract the grout, and are closed after the injection. As shown in FIG. 5, the core tube 2 is provided with a core tube 2 having a known circumferential packer 20 at a predetermined pitch so as to be detachable. As shown in FIG. Is an injection through hole of the core tube 2, and is made to face the injection through hole 23 of the core tube 2 at a predetermined depth.
[0015]
As described above, not only the injection thin tube 3 but also the core tube 2 of the injection tube 1, not only the grout but also the test water for the water permeability test or the test injection solution can be pumped. Has been.
[0016]
Thus, the water permeability test may be performed either before the primary injection or before or after the secondary injection.
[0017]
Further, the multi-unit and multi-unit pump 12 is disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 11-81296, and in the above-described embodiment, as shown in FIGS. The super multi-point injection device to the ground 15 forming the center of one of the inventions of the present application, which constitutes a multi-unit multi-unit pump 12 of a pump plant, For example, in the actual mode, it is a mode of 50 continuous cam operation as shown in FIG. 9, but for example, in the case shown in FIGS. Yes.
[0018]
Each unit pump 12 has a key 23 'on a rotary shaft 23 connected to a drive source such as an inverter motor (not shown), so that important constituent elements of the multiple-unit-unit pump 12 of the present invention can be obtained. The cams 24 having a predetermined shape are integrally connected, and the cam 24 is driven by a cam.
[0019]
8 and 9, the support bracket 26 provided integrally with the base 25 of the multiple-unit-unit-type pump 1 has a suction port 27 and a discharge port for the improvement material 14 such as grout. A cylinder 29 having 28 is slidably provided, and a screw screw 32 which is provided integrally with the base 25 and is used for adjusting the advance / retreat of the cylinder 29 with respect to the new support bracket 30 has an adjustment nut 31 as a base end. The piston 33 is provided with an automatic opening / closing valve 34 as a suction valve in the cylinder 29, and the axial direction of the piston 33 is provided in the cylinder 29. The cylinder is opened and closed automatically in accordance with the forward and backward movement of the piston 33 with respect to the suction and discharge holes 35 with respect to the discharge chamber and the discharge chamber before and after the grout 14 formed in the suction and discharge. It is to perform automatic supply of grout 14 of the modifying material to the pressure chamber 9.
[0020]
Thus, as shown in FIG. 8, a bracket 37 is integrally fixed at the tip of the piston rod 36 that is integrally connected to the piston 33 and extends forward, so that it abuts against the cam 24. A tappet 38 as a cam follower that rolls is pivotally supported.
[0021]
Thus, as shown in FIG. 8, the bracket 37 is integrally provided with a guide bar 41 as a support mechanism in a guide case 40, and a plurality of slide bearings 39 are provided in the inside thereof. The piston rod 36 is swung up and down and deformed through a component force in an oblique direction due to the rotation of the cam 24 and is slidably provided on a slide bar 41 provided integrally with a support bracket 26 fixed to 25. Further, the piston 33 is smoothly advanced and retracted by preventing bending and the grout 14 is smoothly sucked and discharged.
[0022]
Thus, when the unit pump 12 is operated by the cam 24, the cylinder 29 is advanced and retracted by rotating the adjusting nut 31 of the screw screw 32 as the advance / retreat adjustment device, and the cylinder 29 and the tappet as the cam follower. The stroke of the unit pump 12 is adjusted via the elastic spring 42 interposed between the mounting bracket 37 and the mounting bracket 37 so that the cam 24 can be selected to be in contact with or not in contact with the cam follower tappet 38. The advance / retreat stroke is adjustable.
[0023]
The point that the cylinder 29 is made to advance and retract is one of the important mechanisms of the invention of the present invention of the multiple series pump 12 of the invention of this application.
[0024]
As shown in FIG. 6, the discharge port 28 of the cylinder 29 is connected to the pressure feed passage 16 and the pressure feed passage 16 of the grout 14 of each improvement material via a header (depending on the design, a pressure pot may be used). When adjusting the gel time of the improved material 14, a pair of unit pumps 12 are arranged on the cam surfaces of the cams 24 before and after the cam 24 to adjust the gel time of the improved material grout 14. Improving the material 14 appropriately adjusted with the agent or the like through the inlet / outlet ports 27 and 28, the improved material pumping passage 16, and discharging and injecting the grout 14 from the discharge port 3 to the predetermined ground layer of the ground 15. Can be done.
[0025]
Then, by appropriately selecting and designing the shape of the pressure surface and suction surface of the cam surface of each cam 24 in the multiple-unit heavy-duplex unit pump 12, the pressurization time is lengthened and the discharge time is shortened or reversed. The discharge pressure from the discharge port 4 through the pressure feed passage 16 of the improvement material 14 can be appropriately adjusted to rapid, medium speed, and low speed. In this embodiment, a small amount of low-pressure low-speed jet Is made.
[0026]
Therefore, the cam 24 constitutes an important component of the multi-unit and multi-unit pump of the multi-point injection device that forms the center of one aspect of the invention of this application.
[0027]
In the above-described configuration, the ground 15 having a large area in a predetermined area is filled with the seal mortar 17 in the excavation hole 7 'in advance, and the core tube 2 is injected into the outer periphery with a small diameter as shown in FIG. The pipe 3 is inserted in an annular state, and is prepared by connecting to a liquid pumping plant via a pumping pipe 16 of the grout 14 and pumping the grout 14 via a multi-unit multi-unit pump 12. Three-dimensionally injected into the ground 15 through the seal mortar 17 from the discharge port 4 ′ which is pumped to the small-diameter injection tube 3 and opened in different positions in the axial direction.
[0028]
At that time, since the injection is a predetermined low-pressure osmotic injection, and since it is preliminarily filled with a suspension grout or a short gel time grout from the core tube 2, Protruding bumps do not occur, do not deviate outside the ground surface or the injection region, and injection by the low pressure penetration of the grout 14 into the ground 15 from the discharge port 4 is performed all at once. Ground improvement such as three-dimensional is performed three-dimensionally.
[0029]
In the invention of this application, prior to the primary injection of the grout 14, a predetermined water permeability test is performed in advance by pumping the water permeability test water through the core tube 2, and whether or not a deviation occurs during the injection of the grout. Perform the test, perform the injection design of the primary injection, correct the injection pressure and injection speed of the secondary injection, and if the test after the secondary injection is inadequate, the injection capillary 3 Alternatively, the ground can be reliably improved by reinjecting the grout 14 from the core tube 2.
[0030]
If there is no core tube for injection, injection from the injection thin tube 3 is performed, but if any one of them deviates, the multiple-unit-unit-unit pump 12 must be stopped all at once. Therefore, troubles due to gelation in the injection thin tube 3 are likely to occur, but deviation from the secondary injection can be prevented without injecting a grout with a short gel time from the core tube 2 and interrupting the secondary injection. Simultaneous continuous injection of the double-unit pump 12 is possible, and the operation efficiency can be improved.
[0031]
In general, a normal infusion pump different from the multi-unit multi-unit pump 12 is used for the infusion from the core tube 2, but a part of the unit pump is used as needed. It may be possible to operate separately.
[0032]
Then, after the secondary injection, a water permeability test with a water permeability test water is performed in advance, and the test is performed. If the test is insufficient, reinjection is performed through the injection capillary 3, or Then, re-injection by the core tube 2 is performed.
[0033]
In this manner, the low-pressure infiltration injection into the ground 15 of the grout 14 is performed uniformly and uniformly as designed, so that the ground 15 can be satisfactorily improved without any split or ground uplift.
[0034]
At the time of the above primary injection, a very strong ground can be formed by using a grout with a long gel time in a suspended state of the grout 14 for primary injection and preventing deviation from the secondary injection of the grout 14.
[0035]
In the construction process, since the injection pipe 1 is provided with the synthetic resin injection pipes 3, 3... Around the core pipe 2, the rigidity of the injection pipe 1 is increased. Even in the upward injection process, no curvature or the like occurs, the straightness is maintained, and the workability can be better maintained.
[0036]
Of course, the embodiment of the invention of this application is not limited to the above-described embodiment. For example, the discharge port 4 of the injection thin tube 3 made of synthetic resin may include any check valve other than a bag or a plug. By providing this function and opening the outlet when the grout 14 is injected, backflow from other injection pipes can be prevented.
[0037]
【The invention's effect】
As described above, according to the invention of this application, when performing a three-dimensional ground improvement construction through a low-pressure infiltration injection of grout into the ground, basically for a ground having a vast and uneven structure, In general, in all areas, osmotic injection is reliably performed as designed by using an injection pipe that is injected into the ground, so that there is no split or ground uplift before and after the construction. An excellent effect that the ground can be improved as designed.
[0038]
In addition, a plurality of flexible injection thin tubes made of synthetic resin are provided around a highly rigid core tube of the outer tube type for inserting a double tube double packer having a rubber sleeve. When the injection grouting is provided in the ground by injecting the grouting for discharge into the ground, a suspension such as grouting with a short gel time is previously applied from the core tube. In the case of the main injection of the grout having a long gel time, it is possible to prevent the deviation.
[0039]
Therefore, when a grout with a long secondary injection gel time is used, when the ground surface or coarse layer deviates, a short gel time grout suspended from the core tube is injected to prevent the deviation from the main injection. An excellent effect is possible.
[0040]
In addition, since the secondary injection can be performed by the injection thin tube with the ground roughly packed by the primary injection, the low pressure osmotic injection can be uniformly performed from all the injection tubes into the entire ground as designed. The effect is played.
[0041]
In addition, troubles during injection that tend to occur in ground injection, for example, any of the injection tubules can not be injected due to trouble of adjustment of the equipment, or the discharge port of the injection tubule is blocked by the seal grout, If the stage cannot be injected, it can be replenished and injected by the core tube, which makes it possible to perform an injection process that is extremely trouble-free. That is, it can be said that the injection method has a safety function.
[0042]
In addition, before the main injection, a water permeability test is performed to check water permeability such as a grout deviation, and an excellent effect is achieved in that low pressure osmotic injection of the grout with the gel time adjusted appropriately can be performed. The
[0043]
Thus, a highly rigid core tube made of metal or hard synthetic resin is provided in the center of the injection tube to be installed, and soft flexible injection of soft resin or the like is provided in an appropriate range around the core tube. By providing a plurality of thin tubes, the rigidity of the entire injection tube is increased, and when the ground such as the periphery of the tunnel is improved, that is, in the case of osmotic injection, etc. Thus, an excellent effect is achieved in that the work efficiency is further improved. Furthermore, even if there is a long process from the infusion pump to the infusion hole, the section is made of a soft bundling infusion tubule, so that there is an effect that it can be flexibly deformed to cope with the topography.
[0044]
Furthermore, even if there is a long distance from the injection pump to the injection port, the section is composed of a flexible bundling injection capillary, so that it is possible to flexibly deform and cope with the topography.
[0045]
Further, according to the invention of this application, since osmotic injection can be performed simultaneously through a multiple-unit, multiple-unit pump into an uneven ground in a vast area of the ground, a uniform low pressure of grout as designed The infiltration is carried out so that the ground is not split or raised, and it is possible to perform highly reliable construction, and it has the excellent effect of increasing the reliability of building construction in post-construction. .
[0046]
Therefore, since the secondary injection can be performed after confirming the effect of the primary injection of the grout after confirming the effect of the primary injection of the grout through the core tube etc. before the secondary injection of the main injection. Effective secondary injection is possible.
[0047]
In addition, due to the rapid solidification by the primary injection from the core tube, it has a long gelation time, excellent permeability, and a long route on the ground part or a long gelation grout in the ground. This prevents the grout from escaping and allows the injection to continue.
[Brief description of the drawings]
FIG. 1 is a partially enlarged side view of an injection tube according to an embodiment of the present invention.
FIG. 2 is a cross-sectional plan view of the same.
FIGS. 3A and 3B are cross-sectional views of a discharge port of an injection capillary, wherein FIG. 3A is a partial enlarged cross-sectional view before injection from the discharge port, FIG. 3B is a partial enlarged cross-sectional view of the discharge port during injection, and FIG. Is a cross-sectional view of the injection capillary before the rubber sleeve is injected, and FIG.
FIG. 4 is an enlarged cross-sectional view of a part of the grout tube inserted into the ground before injection.
5 is a partially enlarged partial sectional view of FIG. 4;
FIG. 6 is a partial schematic diagram of a multi-point injection plant of the invention of this application.
FIG. 7 is an overall schematic view of the plant of the invention of this application.
FIG. 8 is a schematic plan cross-sectional view of a multiple-ply double-unit pump according to the invention of this application.
FIG. 9 is a schematic longitudinal sectional view of a multiple-ply double-unit pump according to the invention of this application. .
[Explanation of symbols]
2 Core tube 3 Injection thin tube 15 Ground 14 Grout 12 Multi-unit multi-unit pump 4 Discharge port 4 'Dipping hole 20 Packer 19 Rubber sleeve 5 Sleeve 2' Inner tube

Claims (1)

透孔を有する芯管と、この芯管周囲に、軸方向の異なる部位に注入用吐出口が位置するように配設された複数本の注入細管とからなるグラウト管を地盤中に掘削された削孔中に挿入し、地盤上の多連装重連ユニットポンプにより前記各注入細管を通して地盤中にグラウトを注入する地盤注入工法であって、前記グラウト管が前記削孔中にシールグラウトを介して挿入され、かつ、前記複数の注入細管から長いゲルタイムのグラウトを前記シールグラウトを破って同時に注入する工程、および前記芯管の透孔からゲルタイムの短いグラウトを注入する工程を併用し、これにより前記複数の注入細管からの長いゲル化時間のグラウトの逸脱を防いで、立体的な低圧浸透注入を行うことを特徴とする多連装重連ユニットポンプによるグラウトの地盤注入工法。A grout tube comprising a core tube having a through hole and a plurality of injection capillaries arranged around the core tube so that injection outlets are located at different locations in the axial direction was excavated in the ground. A ground injecting method in which grout is injected into the ground through each of the injection thin tubes by means of a multi-unit multiple unit pump on the ground, wherein the grout tube is inserted into the hole through the seal grout. And a step of simultaneously injecting a long gel time grout from the plurality of injection capillaries by breaking the seal grout and a step of injecting a short gel time grout from the through hole of the core tube, thereby Grout ground due to multi-unit multiple unit pump, which prevents three-dimensional low-pressure osmotic injection while preventing the grouting of a long gelation time from multiple injection capillaries. Input method.
JP2001172438A 2001-06-07 2001-06-07 Ground injection method for grout using multiple unit pumps. Expired - Fee Related JP3622013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001172438A JP3622013B2 (en) 2001-06-07 2001-06-07 Ground injection method for grout using multiple unit pumps.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001172438A JP3622013B2 (en) 2001-06-07 2001-06-07 Ground injection method for grout using multiple unit pumps.

Publications (2)

Publication Number Publication Date
JP2002363967A JP2002363967A (en) 2002-12-18
JP3622013B2 true JP3622013B2 (en) 2005-02-23

Family

ID=19014058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001172438A Expired - Fee Related JP3622013B2 (en) 2001-06-07 2001-06-07 Ground injection method for grout using multiple unit pumps.

Country Status (1)

Country Link
JP (1) JP3622013B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660953B (en) * 2012-05-31 2014-10-29 福州市第三建筑工程公司 Moulding equipment and construction method of multitube surrounded-connecting cement maintaining body
JP6076323B2 (en) * 2014-12-05 2017-02-08 東海旅客鉄道株式会社 Grout injection equipment
JP6915791B1 (en) * 2020-08-07 2021-08-04 強化土エンジニヤリング株式会社 Ground injection method

Also Published As

Publication number Publication date
JP2002363967A (en) 2002-12-18

Similar Documents

Publication Publication Date Title
CN110259383B (en) Advancing drilling and grouting integrated device and using method
CN105040775B (en) Deep layer pressure-bearing artesian well plugging system and method
CN105200978A (en) Advancing type localized double-liquid grouting device and construction method
US9896894B2 (en) Drilling and grouting method and apparatus
CN111549757B (en) Grouting reinforcement method suitable for soft filler karst cave
CN101251020A (en) Subsection hole-drilling repeatedly slip-casting method
JP3622013B2 (en) Ground injection method for grout using multiple unit pumps.
CN101089357B (en) Rockbolt construction drill method and tube component for rockbolt construction drill
JP3980612B2 (en) Foundation construction device and method for creating foundation elements
CN105274994A (en) Suck-back prevention and deposition prevention grouting process and device for deep waterlogged sand layer
JP6182804B1 (en) Ground injection device and ground injection method
CN105201447A (en) Quick-setting slurry grouting consolidation system and application method thereof
CN111101917A (en) Coal seam hydraulic fracturing combined resonance gas extraction method and hole packer
CN109594951A (en) A kind of grouting with small pipe port closing device and method for blocking
CN201129178Y (en) Drilling subsection advanced type grouting water-shutoff apparatus
CN209569369U (en) A kind of one-way water stop grouting device for vertical shaft section of jurisdiction
JP3656741B2 (en) Ground injection method
JP5400083B2 (en) Ground improvement chemical injection pipe and ground improvement chemical injection method
JP3291714B2 (en) Super multi-point injection method and equipment for ground
JP2838390B2 (en) Strainer tube and its installation method, and chemical solution injection method using strainer tube
JP4583263B2 (en) Chemical injection pipe and chemical injection method
JPH01131715A (en) Ground improving work by horizontal injection of chemical grout
CN114575883B (en) Decompression guide grouting method suitable for airtight stratum
JPH089862B2 (en) Chemical injection method
JP2005009310A (en) Ground injection device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3622013

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071203

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101203

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121203

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131203

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees