JP3620573B2 - High strength steel plate with excellent weldability - Google Patents

High strength steel plate with excellent weldability Download PDF

Info

Publication number
JP3620573B2
JP3620573B2 JP33626898A JP33626898A JP3620573B2 JP 3620573 B2 JP3620573 B2 JP 3620573B2 JP 33626898 A JP33626898 A JP 33626898A JP 33626898 A JP33626898 A JP 33626898A JP 3620573 B2 JP3620573 B2 JP 3620573B2
Authority
JP
Japan
Prior art keywords
less
steel plate
base material
heat input
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP33626898A
Other languages
Japanese (ja)
Other versions
JP2000160281A (en
Inventor
等 畑野
重雄 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP33626898A priority Critical patent/JP3620573B2/en
Publication of JP2000160281A publication Critical patent/JP2000160281A/en
Application granted granted Critical
Publication of JP3620573B2 publication Critical patent/JP3620573B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば橋梁、ペンストック、タンク、その他の大型構造物に使用される、溶接性に優れた高張力鋼板に関する。
【0002】
【従来の技術】
780MPa級以上の高張力鋼板では、母材強度を確保するとの観点から合金成分を多量に添加するため、小入熱溶接条件で冷却速度の速いHAZが硬化して溶接割れ(低温割れ)が生じやすく、それを防ぐために溶接施工時に100℃程度の予熱を行う必要がある。この予熱を省略できれば大きく施工効率が上がり、かつコストダウンにもなるため、耐低温割れ性に優れた780MPa級以上の高張力鋼板が要望されている。
【0003】
耐低温割れ性の指標として下記式で定義されるPcm(%)というパラメータが開示され、従来はPcmを制限して耐低温割れ性を改善し、合金成分の添加を制限したことによる母材強度の低下を製造方法の改良により補ってきた。
Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5×[B]
ただし、[C]〜[B]は各元素の含有量を表す。
これにより、780MPa級以上の高張力鋼板において、母材製造時の焼入れにおける冷却速度が比較的速い薄物(≦34mm)では予熱フリーを可能にできたが、冷却速度が遅い厚物(≧40mm)では予熱フリーと母材強度の確保を両立させることができなかった。また、Cuの析出を利用して母材強度を確保する方法も開示されているが、冷却速度が遅い厚物では十分な母材強度が確保できない。
なお、耐低温割れ性の改善に関する特許文献としては、例えば特開平7−113140号公報(Pcm≦0.23とし、低C、低Cuに制限して耐低温割れ性を改善する)、特開昭61−44161号公報(Pcmを余り上げずに高Ceqとし、かつ低C、Bフリーとする)、特開平4−333516号公報(Pcm≦0.28、Bフリーとして耐低温割れ性を改善し、かつCu添加により強度を確保する)、特開平5−163527号公報(Pcmに類似の溶接性パラメーターPを規制し、かつCuを添加して強度を確保する)がある。
【0004】
一方、780MPa級以上の高張力鋼板において、大入熱溶接時にHAZ靭性が劣化する問題がある。これは、入熱が大きくなるとHAZ部の冷却速度が遅くなり、それに伴いHAZ部の焼入れ性が低下し、粗大な島状マルテンサイトを生成することにより靭性が低下するためである。この問題は厚物、薄物いずれにおいても発生し、実際の溶接施工時に入熱制限(5kJ/mm以下)が行われ、効率が悪かった。
490〜590MPa級では、Ti添加、酸化物分散などにより大入熱HAZ靭性の改善がなされてきた。780MPa級以上でも、前記特開平5−163527号公報、特開昭61−44161号公報のほか、例えば特開平6−65680号公報(酸化物を含有させ、旧γ粒径を微細化する)、特開平7−233437号公報(Bフリー、Pcm≦0.24、Ceq≧0.45として焼入れ性を向上させる)など、大入熱HAZ靭性の改善を目的とする発明があるが、いずれも十分ではなかった。
【0005】
【発明が解決しようとする課題】
上記のように、小入熱溶接においてHAZ部は高温に加熱されかつ冷却速度が速いため、硬化して低温割れを起こしやすい。一方、母材は板厚が厚くなるほど冷却速度が遅くなるため、圧延後の焼入れで強度が確保し難くなる。従って、780MPa級以上の高張力鋼板の厚物では、小入熱溶接時の低温割れを防止するため冷却速度が速い場合に硬くならないようにした上で、鋼板製造時の焼入れ過程において冷却速度が遅い場合にいかに強度を確保するかが課題となる。
また、厚物、薄物いずれにおいても、大入熱溶接においては、HAZ部の冷却速度が遅くなり、それに伴いHAZ部の焼入れ性が低下し、島状マルテンサイト組織を生成して靭性が低下するが、このHAZ靭性を改善するには、冷却速度が遅い場合にいかに島状マルテンサイト組織の生成を抑制するかが課題となる。
【0006】
【課題を解決するための手段】
本発明に係る溶接性に優れた高張力鋼板は、C:0.010〜0.060%、Si:0.05〜0.5%、Mn:1.25〜2.5%、Cr:0.1〜2.0%、Mo:0.1〜1.5%、B:0.0006〜0.0050%、Cu:0.25%未満、Nb:0.030%以下を含有し、さらに、Ti:0.030%以下、Zr:0.050%以下、Hf:0.10%以下のいずれか1種以上を含有し、N:0.0100%以下に制限され、残部Fe及び不可避不純物よりなり、かつ下記式で定義されるKP(%)及びKN(%)が、KP≧3.20、0.0≦KN≦3.0を満たすことを特徴とする。
KP=[Mn]+1.5×[Cr]+2×[Mo]
KN=([N]/14−[Ti]/48−[Zr]/91−[Hf]/178)×10
ただし、[Mn]、[Cr]、[Mo]、[N]、[Ti]、[Zr]、[Hf]は各元素の含有量(%)を表す。
上記高張力鋼板において、Cu:0.25%未満含有させる代わりに、Cu:0.25〜1%含有させることができる。ただし、その場合は、Nb:0.010%未満とする。
【0007】
上記高張力鋼板において、上記元素以外に、必要に応じて下記(1)〜(4)に挙げたいずれか1種又は2種以上を含有させてもよい。
(1)Niを3.5%以下
(2)Vを0.10%以下
(3)Ca:0.0005〜0.0050%
(4)Al:0.20%以下
【0008】
【発明の実施の形態】
さて、490〜590MPa級の高張力鋼板では、Pcmを基本とした成分設計で耐低温割れ性の改善と母材強度の確保を両立させることができたが、780MPa級以上の高張力鋼板では、Pcmを基本とした成分設計を行った場合、特に厚物において耐低温割れ性の改善と母材強度の確保を両立させることが困難である。そこで、本発明では、成分設計に当たり、これまで耐低温割れ性の指標とされていたPcmにとらわれず、鋼組織を考慮した成分設計を行った。
【0009】
本発明の成分設計は、Cを極低Cに制限した上で、焼入れ性向上元素であるMn、Cr、Moを積極添加し、さらにBを添加したことがポイントである。これらの成分を適量添加することにより、ベイナイトのCCT線(図5のCCT線図を参照)が短時間側、かつ低温度側に移動し、フェライトのCCT線が長時間側に移動する(いずれも図5の実線→破線)。
従って、従来は、高冷却速度ではマルテンサイト、低冷却速度ではフェライト又は高温ベイナイトを生成するために、硬さの冷却速度感受性が大きく、小入熱溶接時のHAZ部の硬さ低減(耐低温割れ性の改善)と母材強度確保が両立できず、予熱フリーが困難であったが、本発明では、高冷却速度、低冷却速度のいずれでも低温ベイナイトを生成し、硬さの冷却速度感受性が低下し、小入熱溶接時のHAZ部の硬さ低減(耐低温割れ性の改善)と母材強度確保の両立が可能となった。
一方、大入熱溶接の場合、HAZの冷却速度が遅くなるため、従来、フェライト又は高温ベイナイトを生成し、それに伴い粗大かつ塊状の島状マルテンサイト組織が生成してHAZ靭性が劣化していたが、本発明では、冷却速度が遅くても低温ベイナイトが生成し、しかも極低Cであるため生成する島状マルテンサイト組織が微細となり、HAZ靭性を確保できる。
【0010】
次に、本発明に係る高張力鋼板の化学成分について個々に説明する。

Cを0.06%以下に制限し、同時に適量のMn、Cr、Mo、及びBを添加することで、前記の通り、小入熱溶接時のHAZ部の耐低温割れ性と母材強度確保を両立させ、かつ大入熱溶接時のHAZ靭性を改善できる。Cが0.060%を超えると高冷却速度側で低温ベイナイトでなくマルテンサイトが生成するようになり、耐低温割れ性が改善されない。一方、0.010%未満では必要最小限の母材強度を得ることができない。従って、Cの含有量は0.010〜0.060%、より望ましくは0.030〜0.055%とする。
【0011】
Mn、Cr、Mo
これらの元素は焼入れ性を改善する作用をもち、高冷却速度〜低冷却速度で低温ベイナイトを生成させやすくし、前記の通り、極低Cとし、同時に適量のBを添加することで、小入熱溶接時のHAZ部の耐低温割れ性と母材強度確保を両立させ、かつ大入熱溶接時のHAZ靭性を改善できる。しかし、下記式で定義されるKPが3.20未満ではその作用が十分でなく、高温ベイナイト又はフェライトが生成するようになって、780MPa以上の母材強度を得ることができなくなる(後述する図1参照)。KPの望ましい値は4.0以上である。
KP=[Mn]+1.5×[Cr]+2×[Mo]
また、個別元素でみると、Mn、Cr、Moの含有量が、それぞれ1.25%、0.1%、0.1%に満たないと焼入れ性を改善する効果が期待できず、母材強度が不足し、それぞれ2.5%、2.0%、1.5%を超えると母材の靭性が劣化する。従って、含有量はそれぞれ1.25〜2.5%、0.1〜2.0%、0.1〜1.5%とする。より望ましくは、それぞれ1.3〜2.2%、0.3〜1.5%、0.3〜1.3%とする。
【0012】

Bは焼入れ性を改善する作用をもち、低冷却速度で低温ベイナイトを生成させやすくする。そして、前記の通り、極低Cとし、同時に適量のMn、Cr、Moを添加することで、小入熱溶接時のHAZ部の耐低温割れ性と母材強度確保を両立させ、かつ大入熱溶接時のHAZ靭性を改善することができる。Bが0.0006%未満であると、焼入れ性を改善する効果が期待できず、母材強度が不足し、0.0050%を超えるとかえって焼入れ性を低下させ、母材強度が不足する。従って、含有量は0.0006〜0.0050%、より望ましくは0.0007〜0.0030%とする。
【0013】
Cu
Cuは固溶強化及び析出強化によって母材強度を向上させ、また、BやMn〜Moほどではないが焼入れ性を向上させるので、必要に応じて添加することができる。しかし、余り多くなると大入熱溶接時のHAZ靭性を低下させるため、含有量は1.0%以下とするのが望ましい。
Nb
NbはNbCを形成して大入熱溶接時のHAZ靭性を低下させ、特にCuと共存するときその作用が強く出る。このため、Cu含有量が少ないとき(Cu:0.25%未満(0%を含む)のとき)は0.030%以下(0%を含む)に制限し、Cu含有量が比較的多いとき(Cu:0.25%以上のとき)は0.01%未満(0%を含む)に制限する必要がある。
【0014】
Ni
Niは母材靭性を向上させるのに有効な元素であり、必要に応じて添加することができる。しかし、3.5%を超えるとスケール疵が発生しやすくなるため、含有量は3.5%以下とする。

Vは少量の添加により焼入れ性及び焼戻し軟化抵抗を高くする効果があり、必要に応じて添加することができる。しかし、0.1%を超えると大入熱溶接時のHAZ靭性を低下させるため、含有量は0.1%以下とする。
【0015】
Ti、Zr、Hf
これらの元素は不純物として含まれるNを固定する作用をもち、高入熱溶接時のHAZ部でNが固溶Bと結合し、Bが消費されてその効果が失われるのを防止する。また、Ti等の窒化物は大入熱溶接時のHAZ部のγ粒を微細化しHAZ靭性を改善する。そのため、鋼中のN含有量に応じて、添加される。その場合、Tiが必ず含まれるように添加しZr、Hfは必要に応じてTiとともに添加するのが、より望ましい。しかし、Nが多い割りに添加量が少なく下記式で定義されるKNが4を超える場合は、Bの効果が失われてHAZ靭性が劣化する(後述する図2参照)。また、添加量が多くKNが−1未満となると母材の靭性が劣化する。従って、これらの元素を添加する場合は、−1.0≦KN≦4.0の範囲内とする。より望ましい範囲は、0.0〜3.0である。
KN=([N]/14−[Ti]/48−[Zr]/91−[Hf]/178)×10
また、個別元素でみると、Ti、Zr、Hfの含有量が、それぞれ0.03%、0.05%、0.10%を超えると母材の靭性が劣化するので、これ以下に制限される。
【0016】
Ca
CaはMnSを球状化するという介在物の形態制御による異方性を低減する効果を有しており、0.0005%未満ではこのような効果は少なく、また0.0050%を超える過剰の含有は母材の靭性を劣化させる。従って、Caを添加する場合、その含有量は0.0005〜0.0050%とする。
Al
Alは脱酸元素であるとともに、Nを固定し固溶Bを増加させることにより、Bの焼入れ性を向上させる効果がある。しかし、0.20%を超える過剰の含有は母材の靭性を劣化させる。従って、Alを添加する場合は0.20%以下とする。
【0017】
Si
Siは脱酸材の作用を有する元素であり、含有量が0.05%未満ではその効果が期待できず0.50%を超えると溶接性及び母材靭性を劣化させる。従って、Siの含有量は0.05〜0.50%とする。

不純物として含有されるNはBと結合して固溶Bを減少させ、Bの焼入れ性向上効果を阻害し、母材の靭性及び大入熱溶接時のHAZ靭性を低下させる。Nの含有量が0.0100%を超えるとその作用が顕著となり、Ti等の添加(KNの調整)あるいはAlの添加の効果も発揮されない。従って、Nの含有量は0.0100%以下に制限する。
【0018】
【実施例】
次に、本発明の実施例を比較例と共に説明する。
表1〜表4に示す組成の鋼を通常の溶製法により溶製してスラブとなし、通常の加熱、熱間圧延、焼入れ処理を行った後、表5〜表6に示す温度で焼戻し処理を行い、同表に示す板厚の高張力鋼板を製造した。
この鋼板に対し、下記要領で母材特性の試験を行い、母材特性に合格したもの全てと合格しなかったものの一部について、さらに溶接性(耐低温割れ性、HAZ靭性)の試験を行った。
その結果を表5〜表6にあわせて示す。
【0019】
[母材特性試験]
▲1▼引張試験;各鋼板の板厚1/4部位からJIS4号試験片を得て、引張試験を行い、0.2%耐力、引張強さを測定した。この実施例では引張強さ≧780MPaを合格とした。
▲2▼衝撃試験;各鋼板の板厚1/4部位からJIS4号試験片を採取し、シャルピー衝撃試験を行い、吸収エネルギー(vE−40)を求めた。この実施例では、vE−40≧47Jを合格とした。
【0020】
[溶接性試験]
▲1▼HAZ靭性;入熱20kJ/mmと40kJ/mm(サブマージアーク溶接)、及び入熱100kJ/mm(エレクトロスラグ溶接)で溶接を行い、前者の場合は図3に示す部位から、後者の場合は図4に示す部位からJIS4号試験片を採取し、シャルピー衝撃試験を行い、ボンド部の吸収エネルギー(vE−10)を求めた。この実施例では、vE−10≧47Jを合格とした。なお、板厚30mmの鋼板は入熱20kJ/mmまで、板厚50mmの鋼板は入熱40kJ/mmまでとした。
▲2▼耐低温割れ性;JIS Z 3158に規定されたy形溶接割れ試験方法に基づいて、入熱1.7kJ/mmで被覆アーク溶接を行い、ルート割れ防止予熱温度を測定した。この実施例では、25℃以下を合格とした。
【0021】
【表1】

Figure 0003620573
【0022】
【表2】
Figure 0003620573
【0023】
【表3】
Figure 0003620573
【0024】
【表4】
Figure 0003620573
【0025】
【表5】
Figure 0003620573
【0026】
【表6】
Figure 0003620573
【0027】
表5の結果に示されるように、No.1〜25は、母材特性と耐低温割れ性は全て合格であり、HAZ靭性も、入熱20kJ/mmと40kJ/mmの溶接では、全て合格であった。また、Ti、Zr、Hf等を−1.0≦KN≦4.0の範囲内で添加したNo.13、15、19〜23は、入熱100kJ/mmの溶接でも合格であった。
一方、合金組成、KP値又はKN値のいずれかが規定範囲を外れる比較例は、表6の備考欄に示すように、母材特性が不合格か、母材特性が合格したものでも、耐低温割れ性が劣るか(No.27)、大入熱溶接時のHAZ靭性が劣る(No.35〜37、45、47、48)。
【0028】
図1は、表5、表6をもとに、母材強度(引張強さ)とKP(=Mn+1.5×Cr+2×Mo)値の関係を示すもので、KP値が3.20以上で780MPaが得られている。
また、図2は、同じく表5、表6をもとに、入熱100kJ/mmの溶接後のHAZ靭性(vE−10)とKN(=(N/14−Ti/48−Zr/91−Hf/178)×10)値の関係を示すもので、KN値が−1.0〜4.0の範囲内で47kJ以上のHAZ靭性(vE−10)が得られている。
【0029】
【発明の効果】
本発明によれば、母材特性(強度、靭性)に優れ、かつ溶接性(耐低温割れ性、HAZ靭性)に優れた780MPa級高張力鋼板を得ることができる。また、本発明に係る抗張力鋼板は、高冷却速度、低冷却速度のいずれでも低温ベイナイトを生成し、硬さの冷却速度感受性が低いので、厚物でも均一な組織及び機械的特性を示し、実際の使用に好適な鋼板である。
【図面の簡単な説明】
【図1】母材強度とKP値の関係を示すグラフである。
【図2】HAZ靭性(vE−10)とKN値の関係を示すグラフである。
【図3】サブマージアーク溶接時のボンド靭性の試験片採取位置を示す図である。
【図4】エレクトロスラグ溶接時のボンド靭性の試験片採取位置を示す図である。
【図5】本発明の成分設計の考え方を説明するための模式的なCCT線図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-tensile steel plate having excellent weldability, for example, used for bridges, penstocks, tanks, and other large structures.
[0002]
[Prior art]
In high-tensile steel sheets of 780 MPa class or higher, a large amount of alloy components are added from the viewpoint of securing the strength of the base metal, so that HAZ with a fast cooling rate is cured under low heat input welding conditions, resulting in weld cracks (cold cracks). In order to prevent this, it is necessary to preheat at about 100 ° C. during welding. If this preheating can be omitted, the construction efficiency will be greatly increased and the cost will be reduced. Therefore, there is a demand for a high-tensile steel plate of 780 MPa class or higher that has excellent cold cracking resistance.
[0003]
A parameter called Pcm (%) defined by the following formula is disclosed as an index of low temperature cracking resistance. Conventionally, Pcm is limited to improve low temperature cracking resistance, and base material strength by limiting addition of alloy components. Has been compensated for by improving the manufacturing method.
Pcm = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 × [B]
However, [C] to [B] represent the content of each element.
As a result, in a high-tensile steel plate of 780 MPa class or higher, preheating-free was possible with a thin material (≦ 34 mm) with a relatively fast cooling rate in quenching during manufacturing of the base material, but a thick material with a slow cooling rate (≧ 40 mm). However, it was not possible to achieve both preheating free and securing of the base metal strength. Moreover, although the method of ensuring base material strength using precipitation of Cu is also disclosed, sufficient base material strength cannot be ensured with a thick article with a slow cooling rate.
Patent documents relating to improvement of cold cracking resistance include, for example, Japanese Patent Application Laid-Open No. 7-113140 (Pcm ≦ 0.23, limiting low C and low Cu to improve cold cracking resistance), Sho 61-44161 (Pcm is set to high Ceq without raising Ccm, and low C and B free), JP-A-4-333516 (Pcm ≦ 0.28, B free to improve cold cracking resistance In addition, there is JP-A-5-163527 (a weldability parameter P similar to Pcm is regulated and Cu is added to ensure strength).
[0004]
On the other hand, in a high strength steel plate of 780 MPa class or higher, there is a problem that the HAZ toughness deteriorates during high heat input welding. This is because when the heat input is increased, the cooling rate of the HAZ part is slowed, and the hardenability of the HAZ part is lowered accordingly, and the toughness is lowered by generating coarse island martensite. This problem occurred in both thick and thin objects, and heat input restriction (5 kJ / mm or less) was performed at the time of actual welding work, resulting in poor efficiency.
In the 490-590 MPa class, large heat input HAZ toughness has been improved by addition of Ti, oxide dispersion, and the like. Even in the 780 MPa class or higher, in addition to the above-mentioned JP-A-5-163527, JP-A-61-44161, for example, JP-A-6-65680 (containing an oxide to refine the old γ grain size), There are inventions aimed at improving high heat input HAZ toughness, such as JP-A-7-233437 (B-free, Pcm ≦ 0.24, Ceq ≧ 0.45 to improve hardenability), but all are sufficient It wasn't.
[0005]
[Problems to be solved by the invention]
As described above, in the small heat input welding, the HAZ part is heated to a high temperature and has a high cooling rate. On the other hand, since the cooling rate of the base material increases as the plate thickness increases, it is difficult to ensure the strength by quenching after rolling. Therefore, in the case of a high-strength steel plate of 780 MPa class or higher, it is not hardened when the cooling rate is high in order to prevent low-temperature cracking at the time of small heat input welding. The problem is how to secure the strength when it is slow.
Moreover, in both large and thin objects, in the high heat input welding, the cooling rate of the HAZ part is slowed, and the hardenability of the HAZ part is lowered accordingly, and an island-like martensite structure is generated and the toughness is lowered. However, in order to improve this HAZ toughness, it becomes a problem how to suppress the formation of island martensite structure when the cooling rate is low.
[0006]
[Means for Solving the Problems]
The high-strength steel sheet having excellent weldability according to the present invention includes C: 0.010 to 0.060%, Si: 0.05 to 0.5%, Mn: 1.25 to 2.5%, Cr: 0 0.1 to 2.0%, Mo: 0.1 to 1.5%, B: 0.0006 to 0.0050%, Cu: less than 0.25%, Nb: 0.030% or less, Ti: not more than 0.030%, Zr: not more than 0.050%, Hf: not more than 0.10%, N: limited to not more than 0.0100%, remaining Fe and inevitable impurities And KP (%) and KN (%) defined by the following formula satisfy KP ≧ 3.20 and 0.0 ≦ KN ≦ 3.0.
KP = [Mn] + 1.5 × [Cr] + 2 × [Mo]
KN = ([N] / 14− [Ti] / 48− [Zr] / 91− [Hf] / 178) × 10 4
However, [Mn], [Cr], [Mo], [N], [Ti], [Zr], and [Hf] represent the content (%) of each element.
In the high-tensile steel plate, Cu: 0.25% to 1% can be contained instead of containing less than 0.25%. However, in that case, Nb: less than 0.010%.
[0007]
In the high-tensile steel sheet, in addition to the above elements, any one or two or more of the following (1) to (4) may be included as necessary.
(1) Ni is 3.5% or less (2) V is 0.10% or less (3) Ca: 0.0005 to 0.0050%
(4) Al: 0.20% or less
DETAILED DESCRIPTION OF THE INVENTION
Now, in the 490-590 MPa class high-tensile steel sheet, it was possible to achieve both improvement of cold cracking resistance and securing of the base material strength by the component design based on Pcm. When a component design based on Pcm is performed, it is difficult to achieve both improvement of low temperature cracking resistance and securing of base material strength particularly in a thick product. Therefore, in the present invention, in designing the components, the components were designed in consideration of the steel structure without being constrained by Pcm, which has been used as an index of cold cracking resistance until now.
[0009]
The point of the component design of the present invention is that, while limiting C to extremely low C, hardenability improving elements Mn, Cr, and Mo are positively added, and B is further added. By adding appropriate amounts of these components, the bainite CCT line (see the CCT diagram in FIG. 5) moves to the short time side and the low temperature side, and the ferrite CCT line moves to the long time side (whichever (Solid line → broken line in FIG. 5).
Therefore, conventionally, martensite is generated at a high cooling rate, and ferrite or high-temperature bainite is generated at a low cooling rate. Therefore, the hardness is highly sensitive to the cooling rate, and the hardness of the HAZ part during low heat input welding is reduced (low temperature resistance) Improvement of crackability) and securing of base material strength were incompatible, and preheating was difficult. However, in the present invention, low-temperature bainite was produced at both high cooling rate and low cooling rate, and hardness cooling rate sensitivity As a result, the hardness of the HAZ part at the time of small heat input welding was reduced (improvement of low temperature cracking resistance) and the strength of the base material was compatible.
On the other hand, in the case of high heat input welding, since the cooling rate of HAZ is slow, conventionally, ferrite or high-temperature bainite is generated, and accordingly, a coarse and massive island-like martensite structure is generated and HAZ toughness is deteriorated. However, in the present invention, low-temperature bainite is generated even when the cooling rate is low, and the island-shaped martensite structure generated is fine because it is extremely low C, so that HAZ toughness can be ensured.
[0010]
Next, chemical components of the high-tensile steel plate according to the present invention will be described individually.
C
By restricting C to 0.06% or less and adding appropriate amounts of Mn, Cr, Mo, and B at the same time, as described above, cold cracking resistance of the HAZ part and the strength of the base metal during small heat input welding are ensured. The HAZ toughness during high heat input welding can be improved. When C exceeds 0.060%, martensite is generated instead of low-temperature bainite on the high cooling rate side, and the low-temperature cracking resistance is not improved. On the other hand, if it is less than 0.010%, the necessary minimum base material strength cannot be obtained. Therefore, the C content is 0.010 to 0.060%, more preferably 0.030 to 0.055%.
[0011]
Mn, Cr, Mo
These elements have the effect of improving the hardenability, make it easy to produce low-temperature bainite at a high cooling rate to a low cooling rate, and as described above, extremely low C, and simultaneously adding an appropriate amount of B, It is possible to achieve both low temperature cracking resistance of the HAZ part during heat welding and ensure the strength of the base material, and to improve the HAZ toughness during high heat input welding. However, when the KP defined by the following formula is less than 3.20, the action is not sufficient, and high-temperature bainite or ferrite is generated, and it becomes impossible to obtain a base material strength of 780 MPa or more (a figure described later). 1). A desirable value of KP is 4.0 or more.
KP = [Mn] + 1.5 × [Cr] + 2 × [Mo]
In addition, in terms of individual elements, if the contents of Mn, Cr, and Mo are less than 1.25%, 0.1%, and 0.1%, respectively, the effect of improving the hardenability cannot be expected. If the strength is insufficient and exceeds 2.5%, 2.0% and 1.5% respectively, the toughness of the base material deteriorates. Therefore, the contents are 1.25 to 2.5%, 0.1 to 2.0%, and 0.1 to 1.5%, respectively. More desirably, the content is 1.3 to 2.2%, 0.3 to 1.5%, and 0.3 to 1.3%, respectively.
[0012]
B
B has the effect of improving the hardenability and facilitates the formation of low-temperature bainite at a low cooling rate. And as mentioned above, by making it extremely low C and simultaneously adding appropriate amounts of Mn, Cr, and Mo, both the low temperature cracking resistance of the HAZ part during small heat input welding and securing of the base material strength can be achieved, and large input The HAZ toughness during heat welding can be improved. If B is less than 0.0006%, the effect of improving the hardenability cannot be expected, and the base material strength is insufficient. If it exceeds 0.0050%, the hardenability is lowered and the base material strength is insufficient. Therefore, the content is 0.0006 to 0.0050%, more preferably 0.0007 to 0.0030%.
[0013]
Cu
Cu improves the strength of the base metal by solid solution strengthening and precipitation strengthening, and improves the hardenability although not as much as B or Mn to Mo, and can be added as necessary. However, if the amount is too large, the HAZ toughness during high heat input welding is lowered, so the content is preferably 1.0% or less.
Nb
Nb forms NbC and lowers the HAZ toughness at the time of high heat input welding, and its action is particularly strong when it coexists with Cu. For this reason, when Cu content is low (when Cu is less than 0.25% (including 0%)) , it is limited to 0.030% or less (including 0%) , and when Cu content is relatively high (When Cu is 0.25% or more ) , it is necessary to limit it to less than 0.01% (including 0%) .
[0014]
Ni
Ni is an element effective for improving the base material toughness, and can be added as necessary. However, if it exceeds 3.5%, scale wrinkles are likely to occur, so the content is set to 3.5% or less.
V
V has the effect of increasing the hardenability and temper softening resistance when added in a small amount, and can be added as necessary. However, if it exceeds 0.1%, the HAZ toughness during high heat input welding is lowered, so the content is made 0.1% or less.
[0015]
Ti, Zr, Hf
These elements have a function of fixing N contained as an impurity, and prevent N from being combined with solute B in the HAZ part at the time of high heat input welding and losing the effect due to consumption of B. Further, nitrides such as Ti refine γ grains in the HAZ part during high heat input welding and improve HAZ toughness. Therefore, it is added according to the N content in the steel. In that case, it is more desirable to add Ti so that it is always included, and to add Zr and Hf together with Ti as necessary. However, when KN defined by the following formula is less than 4 while N is large, the effect of B is lost and the HAZ toughness deteriorates (see FIG. 2 described later). Further, when the amount of addition is large and KN is less than -1, the toughness of the base material deteriorates. Therefore, when adding these elements, it is set within the range of −1.0 ≦ KN ≦ 4.0. A more desirable range is 0.0 to 3.0.
KN = ([N] / 14− [Ti] / 48− [Zr] / 91− [Hf] / 178) × 10 4
In addition, in terms of individual elements, if the content of Ti, Zr, and Hf exceeds 0.03%, 0.05%, and 0.10%, respectively, the toughness of the base material deteriorates. The
[0016]
Ca
Ca has an effect of reducing the anisotropy by controlling the form of inclusions to spheroidize MnS, and if it is less than 0.0005%, such an effect is small, and an excessive content exceeding 0.0050%. Degrades the toughness of the base metal. Therefore, when adding Ca, the content is made 0.0005 to 0.0050%.
Al
Al is a deoxidizing element and has the effect of improving the hardenability of B by fixing N and increasing the solid solution B. However, excessive content exceeding 0.20% deteriorates the toughness of the base material. Therefore, when adding Al, it is made 0.20% or less.
[0017]
Si
Si is an element having the action of a deoxidizing material. If the content is less than 0.05%, the effect cannot be expected, and if it exceeds 0.50%, the weldability and the base metal toughness are deteriorated. Therefore, the Si content is set to 0.05 to 0.50%.
N
N contained as an impurity combines with B to reduce the solid solution B, inhibits the effect of improving the hardenability of B, and lowers the toughness of the base material and the HAZ toughness during high heat input welding. When the N content exceeds 0.0100%, the effect becomes remarkable, and the effect of addition of Ti or the like (adjustment of KN) or addition of Al is not exhibited. Therefore, the N content is limited to 0.0100% or less.
[0018]
【Example】
Next, examples of the present invention will be described together with comparative examples.
Steels having the compositions shown in Tables 1 to 4 were melted by a normal melting method to form slabs, subjected to normal heating, hot rolling, and quenching, and then tempered at the temperatures shown in Tables 5 to 6. A high-tensile steel plate having the thickness shown in the table was manufactured.
Test the base metal properties of this steel sheet as follows, and further test the weldability (cold crack resistance, HAZ toughness) for all of the materials that passed the base material properties and some that did not pass. It was.
The results are shown in Tables 5 to 6.
[0019]
[Base material characteristics test]
(1) Tensile test: A JIS No. 4 test piece was obtained from a 1/4 thickness portion of each steel plate, a tensile test was performed, and 0.2% yield strength and tensile strength were measured. In this example, the tensile strength ≧ 780 MPa was regarded as acceptable.
(2) Impact test: JIS No. 4 test specimens were collected from a 1/4 thickness portion of each steel plate, and subjected to a Charpy impact test to determine the absorbed energy (vE-40). In this example, vE-40 ≧ 47J was accepted.
[0020]
[Weldability test]
(1) HAZ toughness: Welding was performed at heat inputs of 20 kJ / mm and 40 kJ / mm (submerged arc welding) and heat input of 100 kJ / mm (electroslag welding). In the former case, from the part shown in FIG. In this case, a JIS No. 4 test piece was collected from the site shown in FIG. 4 and subjected to a Charpy impact test to determine the absorbed energy (vE-10) of the bond part. In this example, vE-10 ≧ 47J was regarded as acceptable. In addition, the steel plate with a plate thickness of 30 mm was heat input up to 20 kJ / mm, and the steel plate with a plate thickness of 50 mm was up to heat input 40 kJ / mm.
{Circle around (2)} Low-temperature crack resistance: Based on the y-type weld crack test method specified in JIS Z 3158, covered arc welding was performed at a heat input of 1.7 kJ / mm, and the root crack prevention preheating temperature was measured. In this example, 25 ° C. or less was regarded as acceptable.
[0021]
[Table 1]
Figure 0003620573
[0022]
[Table 2]
Figure 0003620573
[0023]
[Table 3]
Figure 0003620573
[0024]
[Table 4]
Figure 0003620573
[0025]
[Table 5]
Figure 0003620573
[0026]
[Table 6]
Figure 0003620573
[0027]
Results As shown in Table 5, No. In Nos. 1 to 25 , the base material characteristics and the cold cracking resistance were all acceptable, and the HAZ toughness was also all acceptable in welding with heat input of 20 kJ / mm and 40 kJ / mm. Further, Ti, Zr, Hf or the like was added in the range of −1.0 ≦ KN ≦ 4.0. Nos. 13, 15, and 19 to 23 were acceptable even with a heat input of 100 kJ / mm.
On the other hand, comparative examples in which any of the alloy composition, KP value, or KN value is outside the specified range, as shown in the remarks column of Table 6, even if the base material characteristics are unacceptable or the base material characteristics pass, The cold cracking property is inferior (No. 27), or the HAZ toughness at the time of high heat input welding is inferior (No. 35 to 37, 45, 47, 48).
[0028]
FIG. 1 shows the relationship between the base material strength (tensile strength) and the KP (= Mn + 1.5 × Cr + 2 × Mo) value based on Tables 5 and 6, where the KP value is 3.20 or more. 780 MPa is obtained.
FIG. 2 is also based on Tables 5 and 6 and shows HAZ toughness (vE-10) and KN (= (N / 14-Ti / 48-Zr / 91-) after welding with a heat input of 100 kJ / mm. Hf / 178) × 10 4 ) This shows the relationship between values, and a HAZ toughness (vE-10) of 47 kJ or more is obtained when the KN value is in the range of −1.0 to 4.0.
[0029]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the 780 MPa class high-tensile steel plate excellent in a base material characteristic (strength, toughness) and excellent in weldability (low temperature cracking resistance, HAZ toughness) can be obtained. In addition, the tensile strength steel sheet according to the present invention produces low-temperature bainite at both high cooling rate and low cooling rate, and the cooling rate sensitivity of hardness is low. It is a steel plate suitable for use.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between base material strength and KP value.
FIG. 2 is a graph showing the relationship between HAZ toughness (vE-10) and KN value.
FIG. 3 is a diagram showing a specimen collection position for bond toughness during submerged arc welding.
FIG. 4 is a view showing a specimen collection position for bond toughness during electroslag welding.
FIG. 5 is a schematic CCT diagram for explaining the concept of component design of the present invention.

Claims (6)

C:0.010〜0.060%(wt%、以下同じ)、Si:0.05〜0.5%、Mn:1.25〜2.5%、Cr:0.1〜2.0%、Mo:0.1〜1.5%、B:0.0006〜0.0050%、Cu:0.25%未満、Nb:0.030%以下を含有し、さらに、Ti:0.030%以下、Zr:0.050%以下、Hf:0.10%以下のいずれか1種以上を含有し、N:0.0100%以下に制限され、残部Fe及び不可避不純物よりなり、かつ下記式で定義されるKP(%)及びKN(%)が、KP≧3.20、0.0≦KN≦3.0を満たすことを特徴とする溶接性に優れた高張力鋼板。
KP=[Mn]+1.5×[Cr]+2×[Mo]
KN=([N]/14−[Ti]/48−[Zr]/91−[Hf]/178)×10
ただし、[Mn]、[Cr]、[Mo]、[N]、[Ti]、[Zr]、[Hf]は各元素の含有量(%)を表す。
C: 0.010 to 0.060% (wt%, the same applies hereinafter), Si: 0.05 to 0.5%, Mn: 1.25 to 2.5%, Cr: 0.1 to 2.0% , Mo: 0.1 to 1.5%, B: 0.0006 to 0.0050%, Cu: less than 0.25%, Nb: 0.030% or less, and Ti: 0.030% Hereinafter, it contains any one or more of Zr: 0.050% or less, Hf: 0.10% or less, N: limited to 0.0100% or less, consisting of the balance Fe and inevitable impurities, and the following formula A high-tensile steel plate excellent in weldability, characterized in that the defined KP (%) and KN (%) satisfy KP ≧ 3.20 and 0.0 ≦ KN ≦ 3.0.
KP = [Mn] + 1.5 × [Cr] + 2 × [Mo]
KN = ([N] / 14− [Ti] / 48− [Zr] / 91− [Hf] / 178) × 10 4
However, [Mn], [Cr], [Mo], [N], [Ti], [Zr], and [Hf] represent the content (%) of each element.
C:0.010〜0.060%、Si:0.05〜0.5%、Mn:1.25〜2.5%、Cr:0.1〜2.0%、Mo:0.1〜1.5%、B:0.0006〜0.0050%、Cu:0.25〜1.0%、Nb:0.010%未満を含有し、さらに、Ti:0.030%以下、Zr:0.050%以下、Hf:0.10%以下のいずれか1種以上を含有し、N:0.0100%以下に制限され、残部Fe及び不可避不純物よりなり、かつ下記式で定義されるKP(%)及びKN(%)が、KP≧3.20、0.0≦KN≦3.0を満たすことを特徴とする溶接性に優れた高張力鋼板。
KP=[Mn]+1.5×[Cr]+2×[Mo]
KN=([N]/14−[Ti]/48−[Zr]/91−[Hf]/178)×10
ただし、[Mn]、[Cr]、[Mo]、[N]、[Ti]、[Zr]、[Hf]は各元素の含有量(%)を表す。
C: 0.010 to 0.060%, Si: 0.05 to 0.5%, Mn: 1.25 to 2.5%, Cr: 0.1 to 2.0%, Mo: 0.1 1.5%, B: 0.0006 to 0.0050%, Cu: 0.25 to 1.0%, Nb: less than 0.010%, Ti: 0.030% or less, Zr: 0.05% or less, Hf: containing any one or more of 0.10% or less, N: limited to 0.0100% or less, consisting of the balance Fe and inevitable impurities, and defined by the following formula (%) And KN (%) satisfy KP ≧ 3.20 and 0.0 ≦ KN ≦ 3.0.
KP = [Mn] + 1.5 × [Cr] + 2 × [Mo]
KN = ([N] / 14− [Ti] / 48− [Zr] / 91− [Hf] / 178) × 10 4
However, [Mn], [Cr], [Mo], [N], [Ti], [Zr], and [Hf] represent the content (%) of each element.
Ni:3.5%以下含有することを特徴とする請求項1又は2に記載された溶接性に優れた高張力鋼板。Ni: It contains 3.5% or less, The high-tensile steel plate excellent in the weldability described in Claim 1 or 2. V:0.10%以下含有することを特徴とする請求項1〜3のいずれかに記載された溶接性に優れた高張力鋼板。V: 0.10% or less is contained, The high-tensile steel plate excellent in weldability as described in any one of Claims 1-3 characterized by the above-mentioned. Ca:0.0005〜0.0050%含有することを特徴とする請求項1〜4のいずれかに記載された溶接性に優れた高張力鋼板。Ca: 0.0005-0.0050% content, The high-tensile steel plate excellent in weldability as described in any one of Claims 1-4 characterized by the above-mentioned. Al:0.20%以下含有することを特徴とする請求項1〜5のいずれかに記載された溶接性に優れた高張力鋼板。Al: 0.20% or less is contained, The high-tensile steel plate excellent in weldability as described in any one of Claims 1-5 characterized by the above-mentioned.
JP33626898A 1998-11-26 1998-11-26 High strength steel plate with excellent weldability Expired - Lifetime JP3620573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33626898A JP3620573B2 (en) 1998-11-26 1998-11-26 High strength steel plate with excellent weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33626898A JP3620573B2 (en) 1998-11-26 1998-11-26 High strength steel plate with excellent weldability

Publications (2)

Publication Number Publication Date
JP2000160281A JP2000160281A (en) 2000-06-13
JP3620573B2 true JP3620573B2 (en) 2005-02-16

Family

ID=18297364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33626898A Expired - Lifetime JP3620573B2 (en) 1998-11-26 1998-11-26 High strength steel plate with excellent weldability

Country Status (1)

Country Link
JP (1) JP3620573B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4358898B1 (en) 2008-04-01 2009-11-04 新日本製鐵株式会社 Method for producing high-tensile thick steel plate having a tensile strength of 780 MPa or more, excellent in weldability and joint low-temperature toughness
KR20100113605A (en) 2008-10-23 2010-10-21 신닛뽄세이테쯔 카부시키카이샤 High tensile strength steel thick plate having excellent weldability and tensile strength of 780mpa or above, and process for manufacturing same

Also Published As

Publication number Publication date
JP2000160281A (en) 2000-06-13

Similar Documents

Publication Publication Date Title
JP3996824B2 (en) Steel for liquid phase diffusion bonding with excellent low temperature transformation cracking resistance
EP2241646B1 (en) High tensile strength steel thick plate having excellent weldability and tensile strength of 780mpa or above, and process for manufacturing same
JP2012031511A (en) Wear-resistant steel sheet having excellent toughness of multi-layer-welded part and lagging destruction resistance properties
JP7471417B2 (en) High-hardness wear-resistant steel with excellent low-temperature impact toughness and manufacturing method thereof
KR20070091368A (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP4656416B2 (en) Refractory steel with excellent weldability
JP3854807B2 (en) High tensile steel plate with excellent weldability and uniform elongation
JP3668713B2 (en) High tensile steel plate with excellent weldability and uniform elongation
JP3602471B2 (en) High tensile strength steel sheet excellent in weldability and method for producing the same
JP4652952B2 (en) High-tensile steel plate with excellent toughness of heat affected zone
JP3620573B2 (en) High strength steel plate with excellent weldability
JP2004323917A (en) High strength high toughness steel sheet
JP5509945B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP3863413B2 (en) High toughness high tension non-tempered thick steel plate and manufacturing method thereof
JP2002161330A (en) Wear resistant steel
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability
JP3739997B2 (en) High-tensile steel plate with excellent weldability
JP2020204091A (en) High strength steel sheet for high heat input welding
JP4434029B2 (en) High-tensile steel with excellent weldability and joint toughness
JP3728130B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP3449307B2 (en) B-added high-strength steel with excellent toughness in the heat affected zone
JP3541746B2 (en) High strength thick steel plate excellent in CTOD characteristics and method for producing the same
JP3746707B2 (en) High-tensile steel plate with excellent weldability
JP2546888B2 (en) Manufacturing method of high-strength steel sheet with excellent weldability and toughness
JP3618270B2 (en) High-tensile steel plate with excellent weldability and base metal toughness

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111126

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121126

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131126

Year of fee payment: 9

EXPY Cancellation because of completion of term