JP3619021B2 - Thin-film magnetic head plating apparatus and thin-film magnetic head - Google Patents

Thin-film magnetic head plating apparatus and thin-film magnetic head Download PDF

Info

Publication number
JP3619021B2
JP3619021B2 JP22327698A JP22327698A JP3619021B2 JP 3619021 B2 JP3619021 B2 JP 3619021B2 JP 22327698 A JP22327698 A JP 22327698A JP 22327698 A JP22327698 A JP 22327698A JP 3619021 B2 JP3619021 B2 JP 3619021B2
Authority
JP
Japan
Prior art keywords
cathode
plating
auxiliary
inner diameter
magnetic head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22327698A
Other languages
Japanese (ja)
Other versions
JP2000054198A (en
Inventor
眞治 古市
清治 藤田
岳夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP22327698A priority Critical patent/JP3619021B2/en
Publication of JP2000054198A publication Critical patent/JP2000054198A/en
Application granted granted Critical
Publication of JP3619021B2 publication Critical patent/JP3619021B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、陰極が着脱可能であって、電気めっきにより均一な膜厚を得る薄膜磁気ヘッド製造用めっき装置と、それを用いて製造された薄膜磁気ヘッドに関するものである。
【0002】
【従来の技術】
記録再生機能を有する薄膜磁気ヘッドは図1に斜視断面図で示すように、アルミナチタンカーバイドなどで作られた非磁性基板11の上に、下部シールド13、磁気抵抗効果素子14、上部シールドと下部磁極を兼ねた磁性膜15、上部磁極16、下部磁極と上部磁極を巻回しするようにコイル41、42、磁気抵抗効果素子14、コイル41、42と外部回路とを接続するための端子17、端子表面膜18で構成されている。ここで各薄膜を絶縁する絶縁膜の記載は省略している。これらの薄膜は磁性膜や導電性膜であり、スパッタや電気めっきで作製されている。特に下部シールド13、上部シールドと下部磁極を兼ねた磁性膜15、上部磁極16、コイル41、42、端子17、端子表面膜18は数μm以上の膜厚を持つことや、複雑な形状を作る必要があるため電気めっきが主に持ちいられている。
【0003】
これらの電気めっきは、図2に示すような電気めっき装置が用いられる事が多い。めっき装置のめっき槽20の底面には、被めっきウェファー(以下陰極と言う)10にめっき電流を供給する陰極電極21、めっき膜厚分布を改善する補助陰極22が配置される。陰極10は陰極電極21に陰極を密着させるためと、陰極を着脱するためのシリンダー23が設けられる。陰極10はシリンダー23に真空吸着されるか、機械的に保持、固定される。めっき槽20には陰極10と対向する様に陽極24が配置され、陽極24と陰極電極21、また陽極24と補助陰極22間にはめっき電流を供給、制御する直流電源25、25’が接続される。めっき槽20にはめっき液26をめっき槽に導入する導入口27、めっき液を排出する排出口28、めっき液の液位を保つ液位板29、29’より構成される。ここで、めっき液を撹拌する機構、めっき液の漏洩を防止するパッキン等の図面記載、説明は省略した。
【0004】
めっきの手順を簡単に説明すると、下降したシリンダー23に陰極10を載せシリンダー23を上昇させ陰極電極21に密着させる。めっき液導入口27よりめっき液をめっき槽20に導入し、液位板29を乗り越えためっき液は排出口28より回収される。このめっき液の導入、回収は陰極にめっきを行っている間続けられ常にめっき液は循環されるものである。めっき槽にめっき液が満たされると、直流電源25、25’から陽極24、陰極電極21を介して陰極10に、また補助電極22にめっき電流が給電され、陰極および補助陰極にめっき膜が析出される。所定のめっき膜厚が得られた時点で直流電源25、25’からの給電が断たれると同じくして、めっき液の供給も断たれる。めっき液回収バルブ31を開けめっき液を完全にめっき槽20内から排出、回収する。シリンダー23を下降させ陰極10を取り外し一連のめっき作業が終了する。
【0005】
陰極に析出させるめっき膜に要求される特性としては膜厚の均一性が上げられる。膜厚の均一性はめっき電流密度の均一性と言うこともできる。特に磁性めっきを行う時めっき電流密度により、めっき膜の組成が変動し磁気特性が変化すると言う問題がある。つまり膜厚の均一性を得ることが磁気特性の均一性を得ることであり、膜厚の均一性を得ることでめっき電流密度の均一性を得ることになる。
【0006】
補助陰極22を用いないで陰極にめっきを行うと、陰極の外周部のめっき電流密度が上がり膜厚が厚くなる傾向がある。外周部のめっき電流を補助陰極22に流し陰極の膜厚分布を改善する方法は、額縁めっき法等の名で従来から用いられている。
【0007】
図3に補助陰極22の効果を陰極の径方向の膜厚を示し説明する。陰極の径は直径150mmで外周部5mmは陰極電極21と密着する部分であるので、めっき膜は析出しないもので径方向の膜厚は5mmから145mmの範囲で示している。補助陰極の内径は140mm、外径は200mmである。 直流電源25’、陽極24、補助陰極22の経路で流れる電流をi’、直流電源25、陽極24、陰極10、陰極電極21の経路で流れる電流をiとして、iを一定電流値に固定してi’を変化させめっきを行った時の陰極の径方向膜厚である。図中aはi’=0(A)でありb,c,d,eの順にi’を増加してめっきを行っている。ちなみにiは0.98(A)でi’はa=0(A)、b=0.828(A)、c=1.656(A)、d=1.963(A),e=2.572(A)である。
【0008】
aは補助電極22には電流が流れない状態つまり補助電極22がない状態を表していると言える。aは陰極外周部の膜厚が中央部に比べ薄く凹形状を示しているが、i’が増加するに従い凹形状から陰極中央部の膜厚が外周部に比べ厚くなる凸形状に変化していることがわかる。つまり凹から凸に変化する点のi’を補助電極に流すことにより、陰極の膜厚ばらつきを最少にすることができる。説明したように補助陰極は陰極の膜厚均一化に非常に有効であることがわかる。
【0009】
【発明が解決しようとする課題】
しかし、cが示すように陰極の全域に渡り膜厚が均一ではなく、補助電極に近い陰極外周部は膜厚が薄くなっている。この膜厚が薄い部分を陰極中心部と同じ膜厚にするためi’の値を図3のcの電流値近傍で詳細に検討したが、補助陰極に近い陰極外周部の膜厚を増加させることは出来なかった。薄膜磁気ヘッドとして所望のヘッド特性を得るために必要な膜厚が得られる範囲(以下、有効めっき範囲と言う)は陰極にめっきされる範囲(陰極電極内径に相当する)より小さくならざるを得なかった。
【0010】
例えば図3のcでは、陰極中心点の膜厚±0.2μmを薄膜磁気ヘッドに要求される膜厚とすると、この膜厚が得られる範囲は陰極外端より19mmから131mmの範囲である。つまりφ112mmの領域となる。陰極にめっきされる範囲は陰極電極の内径の領域であるのでφ140mmの領域である。めっきされる領域と要求されるめっき膜厚が得られる領域の比を有効めっき範囲とすると、図3のcでは80(%)となる。つまりめっきを行った面積の20(%)は膜厚不良で使えないことになる。
【0011】
図4に陰極と陰極電極、補助陰極の関係を示す。陰極電極は陰極との密着性を上げるため、0.1〜0.3mmと薄いチタンまたは銅のリング状の金属板を使用している。陰極電極21と補助電極22を電気的に絶縁するために絶縁材33が挿入されている。絶縁体33は陰極電極と補助電極を電気的に絶縁するだけでなく弾力性を持たせ陰極と陰極電極の密着性を上げる役目も合わせ持たせるためめっき液で溶けたり、膨潤しないシリコンゴムが主に用いられている。絶縁材33の厚みは0.5mm程度である。
【0012】
補助陰極22、絶縁材33、陰極電極21の厚さを大きくすると、補助陰極表面と陰極表面との段差が大きくなり、めっき槽20の底部に深い窪みができるため、めっき液撹拌装置(図示していない)を用いても、陰極表面のめっき液の循環が悪くなるためできうる限り補助陰極22、絶縁材33は薄いことが好ましい。補助陰極22は陰極の膜厚分布を改善するためだけでなく、陰極を陰極電極にシリンダーが押しつける力を受けとめ、陰極と陰極電極の密着性を得て導電およびめっき液の漏洩防止を図る必要がある。このため補助電極材には銅に比べ機械的強度の高いチタン材を用いても2〜3mm位の厚さにならざるを得ない。
【0013】
補助陰極の内径は陰極と陰極電極の密着性、めっき液の漏洩を防止するため陰極電極の内径と略同等の寸法にすることが従来から行われていた。陰極は所定のめっき膜厚が得られればめっきは終了し、次の陰極に交換されるが、補助陰極にはめっきが析出するばかりであるため、補助陰極と陰極電極が析出しためっき膜で短絡し、めっき電流i,i’が制御できなくなる現象が起こる。補助電極と陰極電極が短絡しないように定期的に補助陰極に析出しためっき膜を除去する必要があった。
【0014】
【発明が解決しようとする課題】
そこで、本発明では陰極の有効めっき範囲の拡大と、補助陰極と陰極電極が短絡するまでの時間の延長をすることができる薄膜磁気ヘッド製造用めっき装置を提供することを目的とする。
【0015】
【問題を解決するための手段】
本発明のめっき装置は、陰極と、前記陰極にめっき電流を供給する陰極電極と、前記陰極のめっき膜厚分布を制御する補助陰極を有し、補助陰極と陰極電極の内径は同等で、補助陰極の露出導電部の内径を陰極電極の内径より大きくすることを特徴とする。この補助陰極は、陰極電極に陰極を密着させる際に生じる力に耐えられる機械的強度を有することが好ましい。露出導電部とは、補助電極の表面において、めっき液との間で電流を導通させる領域を示す。また、上記のめっき装置において、補助陰極の内径と陰極電極の内径は同じで、補助陰極の内径側面と補助陰極内径側上面に絶縁樹脂を塗布するか、若しくは絶縁リングを付加することで、補助陰極の露出導電部内径寸法を陰極電極の内径より大きくすることができる。
【0016】
また、上記の本発明においては、前記補助陰極は電気絶縁物により露出導電部の内径寸法を大きくすることを特徴とする。この電気絶縁物は、次のような構成として補助陰極に適用できる。例えば、補助陰極の一部分を電気絶縁物に置換した構成、物理または化学的な処理を施して補助陰極の一部分を絶縁物に変換した構成、または補助陰極の一部分を絶縁物で被覆もしくは被着させた構成などとすることができる。
【0017】
また、本発明において、前記補助陰極の少なくとも内径側面は電気的絶縁がなされ、補助陰極と陰極電極の内径差は2〜16mmであることが望ましい。このように内径差を選択することにより、有効めっき範囲を95%以上にすることができる。さらに、補助陰極と陰極電極の内径差を2〜12mmとすることで、有効めっき範囲内での膜厚分布の広がりを抑制し、均一な膜厚を得ることができる。
【0018】
また、本発明において、前記補助陰極の一部分に絶縁樹脂を塗布するか、あるいは絶縁リングを付加することによって、補助陰極の露出導電部内径を大きくすることができる。ここでいう一部分としては補助陰極の内径側面が好ましいが、内径側上面あるいは下面を含んでもよい。
【0019】
また、本発明の薄膜磁気ヘッドは、上記のめっき装置でめっきされることにより、膜厚を均一にすることができる。従って、これらの薄膜磁気ヘッドを形成したウェファーについても、ウェファー上の位置によってめっき膜厚の偏りがなく、薄膜磁気ヘッドの歩留まりを高めることができる。
【0020】
【発明の実施の形態】
以下図面を参照しながら本発明の実施態様について詳細に説明する。図5は本発明のめっき装置の一実施態様の主要部断面図である。図7、図8は本発明の他の実施態様の主要部断面図である。これらの図面および従来のめっき装置を示す図2、図4で共通の部分は同じ参照符号を用いている。
図5において陰極電極21、絶縁体33、補助陰極52の内径は略同一であり、図中に機械的内径寸法と記載している。補助陰極52の内径側の側面と上面の一部に絶縁層53を付加し絶縁層53で覆われた部分はめっき電流が流れずめっきがされないものである。この絶縁層を除き補助陰極の露出導電部内径を電気的内径寸法として図中に記載している。機械的内径寸法と補助陰極露出導電部内径寸法の差の半値を補助電極に付加された絶縁層幅wと規定している。すなわち、内径差は2wに相当する。ここで補助電極の内径側側面に付けられた絶縁層の厚みはwの値には含まれていない。絶縁層は0.1〜0.2mm厚でテフロン樹脂を焼き付け塗装した。
【0021】
図6に絶縁層幅wと陰極のめっき膜厚の分布を示す。実験に用いためっき膜はNiFe合金膜であり、めっき液のNiイオンとFeイオンの比はNi/Fe=40で、PHは2.8〜2.9である。陰極に流す電流i=0.98(A)、補助陰極に流す電流i’=1.67(A)と一定にして35分間めっきを行い陰極10の中央部で、3.5μmのめっき膜厚とした。
【0022】
図6では補助陰極に絶縁層がない従来のめっき装置、補助電極内径側面のみに絶縁層を付加したものと、補助電極内径側面と補助電極上面に絶縁層幅wを最大15mmまで変化させためっき装置の各々について、有効めっき範囲を示している。有効めっき範囲は陰極電極内径である140mmの領域を100%とし、めっき膜厚が3.5±0.2μmの値が得られる範囲を%で表している。
【0023】
補助陰極に絶縁層がない従来の方法ではめっき有効範囲は80%であるが、補助電極内径側面のみ絶縁層を付加することにより95%までめっき有効範囲は増加する。補助電極内径側面と補助電極上面に絶縁層を付け絶縁層幅w=1〜8mmの範囲では97%以上のめっき有効範囲が得られた。更に絶縁層幅wを増やしていくとめっき有効範囲は減少しw=15mmでは75%と、従来方法に比べても悪化することがわかった。w=6mmを越えると陰極中央部の膜厚が薄く外周部が厚くなり、補助陰極としての効果が薄れてくることがわかった。絶縁層幅wは1〜8mmが良い、好ましくは1〜6mmの範囲である。補助陰極内径側面に絶縁層を付けず、補助陰極上面に絶縁層を設けてもめっき有効範囲は95%以上は得られなかったことから、補助陰極内径側面の絶縁層はめっき有効範囲拡大に効果があると言える。以上のことから補助陰極内径側面と補助陰極上面の1〜8mm範囲に絶縁層を設けることはめっき有効範囲の拡大に有効である。
【0024】
図5において絶縁層53を被覆することによって補助陰極の露出導電部内径寸法を大きくし、陰極のめっき有効範囲を拡大しても、機械的内径寸法は変わらないためシリンダー23による陰極の陰極電極への密着状態は何等変わることなく良好な結果が得られた。
【0025】
補助陰極内径側面と補助陰極上面の1〜8mm範囲に絶縁層を設けたため、陰極電極との間隔が拡がり補助陰極と陰極電極との短絡の危険性は大幅に減少した。絶縁層を設けない従来方法では累計めっき膜厚が300μm位に達すると補助陰極に析出しためっき膜を除去する必要があった。これは概略NiFeめっきで累計50時間、Cuめっきで累計10時間で補助陰極に析出しためっき膜を除去することになる。補助陰極に析出しためっき膜は補助陰極形状、面積を変えることになるが陰極のめっき有効範囲に影響しなければ問題ない。補助陰極に析出しためっき膜除去回数は従来にくらべ1/3〜1/5に減少した。
【0026】
図7、図8に本発明の一実施形態であるめっき装置の主要部の断面図である。補助陰極の絶縁層として絶縁材を塗布するのではなく、補助陰極71、81に絶縁リング72、82を取り付けたものである。絶縁リングの材質はめっき液で溶解、膨潤しないテフロンを用いたが、セラミックやプラスチックでも良いことは言うまでもない。
【0027】
【発明の効果】
以上説明したように、本発明の補助陰極を用いることで陰極の有効めっき範囲を拡大でき、陰極と称してきたウェファーからの薄膜磁気ヘッドの取れ数の増加と歩留まりの向上が図れる。また補助陰極導電部と陰極電極の間隔を大きくすることにより、補助陰極と陰極電極間の短絡の危険性を減らし、補助陰極に析出しためっき膜の除去回数を減らすことができる。
【図面の簡単な説明】
【図1】薄膜磁気ヘッドの斜視断面図。
【図2】従来のめっき装置の断面図。
【図3】従来の補助陰極の効果を説明する図。
【図4】従来のめっき装置の断面図。
【図5】本発明のめっき装置の断面図。
【図6】絶縁層幅wと陰極のめっき膜厚の分布を説明する図。
【図7】本発明のめっき装置の断面図。
【図8】本発明のめっき装置の断面図。
【符号の説明】
10 陰極電極、11 非磁性基板、13 下部シールド、14 磁気抵抗効果素子、15 磁性膜、16 上部磁極、17 端子、18 端子表面膜、20めっき槽、21 陰極電極、22 補助陰極、23 シリンダー、24 陽極、25 25‘ 直流電源、26 めっき液、27 導入口、28 排出口、29 29’液位板、31 めっき液回収バルブ、33 絶縁体、41 42 コイル、52 補助陰極、53 絶縁層、71 81 補助陰極、72 82 絶縁リング

[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plating apparatus for manufacturing a thin film magnetic head in which a cathode can be attached and detached and a uniform film thickness is obtained by electroplating, and a thin film magnetic head manufactured using the same.
[0002]
[Prior art]
As shown in the perspective sectional view of FIG. 1, a thin film magnetic head having a recording / reproducing function is formed on a nonmagnetic substrate 11 made of alumina titanium carbide or the like, on a lower shield 13, a magnetoresistive effect element 14, an upper shield and a lower portion. A magnetic film 15 also serving as a magnetic pole, an upper magnetic pole 16, a coil 41, 42, a magnetoresistive effect element 14, a terminal 17 for connecting the coils 41, 42 and an external circuit so as to wind the lower magnetic pole and the upper magnetic pole, The terminal surface film 18 is configured. Here, description of an insulating film for insulating each thin film is omitted. These thin films are magnetic films or conductive films, and are produced by sputtering or electroplating. In particular, the lower shield 13, the magnetic film 15 serving as both the upper shield and the lower magnetic pole, the upper magnetic pole 16, the coils 41 and 42, the terminal 17, and the terminal surface film 18 have a film thickness of several μm or more, or create a complicated shape. Electroplating is mainly used because it is necessary.
[0003]
In these electroplating, an electroplating apparatus as shown in FIG. 2 is often used. On the bottom surface of the plating tank 20 of the plating apparatus, a cathode electrode 21 for supplying a plating current to a wafer to be plated (hereinafter referred to as a cathode) 10 and an auxiliary cathode 22 for improving the plating film thickness distribution are arranged. The cathode 10 is provided with a cylinder 23 for bringing the cathode into close contact with the cathode electrode 21 and for attaching and detaching the cathode. The cathode 10 is vacuum-adsorbed on the cylinder 23 or is mechanically held and fixed. An anode 24 is arranged in the plating tank 20 so as to face the cathode 10, and DC power sources 25 and 25 ′ for supplying and controlling a plating current are connected between the anode 24 and the cathode electrode 21 and between the anode 24 and the auxiliary cathode 22. Is done. The plating tank 20 includes an inlet 27 for introducing the plating solution 26 into the plating tank, a discharge port 28 for discharging the plating solution, and liquid level plates 29 and 29 ′ for maintaining the liquid level of the plating solution. Here, description and description of the drawings such as a mechanism for stirring the plating solution and a packing for preventing leakage of the plating solution are omitted.
[0004]
The plating procedure will be briefly described. The cathode 10 is placed on the lowered cylinder 23, and the cylinder 23 is raised and brought into close contact with the cathode electrode 21. The plating solution is introduced into the plating tank 20 from the plating solution introduction port 27, and the plating solution that has passed over the liquid level plate 29 is collected from the discharge port 28. The introduction and recovery of the plating solution is continued while plating on the cathode, and the plating solution is always circulated. When the plating bath is filled with the plating solution, a plating current is supplied from the DC power sources 25 and 25 'to the cathode 10 via the anode 24 and the cathode electrode 21 and to the auxiliary electrode 22, and a plating film is deposited on the cathode and the auxiliary cathode. Is done. When the power supply from the DC power sources 25 and 25 'is cut off when the predetermined plating film thickness is obtained, the supply of the plating solution is also cut off. The plating solution recovery valve 31 is opened, and the plating solution is completely discharged from the plating tank 20 and recovered. The cylinder 23 is lowered, the cathode 10 is removed, and a series of plating operations is completed.
[0005]
As a characteristic required for the plating film deposited on the cathode, the uniformity of the film thickness can be increased. It can be said that the uniformity of the film thickness is the uniformity of the plating current density. In particular, when performing magnetic plating, there is a problem that the composition of the plating film varies and the magnetic characteristics change depending on the plating current density. In other words, obtaining uniformity in film thickness means obtaining uniformity in magnetic properties, and obtaining uniformity in film thickness results in uniformity in plating current density.
[0006]
If the cathode is plated without using the auxiliary cathode 22, the plating current density at the outer periphery of the cathode tends to increase and the film thickness tends to increase. A method of improving the film thickness distribution of the cathode by flowing the plating current of the outer peripheral portion to the auxiliary cathode 22 has been conventionally used in the name of frame plating.
[0007]
FIG. 3 explains the effect of the auxiliary cathode 22 by showing the film thickness in the radial direction of the cathode. Since the diameter of the cathode is 150 mm and the outer peripheral portion 5 mm is in close contact with the cathode electrode 21, no plating film is deposited, and the thickness in the radial direction is shown in the range of 5 mm to 145 mm. The auxiliary cathode has an inner diameter of 140 mm and an outer diameter of 200 mm. The current flowing through the path of the DC power supply 25 ′, the anode 24, and the auxiliary cathode 22 is i ′, and the current flowing through the path of the DC power supply 25, the anode 24, the cathode 10, and the cathode electrode 21 is i, and i is fixed at a constant current value. The thickness in the radial direction of the cathode when plating is performed with i ′ varied. In the figure, a is i ′ = 0 (A), and plating is performed by increasing i ′ in the order of b, c, d, and e. Incidentally, i is 0.98 (A), and i ′ is a = 0 (A), b = 0.828 (A), c = 1.656 (A), d = 1.963 (A), e = 2. .572 (A).
[0008]
It can be said that a represents a state in which no current flows through the auxiliary electrode 22, that is, a state in which the auxiliary electrode 22 is not present. a shows a concave shape in which the film thickness of the outer peripheral part of the cathode is thinner than that of the central part, but changes from a concave shape to a convex shape in which the film thickness of the central part of the cathode becomes thicker than that of the outer peripheral part as i ′ increases. I understand that. That is, by flowing i ′, which changes from concave to convex, through the auxiliary electrode, the thickness variation of the cathode can be minimized. As explained, the auxiliary cathode is found to be very effective in making the cathode film thickness uniform.
[0009]
[Problems to be solved by the invention]
However, as indicated by c, the film thickness is not uniform over the entire area of the cathode, and the film thickness on the outer peripheral part of the cathode near the auxiliary electrode is thin. In order to make the thin film portion the same film thickness as the cathode central portion, the value of i ′ was examined in detail in the vicinity of the current value of c in FIG. 3, but the film thickness of the cathode outer peripheral portion near the auxiliary cathode is increased. I couldn't. The range in which the film thickness necessary to obtain the desired head characteristics as a thin film magnetic head (hereinafter referred to as the effective plating range) must be smaller than the range in which the cathode is plated (corresponding to the cathode electrode inner diameter). There wasn't.
[0010]
For example, in FIG. 3c, assuming that the film thickness of the cathode central point ± 0.2 μm is the film thickness required for the thin film magnetic head, the film thickness can be obtained from 19 mm to 131 mm from the outer edge of the cathode. That is, it becomes an area of φ112 mm. Since the area to be plated on the cathode is the area of the inner diameter of the cathode electrode, it is an area of φ140 mm. When the ratio of the area to be plated to the area where the required plating film thickness can be obtained is defined as the effective plating range, the ratio is 80 (%) in FIG. That is, 20 (%) of the plated area cannot be used due to film thickness failure.
[0011]
FIG. 4 shows the relationship between the cathode, the cathode electrode, and the auxiliary cathode. The cathode electrode uses a titanium or copper ring-shaped metal plate as thin as 0.1 to 0.3 mm in order to improve adhesion to the cathode. An insulating material 33 is inserted to electrically insulate the cathode electrode 21 from the auxiliary electrode 22. Insulator 33 not only electrically insulates the cathode electrode from the auxiliary electrode, but also has the function of increasing the adhesion between the cathode and the cathode electrode, so that silicon rubber that does not melt or swell is mainly used. It is used for. The thickness of the insulating material 33 is about 0.5 mm.
[0012]
When the thicknesses of the auxiliary cathode 22, the insulating material 33, and the cathode electrode 21 are increased, the step between the auxiliary cathode surface and the cathode surface is increased, and a deep recess is formed at the bottom of the plating tank 20. However, it is preferable that the auxiliary cathode 22 and the insulating material 33 are as thin as possible because the circulation of the plating solution on the cathode surface is deteriorated. The auxiliary cathode 22 needs not only to improve the thickness distribution of the cathode, but also to receive the force that the cylinder presses the cathode against the cathode electrode, to obtain adhesion between the cathode and the cathode electrode, and to prevent leakage of the conductive and plating solution. is there. For this reason, even if a titanium material having higher mechanical strength than copper is used for the auxiliary electrode material, the thickness must be about 2 to 3 mm.
[0013]
Conventionally, the inner diameter of the auxiliary cathode has been approximately the same as the inner diameter of the cathode electrode in order to prevent adhesion between the cathode and the cathode electrode and leakage of the plating solution. When the predetermined plating film thickness is obtained, the plating is completed and replaced with the next cathode. However, since the plating is only deposited on the auxiliary cathode, the auxiliary cathode and the cathode electrode are short-circuited with the deposited film Then, a phenomenon occurs in which the plating currents i and i ′ cannot be controlled. It was necessary to periodically remove the plating film deposited on the auxiliary cathode so as not to short-circuit the auxiliary electrode and the cathode electrode.
[0014]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a plating apparatus for manufacturing a thin film magnetic head capable of extending the effective plating range of the cathode and extending the time until the auxiliary cathode and the cathode electrode are short-circuited.
[0015]
[Means for solving problems]
The plating apparatus of the present invention has a cathode, a cathode electrode for supplying a plating current to the cathode, and an auxiliary cathode for controlling the plating film thickness distribution of the cathode. The inside diameter of the exposed conductive portion of the cathode is made larger than the inside diameter of the cathode electrode. The auxiliary cathode preferably has a mechanical strength that can withstand the force generated when the cathode is brought into close contact with the cathode electrode. The exposed conductive portion refers to a region where current is conducted with the plating solution on the surface of the auxiliary electrode. In the above plating apparatus, the inner diameter of the auxiliary cathode and the inner diameter of the cathode electrode are the same, and an auxiliary resin is applied to the inner diameter side surface of the auxiliary cathode and the upper surface of the auxiliary cathode inner diameter side, or an insulating ring is added, thereby assisting. The inner diameter dimension of the exposed conductive portion of the cathode can be made larger than the inner diameter of the cathode electrode.
[0016]
In the present invention, the auxiliary cathode is characterized in that the inner diameter dimension of the exposed conductive portion is increased by an electrical insulator. This electrical insulator can be applied to the auxiliary cathode in the following configuration. For example, a configuration in which a part of the auxiliary cathode is replaced with an electrical insulator, a configuration in which a part of the auxiliary cathode is converted into an insulator by performing physical or chemical treatment, or a portion of the auxiliary cathode is coated or deposited with an insulator. Or the like.
[0017]
In the present invention, it is preferable that at least the inner diameter side surface of the auxiliary cathode is electrically insulated, and the inner diameter difference between the auxiliary cathode and the cathode electrode is 2 to 16 mm. By selecting the inner diameter difference in this way, the effective plating range can be 95% or more. Furthermore, by setting the inner diameter difference between the auxiliary cathode and the cathode electrode to 2 to 12 mm, it is possible to suppress the spread of the film thickness distribution within the effective plating range and obtain a uniform film thickness.
[0018]
In the present invention, the exposed conductive portion inner diameter of the auxiliary cathode can be increased by applying an insulating resin to a part of the auxiliary cathode or adding an insulating ring. As a part here, the inner diameter side surface of the auxiliary cathode is preferable, but the upper surface or the lower surface on the inner diameter side may be included.
[0019]
Further, the thin film magnetic head of the present invention can be made uniform by plating with the above plating apparatus. Therefore, the wafer on which these thin film magnetic heads are formed also has no uneven plating film thickness depending on the position on the wafer, and the yield of the thin film magnetic head can be increased.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 5 is a cross-sectional view of the main part of one embodiment of the plating apparatus of the present invention. 7 and 8 are cross-sectional views of the main part of another embodiment of the present invention. In these drawings and FIGS. 2 and 4 showing the conventional plating apparatus, the same reference numerals are used for the common parts.
In FIG. 5, the inner diameters of the cathode electrode 21, the insulator 33, and the auxiliary cathode 52 are substantially the same, and are described as mechanical inner diameter dimensions in the drawing. A portion where the insulating layer 53 is added to the inner side surface and a part of the upper surface of the auxiliary cathode 52 and covered with the insulating layer 53 is a portion where plating current does not flow and plating is not performed. Except for this insulating layer, the exposed conductive portion inside diameter of the auxiliary cathode is shown as an electrical inside diameter in the figure. The half value of the difference between the mechanical inner diameter and the auxiliary cathode exposed conductive portion inner diameter is defined as the insulating layer width w added to the auxiliary electrode. That is, the inner diameter difference corresponds to 2w. Here, the thickness of the insulating layer attached to the inner diameter side surface of the auxiliary electrode is not included in the value of w. The insulating layer was 0.1 to 0.2 mm thick and baked and coated with Teflon resin.
[0021]
FIG. 6 shows the distribution of the insulating layer width w and the plating film thickness of the cathode. The plating film used in the experiment is a NiFe alloy film, the ratio of Ni ions to Fe ions in the plating solution is Ni / Fe = 40, and the pH is 2.8 to 2.9. The plating was carried out for 35 minutes at a constant current i = 0.98 (A) flowing through the cathode and the current i ′ = 1.67 (A) flowing through the auxiliary cathode, and a plating film thickness of 3.5 μm was formed at the center of the cathode 10. It was.
[0022]
In FIG. 6, a conventional plating apparatus having no insulating layer on the auxiliary cathode, an insulating layer added only to the inner side surface of the auxiliary electrode, and plating with the insulating layer width w varied up to 15 mm on the auxiliary electrode inner side surface and the auxiliary electrode upper surface. The effective plating range is shown for each of the devices. The effective plating range is represented by 100% in the area of 140 mm, which is the inner diameter of the cathode electrode, and in%, the range in which the plating film thickness is 3.5 ± 0.2 μm can be obtained.
[0023]
In the conventional method in which the auxiliary cathode has no insulating layer, the plating effective range is 80%. However, the plating effective range is increased to 95% by adding the insulating layer only to the inner side surface of the auxiliary electrode. An insulating layer was attached to the inner surface of the auxiliary electrode and the upper surface of the auxiliary electrode, and an effective plating range of 97% or more was obtained in the range of the insulating layer width w = 1 to 8 mm. Further, it was found that as the insulating layer width w is increased, the effective plating range is reduced, and 75% at w = 15 mm, which is worse than the conventional method. It was found that when w = 6 mm was exceeded, the thickness of the cathode central portion was thin and the outer peripheral portion was thick, and the effect as an auxiliary cathode was diminished. The insulating layer width w is preferably 1 to 8 mm, preferably 1 to 6 mm. Even if an insulating layer was not provided on the inner side surface of the auxiliary cathode and an insulating layer was provided on the upper surface of the auxiliary cathode, the effective plating range could not be over 95%, so the insulating layer on the inner side surface of the auxiliary cathode was effective in expanding the effective plating range. It can be said that there is. From the above, providing an insulating layer in the range of 1 to 8 mm between the auxiliary cathode inner diameter side surface and the auxiliary cathode upper surface is effective in expanding the plating effective range.
[0024]
In FIG. 5, even if the inner diameter dimension of the exposed conductive portion of the auxiliary cathode is increased by covering the insulating layer 53 and the effective plating range of the cathode is expanded, the mechanical inner diameter dimension does not change. Good results were obtained without any change in the contact state.
[0025]
Since the insulating layer was provided in the range of 1 to 8 mm between the inner side surface of the auxiliary cathode and the upper surface of the auxiliary cathode, the distance between the cathode electrode was widened and the risk of short circuit between the auxiliary cathode and the cathode electrode was greatly reduced. In the conventional method in which an insulating layer is not provided, when the cumulative plating film thickness reaches about 300 μm, it is necessary to remove the plating film deposited on the auxiliary cathode. This removes the plating film deposited on the auxiliary cathode in approximately 50 hours by NiFe plating and in 10 hours by Cu plating. The plating film deposited on the auxiliary cathode changes the shape and area of the auxiliary cathode, but there is no problem as long as it does not affect the effective plating range of the cathode. The number of times of removal of the plating film deposited on the auxiliary cathode was reduced to 1/3 to 1/5 compared with the conventional method.
[0026]
7 and 8 are cross-sectional views of the main part of the plating apparatus according to one embodiment of the present invention. Insulating rings 72 and 82 are attached to the auxiliary cathodes 71 and 81 instead of applying an insulating material as an insulating layer of the auxiliary cathode. The insulating ring is made of Teflon which does not dissolve or swell in the plating solution, but it goes without saying that it may be ceramic or plastic.
[0027]
【The invention's effect】
As described above, by using the auxiliary cathode of the present invention, the effective plating range of the cathode can be expanded, and the number of thin film magnetic heads taken from the wafer called the cathode can be increased and the yield can be improved. Further, by increasing the distance between the auxiliary cathode conductive portion and the cathode electrode, it is possible to reduce the risk of a short circuit between the auxiliary cathode and the cathode electrode and reduce the number of times of removal of the plating film deposited on the auxiliary cathode.
[Brief description of the drawings]
FIG. 1 is a perspective sectional view of a thin film magnetic head.
FIG. 2 is a cross-sectional view of a conventional plating apparatus.
FIG. 3 is a diagram for explaining the effect of a conventional auxiliary cathode.
FIG. 4 is a cross-sectional view of a conventional plating apparatus.
FIG. 5 is a sectional view of the plating apparatus of the present invention.
FIG. 6 is a diagram for explaining the distribution of the insulating layer width w and the plating film thickness of the cathode.
FIG. 7 is a cross-sectional view of the plating apparatus of the present invention.
FIG. 8 is a cross-sectional view of the plating apparatus of the present invention.
[Explanation of symbols]
10 Cathode electrode, 11 Nonmagnetic substrate, 13 Lower shield, 14 Magnetoresistive element, 15 Magnetic film, 16 Upper magnetic pole, 17 Terminal, 18 Terminal surface film, 20 Plating tank, 21 Cathode electrode, 22 Auxiliary cathode, 23 Cylinder, 24 anode, 25 25 ′ DC power supply, 26 plating solution, 27 inlet, 28 outlet, 29 29 ′ liquid level plate, 31 plating solution recovery valve, 33 insulator, 41 42 coil, 52 auxiliary cathode, 53 insulating layer, 71 81 auxiliary cathode, 72 82 insulating ring 

Claims (6)

陰極と、前記陰極にめっき電流を供給する陰極電極と、前記陰極のめっき膜厚分布を制御する補助陰極を有するめっき装置に於いて、補助陰極と陰極電極の内径は同等で、補助陰極の露出導電部の内径を陰極電極の内径より大きくすることを特徴とする薄膜磁気ヘッド製造用めっき装置。In a plating apparatus having a cathode, a cathode electrode for supplying a plating current to the cathode, and an auxiliary cathode for controlling the plating film thickness distribution of the cathode, the inner diameters of the auxiliary cathode and the cathode electrode are equal, and the auxiliary cathode is exposed. A plating apparatus for manufacturing a thin film magnetic head, wherein the inner diameter of the conductive portion is larger than the inner diameter of the cathode electrode. 前記補助陰極は電気絶縁物により露出導電部の内径寸法を大きくすることを特徴とする請求項1記載の薄膜磁気ヘッド製造用めっき装置。2. The plating apparatus for manufacturing a thin film magnetic head according to claim 1, wherein the auxiliary cathode has an inner diameter dimension of an exposed conductive portion increased by an electric insulator. 前記補助陰極の少なくとも内径側面は電気的絶縁がなされ、補助陰極と陰極電極の内径差は2〜16mmであることを特徴とする請求項1または2に記載の薄膜磁気ヘッド製造用めっき装置。The plating apparatus for manufacturing a thin film magnetic head according to claim 1 or 2, wherein at least an inner diameter side surface of the auxiliary cathode is electrically insulated, and an inner diameter difference between the auxiliary cathode and the cathode electrode is 2 to 16 mm. 前記補助陰極の少なくとも内径側面は電気的絶縁がなされ、補助陰極と陰極電極の内径差は2〜12mmであることを特徴とする請求項1ないし3のいずれかに記載の薄膜磁気ヘッド製造用めっき装置。4. The plating for manufacturing a thin-film magnetic head according to claim 1, wherein at least an inner diameter side surface of the auxiliary cathode is electrically insulated, and an inner diameter difference between the auxiliary cathode and the cathode electrode is 2 to 12 mm. apparatus. 前記補助陰極に絶縁樹脂を塗布するか、あるいは絶縁リングを付加することによって、補助陰極の露出導電部内径を大きくしたことを特徴とする請求項1ないし4のいずれかに記載の薄膜磁気ヘッド製造用めっき装置。5. The thin film magnetic head manufacturing method according to claim 1, wherein the inner diameter of the exposed conductive portion of the auxiliary cathode is increased by applying an insulating resin to the auxiliary cathode or by adding an insulating ring. Plating equipment. 請求項1〜5のいずれかに記載の薄膜磁気ヘッド製造用めっき装置でめっきされたことを特徴とする薄膜磁気ヘッド。A thin film magnetic head, which is plated by the plating apparatus for manufacturing a thin film magnetic head according to claim 1.
JP22327698A 1998-08-06 1998-08-06 Thin-film magnetic head plating apparatus and thin-film magnetic head Expired - Fee Related JP3619021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22327698A JP3619021B2 (en) 1998-08-06 1998-08-06 Thin-film magnetic head plating apparatus and thin-film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22327698A JP3619021B2 (en) 1998-08-06 1998-08-06 Thin-film magnetic head plating apparatus and thin-film magnetic head

Publications (2)

Publication Number Publication Date
JP2000054198A JP2000054198A (en) 2000-02-22
JP3619021B2 true JP3619021B2 (en) 2005-02-09

Family

ID=16795599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22327698A Expired - Fee Related JP3619021B2 (en) 1998-08-06 1998-08-06 Thin-film magnetic head plating apparatus and thin-film magnetic head

Country Status (1)

Country Link
JP (1) JP3619021B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005509746A (en) * 2001-11-13 2005-04-14 エーシーエム リサーチ,インコーポレイティド Electropolishing assembly and electropolishing method for electropolishing a conductive layer
JP4128184B2 (en) 2005-03-18 2008-07-30 Tdk株式会社 Plating equipment
US8784618B2 (en) * 2010-08-19 2014-07-22 International Business Machines Corporation Working electrode design for electrochemical processing of electronic components
CN106346354B (en) * 2015-07-16 2020-04-24 盛美半导体设备(上海)股份有限公司 Wafer spin chuck optimized based on cathode nozzle position change

Also Published As

Publication number Publication date
JP2000054198A (en) 2000-02-22

Similar Documents

Publication Publication Date Title
US5620581A (en) Apparatus for electroplating metal films including a cathode ring, insulator ring and thief ring
KR101765346B1 (en) Method and apparatus for electroplating
US6090260A (en) Electroplating method
US20030079995A1 (en) Dynamically variable field shaping element
US20040231994A1 (en) Method and apparatus for controlling thickness uniformity of electroplated layers
JP2012129498A (en) High efficiency electrostatic chuck assembly for semiconductor wafer processing
KR20010051653A (en) Conductive biasing member for metal layering
US11492717B2 (en) Manufacturing apparatus of electrolytic copper foil
JP3619021B2 (en) Thin-film magnetic head plating apparatus and thin-film magnetic head
KR20180122173A (en) Producing method of mask integrated frame
US6514393B1 (en) Adjustable flange for plating and electropolishing thickness profile control
JP2003034893A (en) Plating method and plating apparatus
US20060000708A1 (en) Noble metal contacts for plating applications
KR100964132B1 (en) Wafer support apparatus for electroplating process and method for using the same
KR102266249B1 (en) Mother plate, mask and producing method of mask
CN110777412A (en) Electroplating device and electroplating method for forming electroplating structure on substrate
JP2001355091A (en) Electrolytic copper foil manufacturing device
JP3637214B2 (en) Wafer plating method
JP3405517B2 (en) Electroplating method and apparatus
US20030085131A1 (en) Electro-deposition of high saturation magnetization Fe-Ni-Co films
JPS59150094A (en) Disc type rotary plating device
KR102301331B1 (en) Producing method of mask
KR102358267B1 (en) Producing method of mask
US3525677A (en) Electrodeposition of constant-composition thin films
JP3745748B2 (en) Manufacturing method of mold by electroforming

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040223

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041102

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees