JP3617227B2 - Plate thickness control method for continuous tandem rolling mill. - Google Patents

Plate thickness control method for continuous tandem rolling mill. Download PDF

Info

Publication number
JP3617227B2
JP3617227B2 JP00259797A JP259797A JP3617227B2 JP 3617227 B2 JP3617227 B2 JP 3617227B2 JP 00259797 A JP00259797 A JP 00259797A JP 259797 A JP259797 A JP 259797A JP 3617227 B2 JP3617227 B2 JP 3617227B2
Authority
JP
Japan
Prior art keywords
stand
rolling
thickness
welding point
rolling mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00259797A
Other languages
Japanese (ja)
Other versions
JPH10192934A (en
Inventor
秀夫 木島
一仁 剣持
泰理 砂盛
拓也 山崎
浩之 芹生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP00259797A priority Critical patent/JP3617227B2/en
Publication of JPH10192934A publication Critical patent/JPH10192934A/en
Application granted granted Critical
Publication of JP3617227B2 publication Critical patent/JP3617227B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数台のミルをタンデムに配列した完全連続式タンデム圧延機を用いた板材の圧延において、溶接点近傍での板厚精度を向上させようとするものである。
【0002】
【従来の技術】
タンデム圧延機、中でもロール組み替え時以外は圧延機を停止することなく圧延を継続する、いわゆる完全連続式のタンデム圧延機においては、板材の板厚を連続的に変更する必要があるため、先行材と後行材の接続点である溶接点等を判断基準にして、圧延モデルより計算した後行板の圧下位置およびロール速度に制御するという走間板厚変更制御が一般的であった(板圧延の理論と実際,p131 参照)。
【0003】
この走間板厚変更制御では、先行材と後行材との板厚スケジュールが同じ場合、すなわち溶接点が板厚変更点でない場合、圧延モデルによる計算は行っても、その計算結果を出力しないで圧延を継続する。
【0004】
つまり、この方法の場合、ミル入側の板厚には前工程(熱間仕上げ圧延機であれば熱間粗圧延、冷間圧延機であれば熱間仕上げ圧延)での圧延において生じた板厚偏差がそのまま残ることから、この影響を最小にするために、ミル入側に板厚計を設け、その検出値を第1スタンドまでトラッキングして第1スタンドの圧下位置を操作する、いわゆる圧下FF−AGC(板圧延の理論と実際,p301 参照)が適用されている。
【0005】
【発明が解決しようとする課題】
しかし、この制御と圧下FF−AGCの組合せによる方法が抱えている問題点として、板厚変更点でない溶接点が第1スタンドを通過する場合には、溶接点の前後は前工程でも非定常圧延部であることから板厚偏差が非常に大きく、板厚精度を従来の圧下FF−AGCによって十分に確保することは困難な状況にあることがあげられる。
【0006】
そこで本発明の目的は、上述したような従来の問題を解決するため、ミル入側直近の板厚計で入側板厚偏差を検出し、溶接点前後でミル入側板厚変動の影響を受けずに板厚精度を向上させることができる、新規な板厚制御方法を提案するところにある。
【0007】
【課題を解決するための手段】
本発明は、連続式タンデム圧延機を用いて連続的な圧延を行うに当たり、板材の溶接点がタンデム圧延機の入側に配置した板厚計に到達するよりも前に、入側板厚偏差に対する圧延荷重の影響係数を計算して求める一方、板材の溶接点が板厚計を通過してから第1スタンドに到達する前に、板材の溶接点前後における入側板厚偏差を検出して求め、かかる入側板厚偏差と影響係数をもとに荷重の変動量を算出し、その変動量を補償する圧下位置変更量を計算して求め、被圧延材の溶接点が第1スタンドを通過した直後に、第1スタンドの圧下位置を上記圧下位置変更量分だけ変更することを特徴とする連続式タンデム圧延機における板材の板厚制御方法である。
【0008】
【発明の実施の形態】
本発明は、連続タンデム式圧延機の入側直近に設置した板厚計で板材の入側板厚偏差を検出し、この板厚偏差に基づき、第1スタンドの圧下位置変更量を補正しようとするものであり、発明を実施するに当たっては図1に示したような例えば5スタンドのミルをタンデムに配列した構成になる圧延機 (図中第2、第3スタンドは省略) が適用でき、かかる圧延機を適用して圧延を行う場合の板厚制御の要領を図2に基づいて以下に説明する。
【0009】
図1において、被圧延材(板材)である先行材1a,後行材1bは図中左から右へ向かって移動し溶接点Pにおいて板厚をスケジュールs1からスケジュールs2に変更するものとする。
【0010】
入側板厚計2は第1スタンドの入側直近に設置してあり、溶接点Pが入側板厚計2に到達するよりも前の段階で、プロセスコンピュータ3にて図2の(a1)〜(a3)に従う計算を実施する。
【0011】
まず、先行材1a(添字S1で表す)の第1スタンドの圧延荷重Ps11 を計算する。
【数1】

Figure 0003617227
とし、以降、添字がS1からS2に変わった場合は、後行板1bの当該量を表すこととする。
【0012】
次に、溶接点Pが第1スタンドを通過し、第1スタンドと第2スタンドの間にあるとき(添字Tで表す)の後行材1bの各スタンドの圧延荷重を計算する。
【数2】
Figure 0003617227
【0013】
さらに、第1スタンド( i=1 )について、次に示す圧延荷重を、それぞれ計算する。
【数3】
Figure 0003617227
【0014】
これらより、入側板厚に偏差が存在する場合の第1スタンドの圧延荷重への影響係数を計算する。
【数4】
Figure 0003617227
【0015】
上記算出された影響係数は、圧下位置演算器4に送られ、次いで溶接点Pがミル入側板厚計2の地点を通過し第1スタンドに到達する前に、圧下位置演算器4にて、図2中の(b)が計算される。
【0016】
すなわち、溶接点Pの前後における板厚の設定入側板厚に対する、先行材1aの偏差dH s11 および後行材1bの板厚偏差dHs21 は、入側板厚計2にて実測され、これらと式(5)(6)で計算した前述の影響係数より荷重変動分を下記の式(7) で計算する。
【0017】
【数5】
Figure 0003617227
【0018】
次に、この荷重変動を補償するため、第1スタンドにおける圧下位置変動量ΔS′T1を下記式(8) にて計算する。
【数6】
Figure 0003617227
【0019】
ここで、溶接点Pは板厚変更点ではないから、溶接点Pが第1スタンド通過直後に、図2の(c)に示すように、上記圧下位置変動量ΔS ′T1が、圧下位置演算器4から第1スタンドの圧下制御装置5aに出力され、第1スタンドの圧下位置が変更される。
【0020】
【実施例】
図1に示したような構成になる、4段式のミルを配置した5スタンド冷間タンデム圧延を使用 (溶接機の直後に板厚計を設置) して、
材質:先行材,後行材とも低炭素鋼板
板厚スケジュール:先行材,後行材とも 2.3 mm → 0.5 mm
の条件のもとで、本発明に従う板厚制御を行いつつ圧延を実施し、得られた板の出側板厚について調査した。
その結果を、「板圧延の理論と実際」のp301 に開示のFF−AGC方式で板厚制御を行った場合の結果とともに、図3に示す。
【0021】
図3に示すように、入側板厚偏差が溶接点前後で存在した場合、本発明によれば板厚精度が従来方式に比較して格段に向上することが確認できた。
【0022】
また、上記の実施例と同様の圧延機を用いて、母板板厚を4.0 〜2.0 mm、ミル出側板厚を2.0 〜0.5 mm、ミル出側板幅700 〜1800mmとするスケジュールの圧延を実施 (圧延荷重式はHillの式使用) し、板厚が所定の範囲に収まる長さによる製品歩留り状況について調査した。
その結果、本発明に従う板厚制御を適用したものでは、品質を確保できたのが96%であったのに対して従来法では92%であり、製品歩留りが著しく改善されることも明らかとなった。
【0023】
なお、この実施例では4段式のミルを配置した5スタンドの圧延機を用いたが本発明はかかる圧延機に限るものではなく、また、板厚スケジュールや板幅、材質等の各事項についてもそれにのみ限定されるものではない。
【0024】
【発明の効果】
本発明においては、溶接点が圧延機の直近に設けた板厚計よりも前に存在するときに求めた影響係数と、溶接点が板厚計を通過したときに検出した入側板厚偏差とに基づいて第1スタンドの圧延位置を補正するようにしたので、板厚精度が改善され歩留りの向上を図ることができる。
【図面の簡単な説明】
【図1】本発明を実施するのに好適な設備の構成を示した図である。
【図2】本発明に従う制御要領の説明図である。
【図3】実施例における先行材、後行材の板厚の変動状況を示した図である。
【符号の説明】
1a 先行材
1b 後行材
2 板厚計
3 プロセスコンピュータ
4 圧下位置演算器
5a 圧下制御装置
5d 圧下制御装置
5e 圧下制御装置[0001]
BACKGROUND OF THE INVENTION
The present invention is intended to improve the plate thickness accuracy in the vicinity of the welding point in rolling a plate material using a fully continuous tandem rolling mill in which a plurality of mills are arranged in tandem.
[0002]
[Prior art]
In tandem rolling mills, especially in the so-called completely continuous tandem rolling mill that continues rolling without stopping the rolling mill except when changing the roll, it is necessary to continuously change the plate thickness of the plate material, so the preceding material The plate thickness change control is generally used to control the reduction position and roll speed of the succeeding plate calculated from the rolling model using the welding point, etc., which is the connection point of the following material as a criterion. The theory and practice of rolling, see p131).
[0003]
In this running thickness change control, if the thickness schedule of the preceding material and the following material is the same, that is, if the welding point is not the thickness change point, the calculation result is not output even if the calculation is performed by the rolling model. Continue rolling.
[0004]
In other words, in the case of this method, the plate thickness generated on the mill entry side is determined by rolling in the previous process (hot rough rolling for hot finish rolling mills, hot finish rolling for cold rolling mills). Since the thickness deviation remains as it is, in order to minimize this effect, a thickness gauge is provided on the entry side of the mill, the detected value is tracked to the first stand, and the reduction position of the first stand is operated. FF-AGC (Theory and practice of plate rolling, see p301) is applied.
[0005]
[Problems to be solved by the invention]
However, as a problem that the method based on the combination of this control and the reduction FF-AGC has, when a welding point that is not a thickness change point passes through the first stand, unsteady rolling is performed before and after the welding point even in the previous process. Therefore, the thickness deviation is very large, and it is difficult to sufficiently secure the thickness accuracy by the conventional reduction FF-AGC.
[0006]
Therefore, the object of the present invention is to solve the conventional problems as described above, by detecting the thickness deviation on the inlet side with a thickness gauge closest to the mill entry side, and not affected by fluctuations in the thickness of the mill entry side before and after the welding point. The present invention proposes a new plate thickness control method capable of improving the plate thickness accuracy.
[0007]
[Means for Solving the Problems]
In the present invention, when performing continuous rolling using a continuous tandem rolling mill, before the welding point of the plate material reaches the thickness gauge disposed on the entry side of the tandem rolling mill, While calculating and calculating the influence coefficient of the rolling load, before reaching the first stand after the welding point of the plate material has passed through the thickness gauge, by detecting the entry side plate thickness deviation before and after the welding point of the plate material, Immediately after the welding point of the material to be rolled has passed through the first stand, the load fluctuation amount is calculated based on the entry side thickness deviation and the influence coefficient, and the reduction position change amount is calculated to compensate for the fluctuation amount. Further, the sheet thickness control method of the sheet material in the continuous tandem rolling mill is characterized in that the rolling position of the first stand is changed by the above-mentioned rolling position change amount.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention detects an entry-side plate thickness deviation of a plate material with a plate thickness meter installed in the immediate vicinity of the entry side of a continuous tandem rolling mill, and attempts to correct the reduction position change amount of the first stand based on the plate thickness deviation. In carrying out the invention, a rolling mill having a structure in which, for example, five stand mills as shown in FIG. 1 are arranged in tandem can be applied (the second and third stands are omitted in the figure), and such rolling The procedure for controlling the thickness in the case of rolling by applying a machine will be described below with reference to FIG.
[0009]
In FIG. 1, a preceding material 1a and a succeeding material 1b, which are to-be-rolled materials (plate materials), move from the left to the right in the drawing, and the thickness at the welding point P is changed from the schedule s1 to the schedule s2 .
[0010]
The entrance side thickness gauge 2 is installed in the immediate vicinity of the entrance side of the first stand, and the process computer 3 at the stage before the welding point P reaches the entrance side thickness gauge 2 (a1) to FIG. The calculation according to (a3) is performed.
[0011]
First, the rolling load Ps11 of the first stand of the preceding material 1a (represented by the subscript S1 ) is calculated.
[Expression 1]
Figure 0003617227
In the following, when the subscript is changed from S1 to S2, the amount of the trailing plate 1b is represented.
[0012]
Next, when the welding point P passes through the first stand and is between the first stand and the second stand (represented by the suffix T), the rolling load of each stand of the succeeding material 1b is calculated.
[Expression 2]
Figure 0003617227
[0013]
Further, the following rolling loads are calculated for the first stand ( i = 1 ) .
[Equation 3]
Figure 0003617227
[0014]
From these, the influence coefficient to the rolling load of the first stand when there is a deviation in the entry side plate thickness is calculated.
[Expression 4]
Figure 0003617227
[0015]
The calculated influence coefficient is sent to the reduction position calculator 4, and then before the welding point P passes through the point of the mill entry side thickness gauge 2 and reaches the first stand, the reduction position calculator 4 (B 1 ) in FIG. 2 is calculated.
[0016]
That is, the deviation dH s11 of the preceding material 1a and the thickness deviation dH s21 of the succeeding material 1b with respect to the set entry side plate thickness before and after the welding point P are actually measured by the entry side plate thickness meter 2, and these equations (5) The load fluctuation is calculated by the following formula (7) from the influence coefficient calculated in (6).
[0017]
[Equation 5]
Figure 0003617227
[0018]
Next, in order to compensate for this load fluctuation, the rolling position fluctuation amount ΔS ′ T1 in the first stand is calculated by the following equation (8).
[Formula 6]
Figure 0003617227
[0019]
Here, since the welding point P is not a plate thickness change point, immediately after the welding point P passes through the first stand, as shown in FIG. 2 (c 1 ), the above-described reduction position fluctuation amount ΔS ′ T1 is reduced to the reduction position. It is output from the computing unit 4 to the first stand reduction control device 5a, and the first stand reduction position is changed.
[0020]
【Example】
Using a 5-stand cold tandem rolling machine with a four-stage mill configured as shown in Fig. 1 (installing a thickness gauge immediately after the welding machine)
Material: Both leading material and following material Low carbon steel sheet thickness schedule: Both preceding material and following material 2.3 mm → 0.5 mm
Under these conditions, rolling was performed while controlling the thickness according to the present invention, and the exit side thickness of the obtained plate was investigated.
The results are shown in FIG. 3 together with the results obtained when the plate thickness control is performed by the FF-AGC method disclosed in p301 in “Theory and practice of plate rolling”.
[0021]
As shown in FIG. 3, it was confirmed that according to the present invention, the plate thickness accuracy was remarkably improved as compared with the conventional method when the entry side plate thickness deviation was present before and after the welding point.
[0022]
In addition, using the same rolling mill as in the above example, the base plate thickness is 4.0 to 2.0 mm, the mill exit side plate thickness is 2.0 to 0.5 mm, and the mill exit side plate width 700 to 1800 mm. (The rolling load formula is Hill's formula), and the yield rate of the product according to the length within which the plate thickness falls within a predetermined range was investigated.
As a result, in the case where the plate thickness control according to the present invention was applied, the quality could be ensured at 96%, whereas the conventional method was 92%, which clearly shows that the product yield is remarkably improved. became.
[0023]
In this embodiment, a 5-stand rolling mill with a four-stage mill is used, but the present invention is not limited to such a rolling mill, and each item such as a sheet thickness schedule, a sheet width, a material, etc. However, it is not limited to that.
[0024]
【The invention's effect】
In the present invention, the influence coefficient obtained when the welding point exists before the thickness gauge provided in the immediate vicinity of the rolling mill, and the entry side thickness deviation detected when the welding point passes the thickness gauge, Since the rolling position of the first stand is corrected based on the above, the thickness accuracy is improved and the yield can be improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of equipment suitable for carrying out the present invention.
FIG. 2 is an explanatory diagram of a control procedure according to the present invention.
FIG. 3 is a view showing a fluctuation state of the thicknesses of the preceding material and the succeeding material in the example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1a Preceding material 1b Subsequent material 2 Thickness meter 3 Process computer 4 Reduction position calculator 5a Reduction control device 5d Reduction control device 5e Reduction control device

Claims (1)

連続式タンデム圧延機を用いて連続的な圧延を行うに当たり、
板材の溶接点がタンデム圧延機の入側に配置した板厚計に到達するよりも前に、入側板厚偏差に対する第1スタンドの圧延荷重の影響係数を計算して求める一方、板材の溶接点が板厚計を通過してから第1スタンドに到達する前に、板材の溶接点前後における入側板厚偏差を検出して求め、かかる入側板厚偏差と影響係数をもとに第1スタンドの荷重の変動量を算出し、その変動量を補償する第1スタンドの圧下位置変更量を計算して求め、被圧延材の溶接点が第1スタンドを通過した直後に、第1スタンドの圧下位置を上記圧下位置変更量分だけ変更することを特徴とする連続式タンデム圧延機における板材の板厚制御方法。
When performing continuous rolling using a continuous tandem rolling mill,
Calculate the influence coefficient of the rolling load of the first stand on the entry side thickness deviation before the welding point of the plate reaches the thickness gauge placed on the entry side of the tandem rolling mill. Before passing the plate thickness gauge and before reaching the first stand, it detects and determines the inlet side thickness deviation before and after the welding point of the plate material, and based on the inlet side thickness deviation and the coefficient of influence, The amount of change in the load is calculated, the amount of change in the reduction position of the first stand that compensates for the amount of change is calculated, and immediately after the welding point of the material to be rolled passes through the first stand, the position of reduction in the first stand In the continuous tandem rolling mill, wherein the sheet thickness is controlled by the amount of change in the rolling position.
JP00259797A 1997-01-10 1997-01-10 Plate thickness control method for continuous tandem rolling mill. Expired - Fee Related JP3617227B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00259797A JP3617227B2 (en) 1997-01-10 1997-01-10 Plate thickness control method for continuous tandem rolling mill.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00259797A JP3617227B2 (en) 1997-01-10 1997-01-10 Plate thickness control method for continuous tandem rolling mill.

Publications (2)

Publication Number Publication Date
JPH10192934A JPH10192934A (en) 1998-07-28
JP3617227B2 true JP3617227B2 (en) 2005-02-02

Family

ID=11533805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00259797A Expired - Fee Related JP3617227B2 (en) 1997-01-10 1997-01-10 Plate thickness control method for continuous tandem rolling mill.

Country Status (1)

Country Link
JP (1) JP3617227B2 (en)

Also Published As

Publication number Publication date
JPH10192934A (en) 1998-07-28

Similar Documents

Publication Publication Date Title
JP3607029B2 (en) Rolling mill control method and control apparatus
JP2008126307A (en) Thickness control system for tandem rolling mill
JP2002126813A (en) Method for setting up draft leveling in plate rolling
JP2006110627A (en) Method and apparatus for rolling metal sheet
JP3617227B2 (en) Plate thickness control method for continuous tandem rolling mill.
JP4268582B2 (en) Plate thickness control method and plate thickness / shape non-interference control method
JP3485083B2 (en) Cold rolling equipment and cold rolling method
JP3690282B2 (en) Camber and wedge prevention method in hot rolling
JP3541596B2 (en) Thickness control method of sheet material in continuous tandem rolling mill
JP3062018B2 (en) Thickness control method in hot rolling
KR100467229B1 (en) Rolling speed compensation apparatus at rolling process and its compensation method
JP2006082118A (en) Method and apparatus for rolling metallic sheet
JP3062017B2 (en) Thickness control method in hot rolling
JP3403330B2 (en) Strip width control method in hot rolling
JP4256827B2 (en) Rolling method and rolling apparatus for metal sheet
JP5631233B2 (en) Thickness control method of rolling mill
JPS63183713A (en) Controlling method for meandering
JP3588960B2 (en) A method for changing the thickness between strips in a continuous tandem rolling mill
JP3490305B2 (en) Rolling mill thickness control device
JP3269209B2 (en) Strip width control method in hot finish rolling
JP3529573B2 (en) Control device for tandem rolling mill
JP3040044B2 (en) Method of controlling width of hot rolled steel sheet
JP2719216B2 (en) Edge drop control method for sheet rolling
JP3467559B2 (en) Strip width control method in hot continuous rolling
JP3935116B2 (en) Thickness control device for rolling mill

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071119

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081119

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091119

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101119

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111119

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121119

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees