JP3616085B2 - Eccentric rotor and axial gap type brushless vibration motor having the same eccentric rotor - Google Patents

Eccentric rotor and axial gap type brushless vibration motor having the same eccentric rotor Download PDF

Info

Publication number
JP3616085B2
JP3616085B2 JP2003151863A JP2003151863A JP3616085B2 JP 3616085 B2 JP3616085 B2 JP 3616085B2 JP 2003151863 A JP2003151863 A JP 2003151863A JP 2003151863 A JP2003151863 A JP 2003151863A JP 3616085 B2 JP3616085 B2 JP 3616085B2
Authority
JP
Japan
Prior art keywords
magnet
shaft
eccentric rotor
diameter side
stator base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003151863A
Other languages
Japanese (ja)
Other versions
JP2004357404A (en
Inventor
忠男 山口
正弘 高城
悟 下瀬川
哲志 八島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Parts Ind Co Ltd
Original Assignee
Tokyo Parts Ind Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Parts Ind Co Ltd filed Critical Tokyo Parts Ind Co Ltd
Priority to JP2003151863A priority Critical patent/JP3616085B2/en
Priority to US10/695,617 priority patent/US6998742B2/en
Priority to KR1020030075063A priority patent/KR100708047B1/en
Priority to CN2008100918037A priority patent/CN101257232B/en
Priority to CNB2003101026373A priority patent/CN100384549C/en
Publication of JP2004357404A publication Critical patent/JP2004357404A/en
Application granted granted Critical
Publication of JP3616085B2 publication Critical patent/JP3616085B2/en
Priority to US11/232,065 priority patent/US7132770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Brushless Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、移動体通信装置の無音報知手段に用いて好適なもので駆動回路部材が内蔵された軸方向空隙型ブラシレス振動モータに関する。
【0002】
【従来の技術】
ブラシレスモータは、ブラシ、コミュテータに代わる駆動回路が必須要件であるが、上記従来の構造はいずれも駆動回路が内蔵されておらず、外付けのため引き出し端子も4端子以上が必要となって通常の2端子型直流モータのように取り扱うことができない問題があった。
しかも、通常のブラシレスモータでは、ステータは複数個の電機子コイルを均等に全周に配置しており、駆動回路装置もICを始め他の電子部品が必要なため、これらの駆動回路装置は通常ではとても内蔵できるものではなかった。
扁平な軸方向空隙型ブラシレス振動モータとして本出願人は、先にコアレススロットレス型で駆動回路部材を内蔵させないものを提案している。(特許文献1、特許文献2参照)
駆動回路付きのブラシレス振動モータとしては、コアード型で、複数個の等分に配置した突極に電機子コイルを巻回してなるコアード型で駆動回路部材をステータの側方に配置した非円形なものが知られている。(特許文献3参照)
しかしながら、このようなものは、側方向のサイズが大となってしまい、セット側で印刷配線板に搭載するに当たってSMD方式では実装効率が悪く、またコアード型のため、厚みが大とならざるを得ず実用性がない。
そこで、本出願人は、先にコアード、スロットレスコアレス型を含んだもので複数個の電機子コイルの一部を削除して空所を設け、この空所に駆動回路部材を配置したものを提案している。(特許文献4参照)
【0003】
【特許文献1】
実開平4−137463号公報
【特許文献2】
特開2002−143767号公報
【特許文献3】
特開2000−245103号公報
【特許文献4】
特開2002−142427号公報(図8〜図11)
【0004】
【発明が解決しようとする課題】
また、このような振動モータは携帯電話機等の移動体通信装置に搭載される場合、サイズが極限まで薄く小型化が要求され、偏心ロータを構成する軸も0.6mm以下のものが採用せざるを得ないようになっているので、耐衝撃性に十分配慮しなくてはならない。
また、薄型化を実現するために軸方向空隙型でコアレススロットレス型にする必要があるが、マグネットの磁力をコントロールしないと、ステータ側に吸着するロスが大きく、起動が困難である。
また、振動量を確保するためには、偏心を得るにあたって小型化されるほど最高クラスの高比重タングステン合金からなる偏心ウエイトを備えた偏心ロータが必要になるが、融点の高いタングステンの含有量が多くなるほど通常の磁性ヨークには融点の差からレーザ溶接が困難となる問題が新たに生じている。
この発明の目的は、磁力コントロールが容易な希土類粉末を含む樹脂製マグネットを使用する場合であっても、偏心ウエイトをロータの厚みが犠牲にならないように配着するに当たってレーザ溶接によらない、たとえば、金属ろう付、接着などの固着手段でも各部材の形状に工夫を凝らすことによって採用できるようにして耐衝撃性を改善した偏心ロータと、さらに上記特許文献4に開示された特開2002−142427号公報の図8〜図11の軸方向空隙型ブラシレス振動モータを改良して薄型で簡単な構成で各部材を薄くしながらも強度を十分に得られ、駆動回路部品を内蔵できるようにし、通常の直流モータと同様な取り扱いができるようにして携帯機器の無音報知源として極めて薄い小型ブラシレス振動モータを提供するものである。
【0005】
【課題を解決するための手段】
上記課題を解決するには、請求項1に示す発明のように、複数個の磁極を有する軸方向空隙型マグネット(8)と、このマグネットが固着された0.2mm以下で厚みがある薄いヨーク板(6)と、前記マグネットの外方に配された比重17以上の偏心ウエイト(9)とが備えられたものであって、前記薄いヨーク板は前記マグネットの磁界を受ける平坦部(6h)と、この平坦部に続いて外径側垂下部(6a)と、内径側垂下部(6b)とがあり、前記マグネットは磁路を受ける面が前記平坦部に、外径が前記外径側垂下部に、内径が前記内径側垂下部にそれぞれ囲われるように接着され、前記外径側垂下部の下部から部分的に舌片(6c)が径方向外方に突き出され、前記偏心ウエイトは前記舌片に係合する凹所(9a)が設けられてこの凹所を前記舌片にはめ合わせることによって薄いヨーク板の外周に前記平坦部から軸方向上方に突き出ないように、かつ前記マグネット面から下方に突き出ないように固着され、さらに、前記内径側垂下部の内方に軸受(7、77)が配されたもので達成できる。
別の偏心ロータの構成としては、請求項2に示す発明のように、複数個の磁極を有する軸方向空隙型マグネット(88)と、このマグネットの磁界を受ける0.2mm以下で厚みがある薄いヨーク板(66)と、前記マグネットの外方に少なくとも一部が配された比重17以上の偏心ウエイト(9)とが備えられたものであって、前記薄いヨーク板は前記マグネットの磁界を受ける平坦部(6h)と、この平坦部に続いて偏心ウエイトを固着する外径側垂下部(6a)があり、前記マグネットは磁路を受ける面が前記平坦部に、外径が前記外径側垂下部に固着され、前記外径側垂下部の下部から部分的に舌片(6c)が径方向外方に突き出され、前記偏心ウエイトは前記舌片に係合する凹所(9a)が設けられてこの凹所を前記舌片にはめ合わせることによって薄いヨーク板の外周に前記平坦部から軸方向上方に突き出ないように、かつ前記マグネット面から下方に突き出ないように固着され、前記軸方向空隙型マグネット内径側で前記薄いヨーク板に軸(22)が固着されたもので達成できる。
さらに具体的な偏心ロータにするには、請求項3に示す発明のように前記ヨーク板の外径側垂下部の少なくとも2カ所に係止部としてほぼ対向するように切り欠き(6g)が設けられ、前記偏心ウエイトに形成した突起部(9b)がこの切り欠きには入り込むようになっており、前記偏心ウエイトは前記凹所(9a)とこの突起部を利用して前記外径側垂下部に固着されたものであるのがよい。
このような偏心ロータを採用して軸固定型ブラシレス振動モータにするには、請求項4に示す発明のように、請求項1に記載の偏心ロータ(R、R2)と、この偏心ロータを回転自在に支える軸が基端で固着された軸支承部(1a)を有するもので、0.2mm以下で厚みがあるヨークブラケット(1)と、前記軸支承部の周囲に配されたステータベース(3)と、このステータベースに配された複数個の空心電機子コイル(5A、5B、5C)とが備えられ、前記ヨークブラケットは軸支承部と一体に半径方向に延びる複数の支部(1b)と、この支部間の空所(1e)を介して前記支部の外方にリング状保持部(1c)があり、前記ステータベース(3)はフレキシブル基板からなり、前記空心電機子コイルが配置されていない空間部分に該空心電機子コイルの厚み内になるように駆動回路部材の一部(D、D1)の一部が平面視で前記空所(1e)に位置され、前記ステータベースに配されたもので前記空心電機子コイルと駆動回路部材はいずれか高く植設されている方の上面が露出されるように樹脂(4)でステータベースに固定され、前記偏心ロータを覆うようにカバー部材(10,100)が開口部で前記ヨークブラケットの保持部にレーザ溶接で取り付けられ、前記軸の先端がカバー部材(10)の中心の凹部(10a)にはめ込まれ、外方からカバー部材にレーザ溶接されたもので達成できる。
このような偏心ロータを採用して軸回転型ブラシレス振動モータにするには、請求項5に示すように、請求項2に記載の偏心ロータ(R4)と、この偏心ロータを軸(22)を介して回転自在に支える軸受(7)が固着された樹脂製の軸支承部(11a)があるもので0.2mm以下で厚みがあるヨークブラケット(111)と、前記軸支承部の周囲に配されたステータベース(33)と、このステータベースに配された複数個の空心電機子コイル(5A、5B、5C)とが備えられ、前記ヨークブラケットは軸支承部と一体に半径方向に延びる複数の支部(1b、11b)と、この支部間の空所(1e)を介して前記支部の外方にリング状保持部(1c)があり、前記ステータベース(3)はフレキシブル基板からなり、前記空心電機子コイルが配置されていない空間部分に該空心電機子コイルの厚み内になるように駆動回路部材の一部(D)が前記ステータベースに配され、前記偏心ロータを覆うように空隙を介してカバー部材(101)が開口部で前記ヨークブラケットの保持部にレーザ溶接で取り付けられたもので達成できる。
さらに、これらのモータは請求項6に示すように、前記ステータベース(3、33)は前記ヨークブラケット(11、111)の下方に配され、前記駆動回路部材(D)は前記空所(1e)に前記支部から突き出るように格納され、前記空心電機子コイルを含めて樹脂(4)で固着されたものがよい。
【0006】
請求項1のようにすると、軸固定型偏心ロータが得られ、偏心ウエイトは舌片によって固着力が大となり、軸方向、径方向に衝撃に十分耐えられ、偏心ウエイトは、実質的にロータの厚み内となって薄く得られるので、全体的な厚みが犠牲にならず、凹所による偏心ウエイトの重量の低下変動はわずかで、平坦部に続いて各垂下部によってマグネットは囲われているので固着強度が十分に得られる。
請求項2によれば、軸回転型偏心ロータが得られ、偏心ウエイトは舌片によって固着力が大となり、軸方向、径方向に衝撃に十分耐えられ、偏心ウエイトは、実質的にロータの厚み内となって薄く得られるので、全体的な厚みが犠牲にならず、凹所による偏心ウエイトの重量の低下変動はわずかで、平坦部に続いて少なくとも外径側垂下部によってマグネットは囲われているので固着強度が十分に得られる。
請求項3にすれば、偏心ウエイトの固着強度がより一層確保できる。
請求項4のようにすれば、偏心ウエイトは薄いヨーク板に確実に固定でき、径方向、軸方向の動きが妨げられるので、接着でも耐衝撃性が十分に期待でき、偏心ロータ部分とステータ部分が極めて薄い軸固定型振動モータが得られ、軸に先端はカバー部材に溶接され、カバー部材はさらにステータ側のヨークブラケットの保持部に溶接されるので、全体的にモノコック構造となって耐衝撃性も十分維持できる。
請求項5のようにすれば、軸回転型で偏心ウエイトは舌片によって固着力が大となり、軸方向、径方向に衝撃に十分耐えられ、偏心ウエイトは、実質的にロータの厚み内となって薄く得られるので全体的な厚みが犠牲にならず、凹所による偏心ウエイトの重量の低下変動はわずかで、平坦部と少なくとも外径側垂下部によってマグネットは囲われるので固着強度が十分に得られ、カバー部材の開口部が保持部に溶接されるので強度が十分確保でき、偏心ロータ部分とステータ部分が極めて薄い軸回転型振動モータが得られる。
そして、請求項6によれば、ヨークブラケットの厚みが無視できるので、薄型でしかも空隙を損なうことなく、樹脂によって各部材が骨幹となるように覆われるので強度が十分に確保できる。
【0007】
【発明の実施の形態】
図1は、この発明の偏心ロータの第1の実施の形態を示す平面図である。
図2は図1のA−A切断縦断面図である。
図3は図1の変形例の平面図である。
図4は、この発明の偏心ロータの第2の実施の形態を示す縦断面図である。
図5は図1の偏心ロータを格納した軸固定型の軸方向空隙型1ホールセンサ式コアレススロットレス方式ブラシレスモータの縦断面図で偏心ロータは図1のA−A線で切断したものである。
図6は図5のステータ側の平面図である。
図7は図6の一部材の平面図である。
図8は図5の変形例の断面図である。
図9は、この発明の偏心ロータを備えた軸固定型の軸方向空隙型センサレスタイプのコアレススロットレス方式ブラシレス振動モータの横切断平面図である。 図10は図9の縦断面図である。
図11は図9の一部材の平面図である。
図12はこの発明の一実施の形態の偏心ロータを格納した軸回転型軸方向空隙型ブラシレス振動モータの縦断面図である。
【0008】
以下、この発明の構成を図示する各実施の形態に基づいて説明する。
図1、図2に示す偏心ロータRは、希土類磁石粉末をポリアミド樹脂に一体化した軸方向空隙型樹脂製マグネット8が薄いヨーク板6に接着される。この薄いヨーク板6は、ロータとして厚みを追い込むために0.1mm〜0.2mm程度の極めて薄いもので前記軸方向空隙型樹脂製マグネット8の磁界を受ける平坦部6hとこの平坦部6hに一体の外径側垂下部6aと内径側垂下部6bを有し、これらで前記軸方向空隙型樹脂製マグネット8を囲うようになっているので、接着でも強い保持力を得ている。内径側垂下部6bは、図5にも示すように前記軸方向空隙型樹脂製マグネット8に厚みよりさらに少し垂下され、この内径側垂下部6bの内方に焼結含油軸受7がレーザ溶接L2によって取り付けられる。
この薄いヨーク板6は、外径側垂下部6aに一体に所定の開角で2カ所舌片6cが法線方向で水平方向に突き出されると共に、この舌片を間にして約180度弱で対向して係止部として機能する切り欠き6dが形成されている。
弧状の偏心ウエイト9は、前記舌片6cに受け止められる凹所9aが一面側に舌片6cの位置に形成され、図2の断面から判断できるように舌片6cに受け止められる凹所9a
によって組み合わされたとき、厚みが前記平坦部6hから上方に突き出ないように、かつ、マグネット8より下方にも突き出ないようになっている。さらに前記の切り欠き6dに入り込む突起部9bが設けられ、前記薄いヨーク板6の外径側垂下部6aに前記凹所9aと突起部9bをそれぞれ舌片6c、切り欠き6dをはめ合わせながら前記外径側垂下部6aに接着などで固着される。前記舌片6cは2カ所法線方法に形成しているので、偏心ウエイト9の径方向の動きが規制される。なお、図示しないが、この突起部はさらに内側に延ばされてマグネットに形成した凹所に食い込ませるようにしてもよい。
このようにすれば、より径方向に動きが規制できる。
したがって、偏心ウエイト9は、舌片6cによって軸方向と径方向の動きが規制され、切り欠き6dによって確実に接着剤が回り込み、径方向の動きが規制されるので落下などの衝撃に十分耐えられることになる。
【0009】
上述の変形として偏心ウエイト9の径方向の動きを規制するには、図3に示すように先端が鉤kになっている1カ所の舌片66cと同形状の凹所99aにしたものを組みあわせてもよい。その他の説明は図1と同等であるのでここでは省略する。
図4はこの発明の偏心ロータの第2の実施の形態を示したもので、すなわち、前記薄いヨーク板6は磁性ステンレス製で0.1mmの薄手で、前記マグネットの磁界を受ける平坦部6hと、偏心ウエイト9を固着する外径側垂下部6aと、軸支承する内径側垂下部6bがあり、前記舌片6cは一部が前記外径側垂下部6aに一体に水平方向外方に突き出されると共にフランジ6dが前記内径側垂下部6bから水平方向内方に突き出され、前記舌片6cに前記凹所9aをはめ込んで偏心ウエイト9を配着し、内径側フランジ6dに鍔付き焼結含油軸受77をカシメによって取り付けたものである。このようにすれば、偏心ウエイトは、凹所9aと前記舌片6cをろう付あるいは接着で固定し、前記マグネットは接着等で配着できるにで、偏心ロータR2として容易に構成できる。ここでも、偏心ウエイト9は、図4の断面から判断できるように舌片6cに受け止められる凹所9aによって組み合わされたとき、厚みが前記平坦部6hから上方に突き出ないように、かつ、前記マグネット8より下方にも突き出ないようになっている。
【0010】
このような偏心ロータRを格納した軸固定型の軸方向空隙型コアレススロットレス方式ホールセンサ型ブラシレス振動モータの構造は、図5、図6及び図7に示すようなものとなる。すなわち、ヨークブラケット1は鉄板より弱い磁性を有するステンレス板でモータとして極限の薄さを狙って厚みが0.1mmないし0.2mmで構成され、中央にバーリング状に突き立てた軸支承部1aがあり、半径方向に約120度開角で延設された3カ所の後述の軸方向界磁型マグネットの磁界を受ける磁性体からなるディテントトルク発生部して支部1b及びさらに半径方向に延在されたものでリング状の補強を兼ねた保持部1cを有し、この保持部の一部がさらに半径方向に突き出されて給電端子載置部1dとなっている。このヨークブラケット1は、後述の軸方向界磁型マグネットの磁極を特定の位置に停止しておくために前記の支部1b間は非磁性の空所1eを構成している。図中、1fは前記保持部1cからさらに外方に突き出された取り付け用脚部で機器側の印刷配線板などに直接リフロー半田できるように配慮してある。
このように構成したヨークブラケット1の上面には、前記軸支承部1aに0.5mm程度の細手の軸2が基端で圧入されると共に、この周囲にフレキシブル印刷配線板ステータベース3が載置される。なお、軸の基端は仮圧入後、外方からレーザ溶接しても良い。
前記ステータベース3には、2個の巻線型空心電機子コイル5A、5Bが対向して載置され、単相となるようにシリーズに結線される。
これらの巻線型空心電機子コイル5A、5B間には1個のホールセンサHとIC化された駆動回路部材Dからなる駆動回路装置が前記ステータベースに配置される。
ここで、支部1bと単相の空心電機子コイルの位置関係は、空心電機子コイルの有効導体部が後記のマグネットの磁極に合わせて設定され、支部1bの形状はマグネットの磁力によって停止させておくに当たって全姿勢で最小の停動トルクが得られるように設定されるのがよい。このようにしているので、これらの各ステータ部材は、空心電機子コイル等が平面視重畳してないことになり、薄型に構成できる。
ここで前記ステータベース3の駆動回路部材の載置される位置は支部1bでなく空所1eに設定することによって、フレキシブル印刷配線板からなるステータベース3はこの空所部分に逃げるので、この部分のステータベース3の厚みが無視できる。
このように構成したステータ側は他の各部材と含めて樹脂4で一体成形する。したがって、ヨークブラケット1が薄手のものであっても、前記一体化された部材が骨幹となって強度が補強され、ステータ側の全体の補強ができる。
図中、1gはステータベースの位置を定め、樹脂で一体成形するとき、ヨークブラケットと樹脂の離脱を防止する突起である。
前記偏心ロータRを構成する軸方向空隙型樹脂製マグネット8は、ここではNS交互に6極着磁されて薄いヨーク板6に固着される。この薄いヨーク板6は、前記マグネット8の磁路となる平坦部6hと、外径側垂下部6a、内径側垂下部6bがあり、前記マグネットがこれらに囲われているので、接着時の固着強度が十分となる。その駆動原理は公知であるので、その説明は省略する。前記偏心ロータRを格納するに当たっては、ブレーキ損失を軽減させるために少なくとも2枚に積層したスラストワッシャS1を介して前記軸2に回転自在に装着される。その後、薄い非磁性ステンレス材からなる浅いキャップ状のカバー部材10が被せられ、前記軸の先端が前記カバー部材10の中央に形成された軸装着孔10aにスラストワッシャS2を介してはめ込まれる。ここで、この軸装着孔は先端が軸径よりさらに細くなっており、軸2の先端が突き出ないようになっていてこの先端部分は衝撃時の変形予防のために前記カバー部材10にレーザスポット溶接Yされる共に、カバー部材10の開口部は前記ヨークブラケット1の保持部1cにレーザスポット溶接Y1で組み付けられる。
したがって、このように溶接によってモノコック構造に組み立てられるので、薄手の部材を使用しても強度が十分得られることになる。
このようにした偏心ロータRを前記軸に回転自在に装着し、ステータベース3上に設けた巻線電機子コイル5A、5B、ホールセンサHおよび駆動回路部材Dなどからなるステータ側部材をカバー部材10の内部に格納することによってモータ外部へは給電端子載置部1dから一対の電源端子を導出するだけでよいので、ブラシレスモータでありながら通常のモータと同様に取り扱うことができる。カバーとして非磁性オーステナイト系ステンレスにすれば、断熱効果があるのでリフローに耐えられる。
【0011】
次に図8において、上記軸方向空隙型振動モータの第2の実施の形態としてセンサレスが駆動回路部材を有するもので説明するが、前述の実施の形態と同一部材は同一符号を付してその説明を省略する。ヨークブラケット11は弱い磁性を有するステンレス板で厚みが0.15ないし0.2mm程度で構成され、中央にバーリング状に突き立てて0.5mmの細手の軸2が基端で圧入された軸支承部1aと、図8に示すような軸支承部1aから半径方向延在させた支幹11b及びさらにこの支幹11bに一体で、半径方向へ延びた各支幹11bの先端を繋いで補強し、後述のカバー部材10との組み付け部を兼ねたリング状保持部1cからなり、この保持部の一部がさらに半径方向に突き出されて給電端子載置部1dとなっている。保持部1cは、軸支承部1aと支幹11bに対して下方向へ一段下がった状態で形成され、ヨークブラケット11の下部、すなわち軸支承部1aと支幹11bの下側には、フレキシブル印刷配線板あるいはガラスクロスエポキシ基板からなるステータベース33が添設される。
また、ステータベース33の一部が突出して構成される給電端子部33aは、保持部1cと軸支承部1aとの段差を利用して給電端子載置部1dの上側に保持される。このステータベース33には、3相の電機子コイル、すなわち3個の巻線空心電機子コイル5A、5B、5Cと、これらの空心電機子コイルにシリーズに結線された平面視6個の印刷配線空心電機子コイル5a、5b‥‥5fが等分に形成されている。
巻線型空心電機子コイル5A、5B、5Cは、片側開角180度以内に配置され、6個の内3個の印刷配線型空心電機子コイル5a、5b、5cが同位置に重なって配置されている。
ここで、印刷配線コイルの替わりに薄い、たとえば、粘着剤を表面に塗布した0.05mm程度のシートに直径0.05mmの絶縁銅線を1層に巻回しながら付着して形成したものでもよい。
ステータベース33上で、これらの巻線空心電機子コイル5A、5B、5Cの中心を介して反対側には、支幹11bの間になるように残りの3個の印刷配線型空心電機子コイル5d,5e、5fの位置にセンサレスIC化された駆動回路部材D1とその付属部品が配置される。すなわち、ステータベース33はヨークブラケット11の軸支承部1aと支幹11bの下方に位置し、軸支承部1aと支幹1bは巻線空心電機子コイル5A、5B、5Cおよび駆動回路部材D1とその付属部品等を除けた位置でその厚み以内に設けられる。
当然ながら、これらの駆動回路部材の結線パターンは必要になるので、この駆動回路部材配置側の印刷配線空心電機子コイル5a、5b、5cは裏面のみに形成され、表面は前記駆動回路部材の結線パターンを避けて巻き始め端末引き出しパターン程度だけとする。
そして、これらは前記ヨークブラケット11の支幹11bが骨幹となるように液晶、ポリフエニレンサルファイドなどのリフロー半田に耐えられる耐熱性樹脂4で一体化される。
したがって、これらのステータベース33に配置される巻線型空心電機子コイル、駆動回路部材、支幹等の各ステータ部材は、印刷配線をのぞいて平面視重畳してないことになるので薄型できる。また、支幹11bを一体に樹脂成形することによりステータベース3を中心としたステータ部分の強度を強くすることができる。
ここで、偏心ロータR3は、軸方向空隙型マグネット88の着磁デットスペースを利用し、薄いヨーク板66は、外径垂下部66aと平坦部6hに続いて内径側垂下部6bが配され、これらの平坦部と各垂下部に囲まれるようにマグネット88が固着され、前記内径側垂下部6bから内方にフランジ6dを延ばし、上面のスペースに黄銅などのリング状の金属部材8aをはめ込んだもので、内径側垂下部6bに一体のフランジ6dは、該金属部材8aの内径側6fがさらに立ち上げられ、ここに前記焼結含油軸受7が圧入されて前記金属部材8aが補強するようになっている。前記黄銅などのリング状の金属部材8aを薄いヨーク板66に溶着、接着などで配してもよい。なお、軸受のサイズによっては、圧入に代わり溶接L2で軸支承させてもよい。
【0012】
図9、図10及び図11に示すものは、軸固定型の軸方向空隙型センサレスタイプのコアレススロットレス方式ブラシレス振動モータの特徴を示したもので、すなわち、図8にも示したように、ヨークブラケット11は弱い磁性を有するステンレス板で厚みが0.15ないし0.2mm程度で構成され、中央にバーリング状に突き立てて0.5mmの細手の軸2が基端で圧入された軸支承部1aと、前記の図8に示すような軸支承部1aから半径方向延在させた支幹11bと、さらにこの支幹11bに一体で、半径方向へ延びた各支幹11bの先端を繋いで補強し、後述のカバー部材10との組み付け部を兼ねたリング状保持部1cからなり、この保持部の一部がさらに半径方向に突き出されて給電端子載置部1dとなっている。保持部1cは、軸支承部1aと支幹11bに対して下方向へ一段下がった状態で形成され、ヨークブラケット11の下部、すなわち軸支承部1aと支幹11b(支部に相当)の下側には、フレキシブル印刷配線板あるいはガラスクロスエポキシ基板からなるステータベース33が添設される。また、前記の図8と同様にステータベース33の一部が突出して構成される給電端子部33aは、保持部1cと軸支承部1aとの段差を利用して給電端子載置部1dの上側に保持される。このステータベース33には、3相の電機子コイル、すなわち3個の巻線空心電機子コイル5A、5B、5Cと、これらの空心電機子コイルにシリーズに結線された平面視6個の印刷配線空心電機子コイル5a、5b‥‥5fが等分に形成されている。
【0013】
巻線型空心電機子コイル5A、5B、5Cは、片側開角180度以内に配置され、6個の内3個の印刷配線型空心電機子コイル5a、5b、5cが同位置に重なって配置されている。
ここで、印刷配線コイルの替わりに薄い、たとえば、粘着剤を表面に塗布した0.05mm程度のシートに直径0.05mmの絶縁銅線を1層に巻回しながら付着して形成したものでもよい。
ステータベース33上で、これらの巻線空心電機子コイル5A、5B、5Cの中心を介して反対側には、支幹11bの間になるように残りの3個の印刷配線型空心電機子コイル5d,5e、5fの位置にセンサレスIC化された駆動回路部材D1とその付属部品が配置される。すなわち、ステータベース33はヨークブラケット11の軸支承部1aと支幹11bの下方に位置し、軸支承部1aと支幹1bは巻線空心電機子コイル5A、5B、5Cおよび駆動回路部材D1とその付属部品等を除いた位置でその厚み以内に設けられる。
当然ながら、これらの駆動回路部材の結線パターンは必要になるので、この駆動回路部材配置側の印刷配線空心電機子コイル5a、5b、5cは裏面のみに形成され、表面は前記駆動回路部材の結線パターンを避けて巻き始め端末引き出しパターン程度だけとする。
【0014】
そして、これら各ステータ部材は、前記ヨークブラケット11の支幹11bが骨幹となるように液晶、ポリフエニレンサルファイドなどのリフロー半田に耐えられる耐熱性樹脂4で一体化される。
したがって、これらのステータベース33に配置される巻線型空心電機子コイル、駆動回路部材、支幹等の各ステータ部材は、印刷配線をのぞいて平面視重畳してないことになるので薄型できる。また、支幹11bを一体に樹脂成形することによりステータベース3を中心としたステータ部分の強度を強くすることができる。
特に図示しないが、前記耐熱性樹脂4は一体成形の替わりに前記空心電機子コイル載置ガイドを立ち上げ、このガイドに前記空心電機子コイルを載置してもよい。
その後、薄い非磁性もしくは鉄より磁性が弱いステンレス材からなる扁平カップ状のカバー部材100が被せられ、前記軸の先端がカバー部材100の中央に形成された軸装着孔10aにスラストワッシャS2を介してはめ込まれる。ここで、この軸装着孔10aは先端が軸径よりさらに細くなっており、軸2の先端が突き出ないようになっていて、この先端部分は変形予防のために前記カバー部材100にレーザ溶接Yされる。なお、特に図示しないが、この軸装着孔は溶接する場合は軸貫通型であってもよい。
【0015】
カバー部材100の開口部は前記ヨークブラケット11のリング状保持部1cにレーザスポット溶接Y1で組み付けられる。したがって、このように溶接によって組み立てられた振動モータは、薄手の部材を使用しても強度が十分得られることになる。
このようなセンサレス型扁平モータの駆動原理は、空心電機子コイル自体の逆起電力の方向を検出して駆動するものが採用されるが、その説明は公知のため省略する。
ここで、偏心ロータR3は、前述に示すものと同様なため、同一符号を付してその説明は省略する。
【0016】
次に図12において、第3の実施の形態である軸回転型の構成を説明する。
ここでも、上記の実施の形態と同一の部材または同一機能を有する略同一部材については、同一符号を付してその説明を省略する。
すなわち、ヨークブラケット111の中央には、第1の実施の形態と比較して少し大径の軸支部11aがバーリング状に上方に突き出され、ここに薄いヨーク板66が取り付けられた焼結含油軸受7が格納され、軸22を介して偏心ロータR4が回転自在に装着される。この偏心ロータR4は、マグネット8の内径と薄いヨーク板66と金属部材8aに軸の先端側が溶接されている以外は前述と同様であるので同一符号でもってその説明は省略する。
ここでも、ステータ側の構成は、中央の軸支承部を除いて図8と同様なため、同一符号を付してその説明は省略し、その他の部位は前記各実施の形態と同様なためその説明は省略する。
さらに、ヨークブラケット111は、リング状保持部1dが軸支承部1aと支骨1bに対して下方に一段下がった状態で形成され、ヨークブラケット11の下部、すなわち軸支承部1aと支骨1bの下側に、フレキシブル印刷配線板、あるいはガラスクロスエポキシ基板からなるステータベース3が添設されている。その他の部位は前記各実施の形態と同様なためその説明は省略する。
【0017】
ここで、前記ボールベアリングBの替わりに軸に基端を丸く形成してピボット支承させても良い。偏心ロータR4は、ヨークブラケット側へ吸引されるので、スラストワッシャは不要となる。当然ながらカバー部材101は、ここでは軸の先端は受けなくても良いので凹所などは不要である。
【0018】
なお、上記の実施の形態は、この発明の技術的思想を体現する最良のものを開示したに過ぎないもので、この発明は、その技術的思想、特徴から逸脱することなく、他のいろいろな実施の形態をとることができる。そのため、前述の実施の形態は単なる例示に過ぎず限定的に解釈してはならない。この発明の技術的範囲は特許請求の範囲によって示すものであって、明細書本文には拘束されない。
【0019】
【発明の効果】
この発明は、上記のように耐衝撃性を維持し、軸支承部であっても耐衝撃性を改善でき、薄型で簡単な構成で各部材を薄くしながらも強度を十分に得られ、駆動回路部品を内蔵できるようにし、通常の直流モータと同様な取り扱いができるようにして携帯機器の無音報知源として極めて薄い小型ブラシレス振動モータを提供できる。
【図面の簡単な説明】
【図1】この発明の偏心ロータの第1の実施の形態を示す平面図である。
【図2】図1のA−A切断縦断面図である。
【図3】図1の変形例の平面図である。
【図4】この発明の偏心ロータの第2の実施の形態を示す縦断面図である。
【図5】図1の偏心ロータを格納した軸固定型の軸方向空隙型1ホールセンサ式コアレススロットレス方式ブラシレスモータの横方向切断平面図である。
【図6】図5の変形例の断面図である。
【図7】図5のステータ側の平面図である。
【図8】図7の一部材の平面図である。
【図9】この発明の偏心ロータを備えた軸固定型の軸方向空隙型センサレスタイプのコアレススロットレス方式ブラシレス振動モータの横切断平面図である。
【図10】図9の縦断面図である。
【図11】図10の一部材の平面図である。
【図12】この発明の偏心ロータを格納した軸回転型軸方向空隙型ブラシレス振動モータの縦断面図である。
【符号の説明】
1、11、111 ブラケット
2 軸
3 ステータベース
4 耐熱性樹脂
5A、5B 空心電機子コイル
6、66 薄いヨーク板
R、R1、R2、R3、R4 偏心ロータ
H ホールセンサ
D、D1 駆動回路部材
7、77 焼結含油軸受
8、88 軸方向空隙型マグネット
9 弧状の偏心ウエイト
10、100、101 カバー部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an axial gap type brushless vibration motor which is suitable for use as a silent notification means of a mobile communication device and has a drive circuit member built therein.
[0002]
[Prior art]
A brushless motor must have a drive circuit instead of a brush or commutator, but none of the above conventional structures has a built-in drive circuit, and usually requires 4 or more lead terminals for external attachment. There is a problem that it cannot be handled like the two-terminal DC motor.
Moreover, in a normal brushless motor, the stator has a plurality of armature coils arranged uniformly around the entire circumference, and the drive circuit device also requires other electronic components such as an IC. So it couldn't be built in.
As a flat axial gap type brushless vibration motor, the present applicant has previously proposed a coreless slotless type motor that does not incorporate a drive circuit member. (See Patent Document 1 and Patent Document 2)
As a brushless vibration motor with a drive circuit, it is a cored type, a cored type in which armature coils are wound around a plurality of equally arranged salient poles, and a non-circular drive circuit member is arranged on the side of the stator. Things are known. (See Patent Document 3)
However, such a product has a large size in the lateral direction, and when mounted on a printed wiring board on the set side, the mounting efficiency is poor in the SMD method, and the thickness is large because of the cored type. There is no practicality.
Therefore, the applicant of the present invention previously includes a cored, slotless coreless type, a part of a plurality of armature coils is deleted, a space is provided, and a drive circuit member is disposed in this space. is suggesting. (See Patent Document 4)
[0003]
[Patent Document 1]
Japanese Utility Model Publication No. 4-137463
[Patent Document 2]
JP 2002-143767 A
[Patent Document 3]
JP 2000-245103 A
[Patent Document 4]
JP 2002-142427 A (FIGS. 8 to 11)
[0004]
[Problems to be solved by the invention]
Further, when such a vibration motor is mounted on a mobile communication device such as a cellular phone, the size is extremely thin and the size reduction is required, and the shaft constituting the eccentric rotor must be 0.6 mm or less. Therefore, it is necessary to give sufficient consideration to impact resistance.
Further, in order to realize a reduction in thickness, it is necessary to use an axial gap type and a coreless slotless type. However, unless the magnetic force of the magnet is controlled, a loss that is attracted to the stator side is large and startup is difficult.
In order to secure the amount of vibration, an eccentric rotor having an eccentric weight made of the highest class high specific gravity tungsten alloy is required as the size is reduced to obtain the eccentricity, but the content of tungsten having a high melting point is required. As the number increases, the problem that laser welding becomes difficult due to the difference in melting point has arisen in ordinary magnetic yokes.
The object of the present invention is not based on laser welding in arranging the eccentric weight so that the thickness of the rotor is not sacrificed, even when using a resin magnet containing a rare earth powder with easy magnetic force control. Further, an eccentric rotor having improved impact resistance so that it can be adopted by fixing the shape of each member even with fixing means such as metal brazing and adhesion, and Japanese Patent Application Laid-Open No. 2002-142427 disclosed in Patent Document 4 above. The axial gap type brushless vibration motor shown in FIGS. 8 to 11 of the publication is improved to provide sufficient strength while thinning each member with a thin and simple configuration, and to be able to incorporate a drive circuit component. It can be handled in the same way as other DC motors and provides a very thin, small brushless vibration motor as a silent notification source for portable devices. .
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, as in the invention shown in claim 1, an axial gap type magnet (8) having a plurality of magnetic poles and a thin yoke having a thickness of 0.2 mm or less to which the magnet is fixed. A thin plate is provided with a plate (6) and an eccentric weight (9) having a specific gravity of 17 or more arranged on the outside of the magnet, and the thin yoke plate receives a magnetic field of the magnet (6h) And an outer diameter side drooping portion (6a) and an inner diameter side drooping portion (6b) following the flat portion, and the magnet receives a magnetic path on the flat portion, and the outer diameter is on the outer diameter side. Adhered to the hanging part so that the inner diameter is surrounded by the inner diameter side hanging part, and the outer diameter side hanging partBottom ofThe tongue piece (6c) is partially protruded radially outward from the rim, and the eccentric weight is provided with a recess (9a) that engages with the tongue piece, and by fitting this recess to the tongue piece, The thin yoke plate is fixed to the outer periphery of the thin yoke plate so as not to protrude upward in the axial direction from the flat portion and so as not to protrude downward from the magnet surface. Can be achieved with
As another configuration of the eccentric rotor, as in the invention shown in claim 2, an axial gap type magnet (88) having a plurality of magnetic poles and a thin thickness of 0.2 mm or less that receives the magnetic field of this magnet. A yoke plate (66) and an eccentric weight (9) having a specific gravity of 17 or more, at least part of which is disposed outside the magnet, are provided, and the thin yoke plate receives the magnetic field of the magnet. There is a flat part (6h) and an outer diameter side drooping part (6a) to which an eccentric weight is fixed following the flat part, and the magnet receives a magnetic path on the flat part, and the outer diameter is on the outer diameter side. The outer diameter side hanging part is fixed to the hanging part.Bottom ofThe tongue piece (6c) is partially protruded radially outward from the rim, and the eccentric weight is provided with a recess (9a) that engages with the tongue piece, and by fitting this recess to the tongue piece, The thin yoke plate is fixed to the outer periphery of the thin yoke plate so as not to protrude upward in the axial direction from the flat portion and so as not to protrude downward from the magnet surface. ) Can be achieved by fixing.
In order to make a more specific eccentric rotor, a notch (6g) is provided as at least two locations on the outer diameter side hanging portion of the yoke plate so as to be substantially opposed to each other as a locking portion as in the invention shown in claim 3. A protrusion (9b) formed in the eccentric weight is inserted into the notch, and the eccentric weight uses the recess (9a) and the protrusion to make the outer diameter side hanging portion. It is good that it is fixed to.
In order to adopt such an eccentric rotor as a fixed shaft type brushless vibration motor, the eccentric rotor (R, R2) according to claim 1 and the eccentric rotor are rotated as in the invention shown in claim 4. A shaft support portion (1a) to which a shaft that is freely supported is fixed at the base end, a yoke bracket (1) having a thickness of 0.2 mm or less, and a stator base disposed around the shaft support portion ( 3) and a plurality of air-core armature coils (5A, 5B, 5C) disposed on the stator base, and the yoke bracket includes a plurality of support portions (1b) extending in the radial direction integrally with the shaft support portion. And there is a ring-shaped holding part (1c) outside the support part through a space (1e) between the support parts, the stator base (3) is made of a flexible substrate, and the air-core armature coil is disposed. Not the space part A part of the drive circuit member (D, D1) is positioned in the space (1e) in plan view so as to be within the thickness of the air-core armature coil, and is disposed on the stator base. The air core armature coil and the drive circuit member are fixed to the stator base with a resin (4) so that the upper surface of the higher one is exposed, and the cover member (10, 100) covers the eccentric rotor. ) Is attached to the holding portion of the yoke bracket by laser welding at the opening, the tip of the shaft is fitted into the recess (10a) at the center of the cover member (10), and laser welded to the cover member from the outside Can be achieved.
In order to adopt such an eccentric rotor as a shaft rotation type brushless vibration motor, as shown in claim 5, the eccentric rotor (R4) according to claim 2 and the shaft (22) are connected to the eccentric rotor. There is a resin-made shaft support (11a) to which a bearing (7) that is rotatably supported is fixed, and a yoke bracket (111) having a thickness of 0.2 mm or less and a periphery of the shaft support. And a plurality of air-core armature coils (5A, 5B, 5C) disposed on the stator base, and the yoke bracket extends in the radial direction integrally with the shaft support portion. There is a ring-shaped holding part (1c) outside the support part through a space (1e) between the support parts (1b, 11b), and the stator base (3) is made of a flexible substrate, Air core armature A part (D) of the drive circuit member is arranged on the stator base so that it is within the thickness of the air-core armature coil in a space portion where no coil is arranged, and covers through the gap so as to cover the eccentric rotor This can be achieved by the member (101) being attached to the holding portion of the yoke bracket by laser welding at the opening.
Further, in these motors, as shown in claim 6, the stator base (3, 33) is disposed below the yoke bracket (11, 111), and the drive circuit member (D) is disposed in the space (1e). ) And protruding from the branch, and including the air-core armature coil are fixed with resin (4).
[0006]
According to the first aspect of the present invention, a fixed shaft type eccentric rotor is obtained, and the eccentric weight has a large fixing force due to the tongue piece, and can sufficiently withstand an impact in the axial direction and the radial direction, and the eccentric weight is substantially equal to that of the rotor. Since the thickness is obtained within the thickness, the overall thickness is not sacrificed, and the variation in the weight of the eccentric weight due to the recess is slight, and the magnet is surrounded by each hanging part following the flat part. Adhesive strength can be obtained sufficiently.
According to the second aspect of the present invention, an axial rotation type eccentric rotor is obtained, and the eccentric weight has a large adhering force due to the tongue piece, and can sufficiently withstand an impact in the axial direction and the radial direction. The eccentric weight is substantially the thickness of the rotor. Since the inner thickness is thin, the overall thickness is not sacrificed, and the weight variation of the eccentric weight due to the recess is slight, and the magnet is surrounded by the flat part and at least the outer diameter side drooping part. Therefore, sufficient fixing strength can be obtained.
According to the third aspect, the fixing strength of the eccentric weight can be further secured.
According to the fourth aspect, since the eccentric weight can be securely fixed to the thin yoke plate and the movement in the radial direction and the axial direction is hindered, sufficient shock resistance can be expected even by bonding, and the eccentric rotor portion and the stator portion A very thin shaft fixed vibration motor is obtained, the tip of the shaft is welded to the cover member, and the cover member is further welded to the holding part of the yoke bracket on the stator side. Sex can be maintained well.
According to the fifth aspect of the present invention, the eccentric weight of the shaft-rotating type has a large fixing force due to the tongue piece, and can sufficiently withstand an impact in the axial direction and the radial direction, and the eccentric weight is substantially within the thickness of the rotor. Therefore, the overall thickness is not sacrificed, and the decrease in the weight of the eccentric weight due to the recess is small, and the magnet is surrounded by the flat part and at least the outer diameter side hanging part, so that sufficient fixing strength can be obtained. In addition, since the opening of the cover member is welded to the holding portion, sufficient strength can be secured, and an axial rotation type vibration motor having an extremely thin eccentric rotor portion and stator portion can be obtained.
According to the sixth aspect of the present invention, since the thickness of the yoke bracket can be neglected, each member is covered with the resin so as to become a skeleton without damaging the gap, so that sufficient strength can be secured.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a plan view showing a first embodiment of an eccentric rotor of the present invention.
2 is a longitudinal sectional view taken along line AA of FIG.
FIG. 3 is a plan view of a modification of FIG.
FIG. 4 is a longitudinal sectional view showing a second embodiment of the eccentric rotor of the present invention.
FIG. 5 is a longitudinal sectional view of a shaft-fixed axial gap type 1-hole sensor type coreless slotless brushless motor in which the eccentric rotor of FIG. 1 is housed, and the eccentric rotor is cut along the line AA of FIG. .
FIG. 6 is a plan view of the stator side in FIG.
FIG. 7 is a plan view of one member of FIG.
FIG. 8 is a cross-sectional view of a modification of FIG.
FIG. 9 is a cross-sectional plan view of a shaftless type axial gap type sensorless type coreless slotless brushless vibration motor provided with the eccentric rotor of the present invention. 10 is a longitudinal sectional view of FIG.
FIG. 11 is a plan view of one member of FIG.
FIG. 12 is a longitudinal sectional view of a shaft rotation type axial gap type brushless vibration motor storing an eccentric rotor according to an embodiment of the present invention.
[0008]
Hereinafter, the configuration of the present invention will be described based on each embodiment shown in the drawings.
In the eccentric rotor R shown in FIGS. 1 and 2, an axial gap type resin magnet 8 in which rare earth magnet powder is integrated with polyamide resin is bonded to a thin yoke plate 6. The thin yoke plate 6 is extremely thin with a thickness of about 0.1 mm to 0.2 mm in order to drive the thickness as a rotor, and is integrated with the flat portion 6h that receives the magnetic field of the axial gap type resin magnet 8 and the flat portion 6h. The outer diameter side hanging part 6a and the inner diameter side hanging part 6b are provided so as to surround the axial gap type resin-made magnet 8, so that a strong holding force is obtained even by bonding. As shown also in FIG. 5, the inner diameter side hanging portion 6b is hung by the axial gap type resin magnet 8 slightly more than the thickness, and the sintered oil-impregnated bearing 7 is laser welded L2 inside the inner diameter side hanging portion 6b. Attached by.
The thin yoke plate 6 is integrally formed with the outer-diameter side hanging portion 6a, with two predetermined tongues 6c protruding in a horizontal direction in a normal direction at a predetermined opening angle, and about 180 degrees between the tongues. A notch 6d that functions as a locking portion is formed facing each other.
The arc-shaped eccentric weight 9 has a recess 9a that can be received by the tongue piece 6c at the position of the tongue piece 6c on one side, and can be received by the tongue piece 6c as judged from the cross section of FIG.
When combined, the thickness does not protrude upward from the flat portion 6 h and does not protrude downward from the magnet 8. Further, a projection 9b that enters the notch 6d is provided, and the recess 9a and the projection 9b are fitted into the tongue 6c and the notch 6d, respectively, on the outer-diameter side hanging portion 6a of the thin yoke plate 6. It is fixed to the outer diameter side hanging part 6a by adhesion or the like. Since the tongue 6c is formed in two normal lines, the movement of the eccentric weight 9 in the radial direction is restricted. In addition, although not shown in figure, this protrusion part may be made to extend further inside and to bite into the recess formed in the magnet.
In this way, the movement can be restricted in the radial direction.
Accordingly, the eccentric weight 9 is sufficiently restrained against impacts such as dropping because the tongue 6c restricts the movement in the axial direction and the radial direction, and the adhesive 6 reliably moves around by the notch 6d and restricts the radial movement. It will be.
[0009]
In order to restrict the movement of the eccentric weight 9 in the radial direction as the above-described modification, as shown in FIG. 3, a combination of the tongue 99c having the same shape as the one tongue piece 66c having a tip of 鉤 k is assembled. You may combine them. Since other explanations are the same as those in FIG. 1, they are omitted here.
FIG. 4 shows a second embodiment of the eccentric rotor of the present invention, that is, the thin yoke plate 6 is made of magnetic stainless steel and is thin with a thickness of 0.1 mm, and a flat portion 6h that receives the magnetic field of the magnet. There are an outer diameter side hanging part 6a for fixing the eccentric weight 9 and an inner diameter side hanging part 6b for supporting the shaft, and a part of the tongue piece 6c protrudes outward in the horizontal direction integrally with the outer diameter side hanging part 6a. At the same time, the flange 6d protrudes inward in the horizontal direction from the inner diameter side hanging portion 6b, and the eccentric weight 9 is disposed by fitting the recess 9a into the tongue piece 6c, and the inner diameter side flange 6d is brazed and sintered. An oil-impregnated bearing 77 is attached by caulking. In this way, the eccentric weight can be easily configured as the eccentric rotor R2 because the recess 9a and the tongue piece 6c are fixed by brazing or bonding, and the magnet can be arranged by bonding or the like. Here too, the eccentric weight 9 has a thickness that does not protrude upward from the flat portion 6h when combined with the recess 9a received by the tongue piece 6c as can be determined from the cross section of FIG. It does not protrude below 8.
[0010]
The structure of the fixed shaft type axial gap type coreless slotless Hall sensor type brushless vibration motor in which the eccentric rotor R is housed is as shown in FIGS. 5, 6, and 7. That is, the yoke bracket 1 is a stainless steel plate having a weaker magnetism than an iron plate, and is configured with a thickness of 0.1 mm to 0.2 mm aiming for the ultimate thickness as a motor. There is a detent torque generating portion made of a magnetic material that receives a magnetic field of three axial field magnets, which will be described later, extended in the radial direction at an opening angle of about 120 degrees, and is further extended in the radial direction. A holding portion 1c also serving as a ring-shaped reinforcement is provided, and a part of the holding portion is further protruded in the radial direction to form a feed terminal mounting portion 1d. The yoke bracket 1 forms a non-magnetic space 1e between the support portions 1b in order to stop a magnetic pole of an axial field magnet described later at a specific position. In the figure, reference numeral 1f is an attachment leg protruding further outward from the holding portion 1c so that reflow soldering can be directly performed on a printed wiring board on the device side.
On the upper surface of the yoke bracket 1 configured in this manner, a thin shaft 2 of about 0.5 mm is press-fitted into the shaft support portion 1a at the base end, and a flexible printed wiring board stator base 3 is mounted around the shaft. Placed. The base end of the shaft may be laser welded from the outside after temporary press-fitting.
Two stator-type air-core armature coils 5A and 5B are placed on the stator base 3 so as to face each other, and are connected in series so as to have a single phase.
Between these winding type air-core armature coils 5A and 5B, a drive circuit device comprising a single hall sensor H and a drive circuit member D formed as an IC is disposed on the stator base.
Here, the positional relationship between the support 1b and the single-phase air-core armature coil is set so that the effective conductor of the air-core armature coil matches the magnetic pole of the magnet described later, and the shape of the support 1b is stopped by the magnetic force of the magnet. In other words, it is preferable that the minimum stalling torque be obtained in all postures. Thus, each of these stator members can be configured to be thin because the air-core armature coil or the like does not overlap in plan view.
Here, by setting the position where the drive circuit member of the stator base 3 is placed not in the support portion 1b but in the space 1e, the stator base 3 made of the flexible printed wiring board escapes into this space portion. The thickness of the stator base 3 is negligible.
The stator side configured as described above is integrally formed with the resin 4 including other members. Therefore, even if the yoke bracket 1 is thin, the integrated member serves as a skeleton and the strength is reinforced, so that the entire stator side can be reinforced.
In the figure, 1g is a protrusion that determines the position of the stator base and prevents the yoke bracket and the resin from being detached when integrally molded with the resin.
Here, the axial gap type resin magnets 8 constituting the eccentric rotor R are magnetized in six alternating NS directions and fixed to the thin yoke plate 6. The thin yoke plate 6 has a flat portion 6h serving as a magnetic path of the magnet 8, an outer diameter side hanging portion 6a, and an inner diameter side hanging portion 6b. Strength is sufficient. Since the driving principle is known, the description thereof is omitted. In storing the eccentric rotor R, it is rotatably mounted on the shaft 2 via at least two thrust washers S1 stacked to reduce brake loss. Thereafter, a shallow cap-shaped cover member 10 made of a thin nonmagnetic stainless material is covered, and the tip of the shaft is fitted into a shaft mounting hole 10a formed in the center of the cover member 10 via a thrust washer S2. Here, the tip of the shaft mounting hole is thinner than the shaft diameter so that the tip of the shaft 2 does not protrude, and this tip portion has a laser spot on the cover member 10 to prevent deformation upon impact. While being welded Y, the opening of the cover member 10 is assembled to the holding portion 1c of the yoke bracket 1 by laser spot welding Y1.
Therefore, since the monocoque structure is assembled by welding as described above, sufficient strength can be obtained even if a thin member is used.
The eccentric rotor R configured as described above is rotatably mounted on the shaft, and a stator side member including winding armature coils 5A and 5B, a hall sensor H, a drive circuit member D, and the like provided on the stator base 3 is covered. Since it is only necessary to lead out the pair of power supply terminals from the power supply terminal mounting portion 1d to the outside of the motor by storing in the inside of the motor 10, it can be handled in the same manner as a normal motor although it is a brushless motor. If the cover is made of nonmagnetic austenitic stainless steel, it can withstand reflow because of its heat insulation effect.
[0011]
Next, in FIG. 8, a sensorless device having a drive circuit member will be described as a second embodiment of the above-described axial gap type vibration motor. The same members as those of the above-described embodiment are denoted by the same reference numerals. Description is omitted. The yoke bracket 11 is a stainless steel plate having a weak magnetism and has a thickness of about 0.15 to 0.2 mm, and is a shaft in which a fine shaft 2 of 0.5 mm is press-fitted at the base end by protruding in the center in a burring shape. The support portion 1a, the support shaft 11b extending in the radial direction from the shaft support portion 1a as shown in FIG. 8, and the tip of each support shaft 11b extending in the radial direction are connected and reinforced with the support shaft 11b. The ring-shaped holding portion 1c also serves as an assembling portion with the cover member 10 to be described later, and a part of the holding portion protrudes further in the radial direction to form a power feeding terminal placement portion 1d. The holding portion 1c is formed in a state of being lowered one step downward with respect to the shaft support portion 1a and the support shaft 11b, and flexible printing is performed below the yoke bracket 11, that is, below the shaft support portion 1a and the support shaft 11b. A stator base 33 made of a wiring board or a glass cloth epoxy substrate is attached.
Further, the power supply terminal portion 33a formed by projecting a part of the stator base 33 is held on the upper side of the power supply terminal mounting portion 1d using a step between the holding portion 1c and the shaft support portion 1a. The stator base 33 includes three-phase armature coils, that is, three wound air-core armature coils 5A, 5B, and 5C, and six printed wirings connected in series to these air-core armature coils. Air core armature coils 5a, 5b,... 5f are equally formed.
The wound type air-core armature coils 5A, 5B, and 5C are arranged within an opening angle of 180 degrees on one side, and three of the six printed wiring-type air-core armature coils 5a, 5b, and 5c are arranged so as to overlap each other. ing.
Here, instead of the printed wiring coil, it may be thin, for example, formed by adhering an insulating copper wire having a diameter of 0.05 mm to a sheet of about 0.05 mm coated with an adhesive on the surface while winding it in one layer. .
On the stator base 33, the other three printed wiring type air-core armature coils are placed on the opposite side through the centers of these wound air-core armature coils 5A, 5B and 5C so as to be between the branches 11b. A drive circuit member D1 that is made into a sensorless IC and its accessory parts are arranged at positions 5d, 5e, and 5f. That is, the stator base 33 is located below the shaft support portion 1a and the support shaft 11b of the yoke bracket 11, and the shaft support portion 1a and the support shaft 1b are wound with the wound air-core armature coils 5A, 5B, 5C and the drive circuit member D1. It is provided within its thickness at a position excluding its accessory parts.
Of course, since the connection pattern of these drive circuit members is necessary, the printed wiring air-core armature coils 5a, 5b, 5c on the drive circuit member arrangement side are formed only on the back surface, and the front surface is the connection of the drive circuit members. Avoid the pattern and start winding around the terminal drawer pattern.
These are integrated with a heat-resistant resin 4 that can withstand reflow solder such as liquid crystal or polyphenylene sulfide, so that the support 11b of the yoke bracket 11 becomes a skeleton.
Therefore, the stator members such as the wound type air-core armature coil, the drive circuit member, and the trunk arranged on the stator base 33 do not overlap in plan view except for the printed wiring, and thus can be thinned. In addition, the strength of the stator portion around the stator base 3 can be increased by integrally molding the support 11b with resin.
Here, the eccentric rotor R3 utilizes a magnetized dead space of the axial gap magnet 88, and the thin yoke plate 66 is provided with an outer diameter hanging portion 66a and a flat portion 6h, followed by an inner diameter side hanging portion 6b. A magnet 88 is fixed so as to be surrounded by these flat portions and each hanging portion, a flange 6d is extended inward from the inner diameter side hanging portion 6b, and a ring-shaped metal member 8a such as brass is fitted in the space on the upper surface. The flange 6d integrated with the inner diameter side hanging portion 6b is such that the inner diameter side 6f of the metal member 8a is further raised, and the sintered oil-impregnated bearing 7 is press-fitted therein to reinforce the metal member 8a. It has become. The ring-shaped metal member 8a such as brass may be disposed on the thin yoke plate 66 by welding, bonding or the like. Depending on the size of the bearing, the bearing may be supported by welding L2 instead of press-fitting.
[0012]
9, 10, and 11 show the characteristics of the axially fixed sensorless type coreless slotless brushless vibration motor of the fixed shaft type, that is, as shown in FIG. 8, The yoke bracket 11 is a stainless steel plate having a weak magnetism and has a thickness of about 0.15 to 0.2 mm, and is a shaft in which a fine shaft 2 of 0.5 mm is press-fitted at the base end by protruding in the center in a burring shape. The support portion 1a, a support shaft 11b extending in the radial direction from the shaft support portion 1a as shown in FIG. 8, and the distal end of each support shaft 11b extending in the radial direction integrally with the support shaft 11b. It consists of a ring-shaped holding portion 1c that is connected and reinforced and also serves as an assembly portion with a cover member 10 to be described later, and a part of this holding portion is further protruded in the radial direction to form a power supply terminal mounting portion 1d. The holding portion 1c is formed in a state where it is lowered one step downward with respect to the shaft support portion 1a and the support shaft 11b, and below the yoke bracket 11, that is, below the shaft support portion 1a and the support shaft 11b (corresponding to the support portion). A stator base 33 made of a flexible printed wiring board or a glass cloth epoxy substrate is attached. Similarly to FIG. 8 described above, the power supply terminal portion 33a formed by projecting a part of the stator base 33 is formed on the upper side of the power supply terminal mounting portion 1d using the step between the holding portion 1c and the shaft support portion 1a. Retained. The stator base 33 includes three-phase armature coils, that is, three wound air-core armature coils 5A, 5B, and 5C, and six printed wirings connected in series to these air-core armature coils. Air-core armature coils 5a, 5b,... 5f are equally formed.
[0013]
The wound type air-core armature coils 5A, 5B, and 5C are arranged within an opening angle of 180 degrees on one side, and three of the six printed wiring-type air-core armature coils 5a, 5b, and 5c are arranged to overlap each other. ing.
Here, instead of the printed wiring coil, it may be thin, for example, formed by adhering an insulating copper wire having a diameter of 0.05 mm to a sheet of about 0.05 mm coated with an adhesive on the surface while winding it in one layer. .
On the stator base 33, the other three printed wiring type air-core armature coils are placed on the opposite side through the centers of these wound air-core armature coils 5A, 5B and 5C so as to be between the branches 11b. A drive circuit member D1 that is made into a sensorless IC and its accessory parts are arranged at positions 5d, 5e, and 5f. That is, the stator base 33 is located below the shaft support portion 1a and the support shaft 11b of the yoke bracket 11, and the shaft support portion 1a and the support shaft 1b are wound with the wound air-core armature coils 5A, 5B, 5C and the drive circuit member D1. It is provided within its thickness at a position excluding its accessory parts.
Of course, since the connection pattern of these drive circuit members is necessary, the printed wiring air-core armature coils 5a, 5b, 5c on the drive circuit member arrangement side are formed only on the back surface, and the front surface is the connection of the drive circuit members. Avoid the pattern and start winding around the terminal drawer pattern.
[0014]
Each of these stator members is integrated with a heat resistant resin 4 that can withstand reflow solder such as liquid crystal or polyphenylene sulfide so that the support 11b of the yoke bracket 11 becomes a skeleton.
Accordingly, each of the stator members such as the winding type air-core armature coil, the drive circuit member, and the trunk disposed on the stator base 33 does not overlap in plan view except for the printed wiring, and thus can be thinned. Further, the strength of the stator portion around the stator base 3 can be increased by integrally molding the support 11b with resin.
Although not shown in particular, the heat-resistant resin 4 may be constructed by starting up the air-core armature coil placement guide instead of integral molding, and placing the air-core armature coil on this guide.
Thereafter, a flat cup-shaped cover member 100 made of a thin non-magnetic or stainless steel material that is weaker than iron is covered, and the shaft tip is formed in the center of the cover member 100 through a thrust washer S2. Inset. Here, the tip of the shaft mounting hole 10a is thinner than the shaft diameter so that the tip of the shaft 2 does not protrude, and this tip portion is laser welded to the cover member 100 to prevent deformation. Is done. Although not particularly shown, the shaft mounting hole may be a shaft-through type when welding.
[0015]
The opening of the cover member 100 is assembled to the ring-shaped holding portion 1c of the yoke bracket 11 by laser spot welding Y1. Therefore, the vibration motor assembled by welding as described above can obtain sufficient strength even if a thin member is used.
As a driving principle of such a sensorless flat motor, one that detects and drives the direction of the counter electromotive force of the air-core armature coil itself is employed.
Here, since the eccentric rotor R3 is the same as that described above, the same reference numeral is given and its description is omitted.
[0016]
Next, referring to FIG. 12, a configuration of the shaft rotation type as the third embodiment will be described.
Here, the same members or the same members having the same functions as those of the above embodiment are denoted by the same reference numerals, and the description thereof is omitted.
That is, a sintered oil-impregnated bearing in which a shaft support portion 11a having a slightly larger diameter as compared with the first embodiment protrudes upward in a burring shape at the center of the yoke bracket 111 and a thin yoke plate 66 is attached thereto. 7 is stored, and an eccentric rotor R4 is rotatably mounted via a shaft 22. The eccentric rotor R4 is the same as that described above except that the inner end of the magnet 8, the thin yoke plate 66, and the metal member 8a are welded to the end of the shaft.
Here, since the structure on the stator side is the same as that of FIG. 8 except for the central shaft support portion, the same reference numerals are given and the description thereof is omitted, and the other parts are the same as those of the above-described embodiments. Description is omitted.
Further, the yoke bracket 111 is formed in a state where the ring-shaped holding portion 1d is lowered one step downward with respect to the shaft support portion 1a and the support frame 1b, and the lower portion of the yoke bracket 11, that is, the shaft support portion 1a and the support frame 1b. A stator base 3 made of a flexible printed wiring board or a glass cloth epoxy substrate is attached to the lower side. Since other parts are the same as those in the above embodiments, the description thereof is omitted.
[0017]
Here, instead of the ball bearing B, a pivot may be supported by forming a base end round on the shaft. Since the eccentric rotor R4 is sucked toward the yoke bracket, a thrust washer is not required. Of course, the cover member 101 does not need to receive the tip of the shaft here, so that a recess or the like is unnecessary.
[0018]
The above-described embodiment merely discloses the best embodiment that embodies the technical idea of the present invention, and the present invention is not limited to the technical idea and features. Embodiments can be taken. Therefore, the above-described embodiment is merely an example and should not be interpreted in a limited manner. The technical scope of the present invention is indicated by the claims, and is not restricted by the text of the specification.
[0019]
【The invention's effect】
This invention maintains the impact resistance as described above and can improve the impact resistance even in the case of the shaft support portion, and it is possible to obtain sufficient strength while thinning each member with a thin and simple configuration, and driving. An extremely thin and small brushless vibration motor can be provided as a silent notification source of a portable device so that a circuit component can be built in and can be handled in the same manner as a normal DC motor.
[Brief description of the drawings]
FIG. 1 is a plan view showing a first embodiment of an eccentric rotor of the present invention.
FIG. 2 is a longitudinal sectional view taken along line AA in FIG.
FIG. 3 is a plan view of a modified example of FIG. 1;
FIG. 4 is a longitudinal sectional view showing a second embodiment of the eccentric rotor of the present invention.
5 is a laterally cut plan view of a shaft-fixed axial gap type 1-hole sensor type coreless slotless brushless motor storing the eccentric rotor of FIG. 1; FIG.
6 is a cross-sectional view of a modification of FIG.
7 is a plan view of the stator side in FIG. 5. FIG.
8 is a plan view of one member of FIG.
FIG. 9 is a horizontal cut plan view of a coreless slotless brushless vibration motor of a shaft-fixed axial gap type sensorless type equipped with an eccentric rotor of the present invention.
10 is a longitudinal sectional view of FIG.
11 is a plan view of one member of FIG.
FIG. 12 is a longitudinal sectional view of an axial rotation type axial gap type brushless vibration motor storing the eccentric rotor of the present invention.
[Explanation of symbols]
1, 11, 111 Bracket
2 axis
3 Stator base
4 Heat resistant resin
5A, 5B Air-core armature coil
6, 66 Thin yoke plate
R, R1, R2, R3, R4 Eccentric rotor
H Hall sensor
D, D1 Drive circuit member
7, 77 Sintered oil-impregnated bearing
8,88 Axial gap type magnet
9 Arc-shaped eccentric weight
10, 100, 101 Cover member

Claims (6)

複数個の磁極を有する軸方向空隙型マグネット(8)と、このマグネットが固着された0.2mm以下で厚みがある薄いヨーク板(6)と、前記マグネットの外方に配された比重17以上の偏心ウエイト(9)とが備えられたものであって、前記薄いヨーク板は前記マグネットの磁界を受ける平坦部(6h)と、この平坦部に続いて外径側垂下部(6a)と、内径側垂下部(6b)とがあり、前記マグネットは磁路を受ける面が前記平坦部に、外径が前記外径側垂下部に、内径が前記内径側垂下部にそれぞれ囲われるように接着され、前記外径側垂下部の下部から部分的に舌片(6c)が径方向外方に突き出され、前記偏心ウエイトは前記舌片に係合する凹所(9a)が設けられてこの凹所を前記舌片にはめ合わせることによって薄いヨーク板の外周に前記平坦部から軸方向上方に突き出ないように、かつ前記マグネット面から下方に突き出ないように固着され、さらに、前記内径側垂下部の内方に軸受(7、77)が配された偏心ロータ。An axial gap type magnet (8) having a plurality of magnetic poles, a thin yoke plate (6) having a thickness of 0.2 mm or less to which the magnet is fixed, and a specific gravity of 17 or more arranged outside the magnet The thin yoke plate is provided with a flat portion (6h) that receives the magnetic field of the magnet, an outer diameter side drooping portion (6a) following the flat portion, There is an inner diameter side hanging part (6b), and the magnet is bonded so that the surface receiving the magnetic path is surrounded by the flat part, the outer diameter is surrounded by the outer diameter side hanging part, and the inner diameter is surrounded by the inner diameter side hanging part. The tongue piece (6c) is partially protruded radially outward from the lower portion of the outer diameter side hanging portion , and the eccentric weight is provided with a recess (9a) that engages with the tongue piece. Thin yoke by fitting the tongue to the tongue Is fixed so as not to protrude upward in the axial direction from the flat portion and so as not to protrude downward from the magnet surface. Further, bearings (7, 77) are arranged inward of the hanging portion on the inner diameter side. Eccentric rotor. 複数個の磁極を有する軸方向空隙型マグネット(88)と、このマグネットの磁界を受ける0.2mm以下で厚みがある薄いヨーク板(66)と、前記マグネットの外方に少なくとも一部が配された比重17以上の偏心ウエイト(9)とが備えられたものであって、前記薄いヨーク板は前記マグネットの磁界を受ける平坦部(6h)と、この平坦部に続いて偏心ウエイトを固着する外径側垂下部(6a)があり、前記マグネットは磁路を受ける面が前記平坦部に、外径が前記外径側垂下部に固着され、前記外径側垂下部の下部から部分的に舌片(6c)が径方向外方に突き出され、前記偏心ウエイトは前記舌片に係合する凹所(9a)が設けられてこの凹所を前記舌片にはめ合わせることによって薄いヨーク板の外周に前記平坦部から軸方向上方に突き出ないように、かつ前記マグネット面から下方に突き出ないように固着され、前記軸方向空隙型マグネット内径側で前記薄いヨーク板に軸(22)が固着された偏心ロータ。An axial gap type magnet (88) having a plurality of magnetic poles, a thin yoke plate (66) having a thickness of 0.2 mm or less that receives the magnetic field of the magnet, and at least a part of the magnet is disposed outside the magnet. The thin yoke plate is provided with an eccentric weight (9) having a specific gravity of 17 or more, and the thin yoke plate has a flat portion (6h) for receiving the magnetic field of the magnet, and an outer portion for fixing the eccentric weight following the flat portion. There is radially suspended portion (6a), said magnet to face the flat portion receiving a magnetic path, the outer diameter is secured to the outer diameter side hanging portion, partially tongue from the lower portion of the outer diameter side hanging parts A piece (6c) protrudes radially outward, and the eccentric weight is provided with a recess (9a) that engages with the tongue piece. By fitting this recess to the tongue piece, the outer circumference of the thin yoke plate From the flat part to the axial direction So as not protrude towards, and said fixed from the magnet surface so as not protrude downward, the eccentric rotor shaft (22) is secured to said thin yoke plate in the axial direction gap type magnet inner diameter side. 前記薄いヨーク板の外径側垂下部の少なくとも2カ所に係止部としてほぼ対向するように切り欠き(6g)が設けられ、前記偏心ウエイトに形成した突起部(9b)がこの切り欠きには入り込むようになっており、前記偏心ウエイトは前記凹所(9a)とこの突起部を利用して前記外径側垂下部に固着された請求項1又は2に記載の偏心ロータ。Notches (6g) are provided as locking portions at at least two locations on the outer diameter side hanging portion of the thin yoke plate, and a protrusion (9b) formed on the eccentric weight is provided in the notches. 3. The eccentric rotor according to claim 1, wherein the eccentric weight is fixed to the outer-diameter side hanging portion by using the recess (9 a) and the protrusion. 請求項1に記載の偏心ロータ(R、R2)と、この偏心ロータを回転自在に支える軸が基端で固着された軸支承部(1a)を有するもので、0.2mm以下で厚みがあるヨークブラケット(1)と、前記軸支承部の周囲に配されたステータベース(3)と、このステータベースに配された複数個の空心電機子コイル(5A、5B、5C)とが備えられ、前記ヨークブラケットは軸支承部と一体に半径方向に延びる複数の支部(1b)と、この支部間の空所(1e)を介して前記支部の外方にリング状保持部(1c)があり、前記ステータベース(3)はフレキシブル基板からなり、前記空心電機子コイルが配置されていない空間部分に該空心電機子コイルの厚み内になるように駆動回路部材の一部(D、D1)の一部が平面視で前記空所(1e)に位置され、前記ステータベースに配されたもので前記空心電機子コイルと駆動回路部材はいずれか高く植設されている方の上面が露出されるように樹脂(4)でステータベースに固定され、前記偏心ロータを覆うようにカバー部材(10,100)が開口部で前記ヨークブラケットの保持部にレーザ溶接で取り付けられ、前記軸の先端がカバー部材(10)の中心の凹部(10a)にはめ込まれ、外方からカバー部材にレーザ溶接された軸方向空隙型ブラシレス振動モータ。The eccentric rotor (R, R2) according to claim 1 and a shaft support portion (1a) to which a shaft that rotatably supports the eccentric rotor is fixed at a base end, and has a thickness of 0.2 mm or less. A yoke bracket (1), a stator base (3) disposed around the shaft support portion, and a plurality of air-core armature coils (5A, 5B, 5C) disposed on the stator base; The yoke bracket has a plurality of support portions (1b) extending in a radial direction integrally with the shaft support portion, and a ring-shaped holding portion (1c) outside the support portion through a space (1e) between the support portions, The stator base (3) is made of a flexible substrate, and a part of the drive circuit member (D, D1) is placed in a space portion where the air-core armature coil is not disposed within the thickness of the air-core armature coil. The above-mentioned space (1 ), Which is arranged on the stator base and fixed to the stator base with a resin (4) so that the upper surface of the air core armature coil or the drive circuit member which is higher is exposed. The cover member (10, 100) is attached to the holding portion of the yoke bracket by laser welding so as to cover the eccentric rotor, and the tip of the shaft is a recess (10a) at the center of the cover member (10). An axial gap type brushless vibration motor that is fitted and laser welded to the cover member from the outside. 請求項2に記載の偏心ロータ(R4)と、この偏心ロータを軸(22)を介して回転自在に支える軸受(7)が固着された樹脂製の軸支承部(11a)があるもので0.2mm以下で厚みがあるヨークブラケット(111)と、前記軸支承部の周囲に配されたステータベース(33)と、このステータベースに配された複数個の空心電機子コイル(5A、5B、5C)とが備えられ、前記ヨークブラケットは軸支承部と一体に半径方向に延びる複数の支部(1b、11b)と、この支部間の空所(1e)を介して前記支部の外方にリング状保持部(1c)があり、前記ステータベース(3)はフレキシブル基板からなり、前記空心電機子コイルが配置されていない空間部分に該空心電機子コイルの厚み内になるように駆動回路部材の一部(D)が前記ステータベースに配され、前記偏心ロータを覆うように空隙を介してカバー部材(101)が開口部で前記ヨークブラケットの保持部にレーザ溶接で取り付けられた軸方向空隙型ブラシレス振動モータ。An eccentric rotor (R4) according to claim 2 and a resin shaft bearing (11a) to which a bearing (7) that rotatably supports the eccentric rotor via a shaft (22) is fixed. A yoke bracket (111) having a thickness of 2 mm or less, a stator base (33) disposed around the shaft support portion, and a plurality of air-core armature coils (5A, 5B, 5C), and the yoke bracket is ringed outwardly of the support portion through a plurality of support portions (1b, 11b) extending in the radial direction integrally with the shaft support portion and spaces (1e) between the support portions. And the stator base (3) is made of a flexible substrate, and the drive circuit member is disposed in the space where the air-core armature coil is not disposed within the thickness of the air-core armature coil. Part (D There wherein disposed in the stator base, axial gap type brushless vibration motor cover member with a gap (101) is attached by laser welding to the holding portion of the yoke bracket at the opening so as to cover the eccentric rotor. 前記ステータベース(3、33)は前記ヨークブラケット(11、111)の下方に配され、前記駆動回路部材(D)は前記空所(1e)に前記支部から突き出るように格納され、前記空心電機子コイルを含めて樹脂(4)で固着された請求項4又は5に記載の軸方向空隙型ブラシレス振動モータ。The stator base (3, 33) is disposed below the yoke bracket (11, 111), and the drive circuit member (D) is stored in the space (1e) so as to protrude from the support portion. 6. The axial gap type brushless vibration motor according to claim 4 or 5, which is fixed with a resin (4) including a child coil.
JP2003151863A 2002-10-28 2003-05-29 Eccentric rotor and axial gap type brushless vibration motor having the same eccentric rotor Expired - Fee Related JP3616085B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003151863A JP3616085B2 (en) 2003-05-29 2003-05-29 Eccentric rotor and axial gap type brushless vibration motor having the same eccentric rotor
US10/695,617 US6998742B2 (en) 2002-10-28 2003-10-27 Axial-air-gap brushless vibration motor containing drive circuit
KR1020030075063A KR100708047B1 (en) 2002-10-28 2003-10-27 Axial direction gap type brushless vibrating motor with built-in drive circuit
CN2008100918037A CN101257232B (en) 2002-10-28 2003-10-27 Axial-air-gap brushless vibration motor
CNB2003101026373A CN100384549C (en) 2002-10-28 2003-10-27 Axial gap type brushless vibrating dynamo with built-in drive circuit
US11/232,065 US7132770B2 (en) 2002-10-28 2005-09-21 Axial-air-gap brushless vibration motor containing drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003151863A JP3616085B2 (en) 2003-05-29 2003-05-29 Eccentric rotor and axial gap type brushless vibration motor having the same eccentric rotor

Publications (2)

Publication Number Publication Date
JP2004357404A JP2004357404A (en) 2004-12-16
JP3616085B2 true JP3616085B2 (en) 2005-02-02

Family

ID=34047232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003151863A Expired - Fee Related JP3616085B2 (en) 2002-10-28 2003-05-29 Eccentric rotor and axial gap type brushless vibration motor having the same eccentric rotor

Country Status (1)

Country Link
JP (1) JP3616085B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101416185B1 (en) * 2008-03-11 2014-07-09 엘지이노텍 주식회사 Flat type vibration motor
JP6249389B2 (en) * 2012-09-12 2017-12-20 株式会社デンソー Method for manufacturing rotational position detection device

Also Published As

Publication number Publication date
JP2004357404A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
US7132770B2 (en) Axial-air-gap brushless vibration motor containing drive circuit
US7800274B2 (en) Thin stator, eccentric motor and axial air-gap brushless vibration motor equipped with the same
JP4073451B2 (en) Axial gap type brushless vibration motor
JP2008289268A (en) Thin stator, axial gap brushless vibrating motor equipped with this stator
JP3560606B1 (en) A stator with a built-in drive circuit and an axial gap type brushless motor having the stator
JP3537815B1 (en) Axial air gap type brushless motor having the stator and the stator
JP3568521B2 (en) Axial gap type brushless vibration motor with built-in drive circuit
JP3616085B2 (en) Eccentric rotor and axial gap type brushless vibration motor having the same eccentric rotor
JP4067556B2 (en) An axial gap type brushless vibration motor equipped with a thin stator and the same stator
JP3894368B2 (en) Motor armature, axial gap motor with the same armature
KR100839354B1 (en) Axial direction gap type brushless motor
JP2004174296A (en) Axial gap type brushless vibration motor having sensor-less drive circuit built therein
JP2010154636A (en) Eccentric rotor and compact brushless vibration motor with the same
JP3472761B2 (en) Small brushless vibration motor
JP3745975B2 (en) Flat rotating yoke type brushless motor
JP3706016B2 (en) Flat small brushless vibration motor
JP3938397B2 (en) Axial gap type brushless motor having the same stator
JP3985964B2 (en) A stator having detent torque generating means and an axial air gap type brushless motor having the same stator
JP2004336837A (en) Eccentric rotor and axial air gap type brushless vibration motor comprising the same
JP3537816B1 (en) A stator with a built-in Hall sensor and drive circuit, and an axial gap type brushless motor having the same stator
JP2004297903A (en) Axial gap type brushless motor
KR100708047B1 (en) Axial direction gap type brushless vibrating motor with built-in drive circuit
JP2003219602A (en) Eccentric rotor, and flat vibration motor equipped therewith
JP4402671B2 (en) Stator and axial gap type brushless vibration motor having the same stator
JP2008182837A (en) Axial air-gap type vibration motor for reflow soldering

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041102

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees