JP3614734B2 - Negative electrode material for lithium secondary battery - Google Patents

Negative electrode material for lithium secondary battery Download PDF

Info

Publication number
JP3614734B2
JP3614734B2 JP29269199A JP29269199A JP3614734B2 JP 3614734 B2 JP3614734 B2 JP 3614734B2 JP 29269199 A JP29269199 A JP 29269199A JP 29269199 A JP29269199 A JP 29269199A JP 3614734 B2 JP3614734 B2 JP 3614734B2
Authority
JP
Japan
Prior art keywords
negative electrode
graphite
secondary battery
lithium secondary
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29269199A
Other languages
Japanese (ja)
Other versions
JP2000106183A (en
Inventor
英利 本棒
▲瀞▼士 武内
秀人 百生
達雄 堀場
村中  廉
義人 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Hitachi Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Hitachi Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP29269199A priority Critical patent/JP3614734B2/en
Publication of JP2000106183A publication Critical patent/JP2000106183A/en
Application granted granted Critical
Publication of JP3614734B2 publication Critical patent/JP3614734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【産業上の利用分野】
本発明は、リチウムを吸蔵・放出する炭素材料及びその製造方法に関するものであり、さらに前記炭素材料を負極活物質とし、ポータブル機器、電気自動車、電力貯蔵等に用いるに好適な、高エネルギー密度かつ長寿命のリチウム二次電池に関する。
【0002】
【従来の技術】
リチウム金属を負極として用いたリチウム二次電池は、充放電の繰り返しによって、リチウム金属負極に樹枝(デンドライト)状のリチウムが生じ、正極と負極との間で内部短絡が起きるため安全性の面で問題がある。
【0003】
そこで、リチウム金属に代わる負極活物質として炭素材料が提案されている。充放電反応は、リチウムイオンを炭素材料中に吸蔵・放出する反応であり、デンドライト状のリチウムを生じない。これらの炭素材料として特公昭62−23433号公報には黒鉛が開示されている。
【0004】
【発明が解決しようとする課題】
特公昭62−23433号公報の開示技術による黒鉛は、リチウムとの層間化合物を形成し、リチウムを吸蔵・放出するもので、リチウム二次電池の負極材料として用いるものである。上記黒鉛を負極活物質として用いるには、充放電の反応場となる活物質表面の面積を大きくし、充放電反応が速やかに起きるようにするため、望ましくは粒径100μm以下の粉末とする必要がありる。しかしながら、黒鉛は潤滑材料に用いられていることからもわかるように層間が容易に転移する。そのため、粉砕加工によってその結晶構造が変化してしまい、リチウムとの層間化合物の形成に悪影響を及ぼす。従って、粉砕処理を施された黒鉛には多くの結晶構造的な欠陥が含まれており、これを負極材料としてリチウム二次電池に用いた場合、高い容量が得られないという欠点がある。さらに、リチウム吸蔵・放出反応が上記の欠陥によって阻害され、急速充放電による容量低下が著しいと言う問題がある。
【0005】
本発明の目的は、前述の従来事情を鑑みて提案されたものであって、高容量、かつ、急速充放電特性に優れたリチウム二次電池を得るための、リチウム吸蔵・放出容量の大きいリチウム二次電池用負極材料を提供することを目的とする
【0006】
【課題を解決するための手段】
本発明の黒鉛粉末の結晶構造は、菱面体晶構造の存在割合が少ないこと(20%以下)を特徴とする。また、六方晶構造の存在割合が多いこと(80%以上)が特徴である。なお、このような菱面体晶構造および六方晶構造の存在割合は、X線回折のピークの強度比を検討することで検証可能である。
具体的には、CuKα線によるX線回折パターンにおける、回折角41.7度から42.7度の範囲に現われる回折ピーク(P 1 )と、回折角42.7度から43.7度の範囲に現われる回折ピーク(P 2 )との強度比(P 2 /P 1 )が0.92以下の黒鉛を用いることができる。
また、CuKα線によるX線回折パターンにおける、回折角41.7度から42.7度の範囲に現われる回折ピーク(P 1 )と、回折角45.3度から46.6度の範囲に現われる回折ピーク(P 3 )との強度比(P 3 /P 1 )が0.75以下の黒鉛を用いることができる。
また、CuKα線によるX線回折パターンにおける回折角43.7度から45.0度の範囲に現われる回折ピーク(P 4 )の半値幅が0.45度以下の黒鉛を用いることができる。
【0009】
さらに、本発明の負極材料を用いるリチウム二次電池の正極活物質材料としては、LiMO(ただし、xは0から1の範囲にあり、MはCo、Ni、Mn、Feの少なくとも1種類の元素を表すもの)なる化学式を有する材料、つまり、リチウム遷移金属複合酸化物を用いることができる
【0010】
【作用】
電池の活物質材料は、充放電の反応場となる活物質表面の面積を大きくし充放電反応が速やかに起きるようにするため、一般に粉末として用いられており、活物質粒径が小さいほど電池性能が優れると考えられる。また、活物質に結着剤を加えた合剤を集電体に塗布し電極を製造する上で、塗布性及び電極厚み精度等の点から、活物質粒径は100μm以下であることが望ましい。
【0011】
リチウム二次電池の負極活物質として、天然黒鉛、人造黒鉛等が提案されているが、上述の理由により、これらの炭素材料を粉砕加工する必要がある。そこで、粉砕加工にボールミル、ジェットミル、コロイダルミルを用い、粉砕方法並びに粉砕時間を変え、粒径100μm以下で種々の黒鉛粉末を製造し、リチウムの吸蔵・放出容量を調べ、リチウム二次電池の負極として優れた炭素材料を探索した。
【0012】
しかし、上述の方法によって得られた黒鉛粉末は、リチウムの吸蔵・放出量が重量当り200〜250mAh/g程度であり、リチウム二次電池負極として容量が小さかった。
【0013】
そこで、この原因を調べるために、X線回折法によって上述の黒鉛の結晶構造を分析した。図1にはその結果の一例を示した。X線回折パターンの回折角(2θ、θ:ブラッグ角)が40度から50度の範囲で4本のピークが現われた。42.3度及び44.4度付近ピークはそれぞれ黒鉛の六方晶構造の(100)面及び(101)面の回折パターンである。43.3度及び46.0度付近のピークはそれぞれ菱面体晶形の(101)面及び(012)面の回折パターンである。このように、粉砕した黒鉛には2種類の結晶構造が存在することが分かった。
【0014】
さらに、黒鉛粉末中の菱面体晶構造の存在割合(x)を、六方晶構造(100)面の実測ピーク強度(P),菱面体晶構造の(101)面の実測ピーク強度(P)、及びX線パターンの理論強度比の関係から、下記の数1によって求めた。その結果、100μm以下に粉砕したすべての天然黒鉛粉末中には、30%程度の菱面体晶構造の黒鉛が存在することが示された。
【0015】
【数1】
x=3P/(11P+3P
また、六方晶構造(100)面の実測ピーク強度(P),菱面体晶構造の(012)面の実測ピーク強度(P)、及びX線パターンの理論強度比の関係からも、同様に、黒鉛粉末中の菱面体晶構造の存在割合(x)を検証した。この場合には、上記数1に代わって、下記数2を用いた。その結果、100μm以下に粉砕したすべての天然黒鉛粉末中には、30%程度の菱面体晶構造の黒鉛が存在することが改めて確認された。
【0016】
【数2】
x= P/(3P+P
このように、2種類の結晶構造が存在した原因は、黒鉛は潤滑性を有するため強い衝撃を与えて粉砕したことにより、元来六方晶構造の黒鉛が菱面体構造へ転位したことによると考えられる。また、粉砕をさらに続け粒径が数μ以下となった天然黒鉛では、六方晶構造(101)面のX線回折ピーク(P)が顕著に広がっており、その半値幅が増加していることから、無定形炭素も増加していることが示された。従って、従来の黒鉛粉末においてリチウム吸蔵・放出容量が小さかった原因として、粉砕によって黒鉛の結晶構造が菱面体晶構造に転位したり、無定形炭素を生成することによって、リチウムの吸蔵・放出反応が阻害されたためであると考えられる。
【0017】
また、上述の天然黒鉛粉末の不純物を分析したところ、Si、Fe等の不純物が1000ppm以上含まれていることが明らかとなった。元来原料中に含まれる不純物に加え、粉砕の際、ボールミルやジェットミル等の加工機からも不純物が混入することも考えられる。負極容量が小さい原因としては、上記の点に加えこれらの不純物による影響も挙げられる。
【0018】
従って、本発明では、上述の観点から粒径100μm以下であって、特に上述の菱面体晶構造の存在量を30%から低減し、無定形炭素の少ない黒鉛粉末を開発した。同時に、本発明の黒鉛粉末は、不純物として含有量の多いSiを10ppm以下にまで低減した、極めて高純度のものであることも特徴として挙げられる。但し、粒径100μm以下という数値については、既に述べたとおり電池としての用途を意識してのものである。従って、これ以外の用途に本発明の黒鉛粉末を使用する場合には、粒径は必ずしも100μm以下である必要はない。
【0019】
以下に、本発明の黒鉛粉末およびその製法の詳細を説明する。
【0020】
ここでは、菱面体晶構造の割合の少ない黒鉛を得るための方法として2つ(製法1,製法2)を提案する。
【0021】
[製法1]
本発明の黒鉛粉末の原料(原料黒鉛)としては、天然黒鉛、人造黒鉛のいずれでも構わないが、鱗片状天然黒鉛が望ましい。それらの原料黒鉛は、CuKα線によるX線回折パターンにおける最大の回折ピークの回折角(2θ、θ:ブラッグ角)が26.2度から26.5度の範囲に現れるようなものであること、すなわち、グラファイト層間距離が0.34nm以下のものであること、が望ましい。これは、原料の結晶性が高いほど菱面体晶構造の少ない黒鉛粉末が得られるからである。
【0022】
また、原料黒鉛を粒径100μm以下に粉砕する加工機としては、ジェットミルが好ましい。これは、無定形炭素の生成量が少なくなるからである。
【0023】
粉砕された原料黒鉛(原料粉末)には、前記のように、菱面体晶構造黒鉛が30%程含まれている。該方法1では該原料粉末に以下のような加熱処理を施すことで、菱面体晶構造の割合を低減させている。
【0024】
該加熱処理は、不活性雰囲気下において、摂氏900度以上の温度で行う。不活性雰囲気とは窒素ガス、アルゴンガス雰囲気等である。コークスで加熱物を覆い大気と遮断することによっても不活性雰囲気が保たれる。
【0025】
この加熱処理は、菱面体晶構造を六方晶構造に転移させるための本発明において最も重要な処理であり、原料となる黒鉛を粉砕した後で(より好ましくは、本発明の黒鉛粉末製造の最後の工程で)行う必要がある。
【0026】
なお、黒鉛の加熱処理を行いその後これを粉砕したのでは、本発明が目的とするような菱面体晶構造の少ない黒鉛を得ることはできない。本発明のごとく、粉砕処理を行った後加熱処理を行うことで(より好ましくは、本発明の黒鉛粉末製造の最終工程で行うことで)、初めて菱面体晶構造の少ない黒鉛を得ることができる。
【0027】
原料粉末中には不純物としてAl,Ca,Fe,特にSiを多く含有している。上述の加熱温度を摂氏2700度以上とすることにより、これらの物質を気化させて取り除くことが可能である。従って、高純度化処理を同時に行うためにも、加熱処理温度は摂氏2700度以上であることがより望ましい。
【0028】
[製法2]
原料黒鉛およびこれを粉砕する処理については、上述の製法1と同様である。
【0029】
粉砕によって得られた黒鉛粉末を、硫酸、硝酸、過塩素酸、リン酸、フッ酸からなる群の中から選ばれた少なくとも1つを含む酸性溶液で処理し、水洗、中和、乾燥することによっても得られる。これは、上記の酸性溶液の陰イオンと黒鉛との間で、化合物が形成され、その際に、菱面体晶構造の黒鉛がこの化合物の形成によって消失するためである。また、この化合物は、水洗、中和、乾燥することによって酸性溶液の陰イオンが取り除かれて、本発明の黒鉛粉末が得られる。
【0030】
上記の製法1,2によって製造した本発明の黒鉛粉末の結晶構造をX線回折法によって分析した結果、前述のPとPとの比(P/P)は0.92以下、Pの半値幅は0.45度以下であった。また、前述のPとPとの比(P/P)は0.75以下であった。
【0031】
これらの測定結果を前述の数1、数2に代入することで、菱面体晶構造の存在割合が20%以下に減少していること、また、六方晶構造の存在割合が80%以上であること、が確認された。同時に、不純物を分析した結果、Siの含有量が10ppm以下であることが確認された。
【0032】
次に、本発明の黒鉛粉末を活物質として用いて電極を作製し、リチウムの吸蔵・放出容量に関して検討した。その結果、本発明の黒鉛粉末ではリチウムの吸蔵・放出容量が活物質重量当り320〜360mAh/gであり、従来の黒鉛材料での吸蔵・放出容量(200〜250mAh/g)に比べ大きく向上した。また、本発明の黒鉛粉末の中でも菱面体晶構造の存在割合が少ないほど容量が大きく、その存在割合が10%以下であることが最も望ましいことが示された。
【0033】
従って、菱面体晶構造はリチウムを吸蔵・放出しにくい結晶構造であることは明白であり、本発明の黒鉛粉末は特に菱面体晶構造の割合を低減し、六方晶構造を増加させることによって、高いリチウム吸蔵・放出容量が発現したものと考えられる。
【0034】
さらに、本発明のリチウム二次電池は、本発明の黒鉛粉末を負極活物質として用いることが特徴である。該本発明のリチウム二次電池は、負極容量が大きく、高いエネルギー密度が実現できる。
【0035】
さらに、本発明のリチウム二次電池の特性を評価した結果、急速充放電特性に関して優れた性能を示し、同一の急速充放電条件で従来のリチウム電池に比べ容量の低下率が30%以上改善された。この理由としては、本発明の黒鉛粉末は、菱面体晶構造が低減されているとともに、Siを主とする不純物の影響が排除されたことによって、リチウムの吸蔵・放出反応に対する可逆性が、従来の炭素材料に比べ向上したためと考えられる。
【0036】
また、本発明のリチウム二次電池正極活物質としては、LiCoO,LiNiO,LiMnの材料(但し、xは0から1の範囲)等が、3.5V以上の高い放電電圧が得られ、正極自体の充放電の可逆性も優れ望ましい。
【0037】
電解液としては、エチレンカーボネートに、ジメトキシエタン、ジエチルカーボネート、ジメチルカーボネート、メチルエチルカーボネート、γ−ブチロラクトン、プロピオン酸メチル、プロピオン酸エチルの少なくとも1種類を加えた混合溶媒と、LiClO,LiPF,LiBF,LiCFSO等のリチウムを含む塩のうち少なくとも1種類の電解質とを用い、リチウム濃度が0.5〜2mol/lの範囲とすることが、電解液の電気伝導度が大きく望ましい。
【0038】
【実施例】
以下、本発明による実施例について図面を参照し説明する。
【0039】
実施例1
マダカスカルを産地とする鱗片状天然黒鉛を原料とし、ジェットミルによって粒径46μm以下まで粉砕し粉末とした。そして、これをふるい分けすることで原料粉末を得た。原料粉末の平均粒径は8.0μmである。引続き、原料粉末を窒素ガス雰囲気下で摂氏900度または摂氏2850度で10日加熱処理した後、本発明の黒鉛粉末を得た。
【0040】
本発明の黒鉛粉末及び原料粉末の結晶構造解析はX線回折法、不純物濃度は誘導プラズマ(ICP)発光法によって分析した。前者の分析機器には理学電機製RUー200、後者には日立製P−5200を使用した。
【0041】
図2および図3に、CuKα線を線源として、管電圧40kV、管電流150mAで測定した本発明の黒鉛粉末のX線回折パターンを示した。図2は加熱処理を摂氏900度で行った場合、図3は加熱処理を摂氏2850度で行った場合のものである。本発明の黒鉛粉末のX線回折パターンには、上記いずれの加熱処理によっても、菱面体晶構造に帰属される43.3度及び46.0度付近のピークが減少することが示された。
【0042】
本発明の黒鉛粉末に不純物として含有されるSi量は、加熱温度が900度の場合には1140ppm,加熱温度2850度の場合には27ppmであった。従って、Siを除去可能な摂氏2700度以上の高温で加熱処理を行った場合には、Siが取り除かれて高純度の黒鉛粉末が得られることが示された。
【0043】
比較例1
比較のため、粉砕していない原料黒鉛を摂氏2850度で加熱処理を行い、その後粉砕して黒鉛粉末を得た。このようにして得た黒鉛粉末のX線回折パターンを図4に示す。図4から明らかなように、菱面体晶構造に帰属される43.3度および46.0度付近のピークは減少していない。つまり、このような手順では、菱面体晶構造を除去できなかった。
【0044】
実施例2
該実施例2では、原料黒鉛をジェットミルによって100μm以下に粉砕した。続いて、この黒鉛粉末を硫酸と硝酸との混酸との1日間浸漬した。その後、蒸留水による洗浄、さらに、希薄な水酸化ナトリウム水溶液による中和を行った。このようにして得られたものを、摂氏120度で乾燥し、本発明の黒鉛粉末を製造した。図5に該実施例2において製造された黒鉛粉末のX線回折パターンを示す。菱面体晶構造に帰属される43.3度および46.0度付近のピークが減少していることから、菱面体晶構造が除去されたことがわかった。
【0045】
実施例3
該実施例3は、本発明の黒鉛粉末を電極活物質として用いて炭素電極を作製し、リチウムの吸蔵・放出容量、換言すればリチウム二次電池としての負極容量を検討したものである。
【0046】
実施例1において製造した、加熱処理が摂氏900度または2850度である2種類の本発明の黒鉛粉末に、結着剤としてポリフッ化ビニリデン(PVDF)を10wt%添加して、これにN−メチル−2−ピロリドンを加え混合して合剤スラリーを調製した。この合剤スラリーを厚み10μmの銅箔の片面に塗布し、その後120℃で1時間真空乾燥した。真空乾燥後、ローラープレスによって電極を加圧成型して厚みを85〜90μmの範囲とした。単位面積当りの合剤塗布量は平均10mg/cmであり、10mm×10mmの大きさに切り出して電極を作製した。
【0047】
図6は、本電極のリチウムの吸蔵・放出容量を調べるために用いたセルを示す図である。作用極集電体30、作用極である本発明の電極31、セパレータ32、対極であるリチウム金属33、対極集電体34を重ねあわせて、セル容器35に挿入し、セル蓋36を締め付けた構成となっている。このセルには参照電極であるリチウム金属37が取り付けられている。電解液には、体積比1:1のエチレンカーボネートとジエチルカーボネートの混合溶媒、及び、六フッ化リン酸リチウムを用い、リチウム濃度1mol/lとした。
【0048】
リチウムの吸蔵・放出は、作用極と対極の間で一定電流で通電することによって繰返し行い、その時の容量を検討した。ここで、作用極の下限および上限の電位はそれぞれ0V,5Vとした。
【0049】
比較例2
比較のため、比較例1で作製した黒鉛粉末を用いて実施例3と同様に炭素電極を作製し、負極容量(リチウムの吸蔵・放出量)を検討した。また、従来黒鉛粉末(実施例1における原料粉末と同じもの)を用いても同様の検討を行った。
【0050】
以下に、実施例3(本発明)の電極と、比較例2(従来技術)の電極と、従来黒鉛粉末の電極との、リチウムの吸蔵・放出に関する比較結果について説明する。 図7は、リチウムの吸蔵・放出を繰返し行い、それらの容量が定常状態となった第5サイクル目におけるリチウムの吸蔵・放出容量と電極電位の関係を示す図である。図7において、曲線40は実施例3において加熱処理を摂氏900度で行った黒鉛粉末を用いた電極の電位変化を示している。曲線41は、実施例3において加熱処理を摂氏2850度で行った黒鉛粉末を用いた電極の電位変化を示している。曲線42は従来黒鉛を用いた電極の電位変化、曲線43は比較例1において処理順序を変えて作製した黒鉛粉末を用いた電極の電位変化を示している。比較例2の従来黒鉛を用いた場合(曲線42)および比較例1の黒鉛を用いた場合(曲線43)は、リチウム吸蔵容量及び放出容量が、いずれも活物質重量当り250mAh/g以下であった。これに対し、本発明による実施例1の黒鉛粉末を電極活物質に用いた実施例3の場合(曲線40,41)は、リチウム吸蔵容量及び放出容量が、ともに活物質重量当り300mAh/g以上であった。つまり、菱面体晶構造が少ない本発明の黒鉛粉末を用いることによって、容量の大きい負極が得られた。また、加熱処理を摂氏2850度で行った高純度の黒鉛粉末を用いた方が、リチウム吸蔵容量及び放出容量はより大きい値を示した。
【0051】
実施例4
該実施例4は、本発明における加熱処理の処理時間の影響を確認することを主目的として行ったものである。
【0052】
該実施例4では、基本的には、実施例1と同様にして(窒素ガス雰囲気下、摂氏2850度で、原料粉末を加熱処理)で、本発明の黒鉛粉末を得ている。但し、該実施例4では、処理時間を4時間から10日の範囲で変えている。
【0053】
X線回折パターンのピーク強度から、菱面体晶構造の存在割合を求めた。また、実施例3と同様に、これらの黒鉛粉末を用いて電極を作製し、リチウム吸蔵・放出を繰返し行った。表1に、第5サイクル目におけるリチウム吸蔵・放出容量の結果を示す。
【0054】
【表1】

Figure 0003614734
【0055】
この結果から、菱面体晶構造の存在割合が少ないほどリチウム吸蔵・放出量が増加しており、その存在割合が10%以下が特に望ましいことが分かった。
【0056】
実施例5
本実施例は、円筒型リチウム二次電池である。該二次電池の基本構成を図8に示した。図8において、符号50を付したのは正極である。同様に符号51は負極、52はセパレータ、53は正極タブ、54は負極タブ、55は正極蓋、56は電池缶、57はガスケットを指す。
【0057】
図8に示した本発明のリチウム二次電池は、以下のようにして作製した。正極活物質としてLiCoO、導電剤としてアセチレンブラックを7wt%,結着剤としてポリフッ化ビニリデン(PVDF)を5wt%添加して、これにN−メチル−2−ピロリドンを加え混合して正極合剤のスラリーを調製した。
【0058】
同様に負極活物質として本発明の黒鉛粉末、結着剤としてPVDFを10wt%添加して、これにN−メチル−2−ピロリドンを加え混合して負極合剤のスラリーを調製した。
【0059】
正極合剤を厚み25μmのアルミニウム箔の両面に塗布し、その後120℃で1時間真空乾燥した。真空乾燥後、ローラープレスによって電極を加圧成型して厚みを195μmとした。単位面積当りの合剤塗布量は55mg/cmとなり、幅40mm,長さ285mmの大きさに切り出して正極を作製した。但し、正極の両端の長さ10mmの部分は正極合剤が塗布されておらずアルミニウム箔が露出しており、この一方に正極タブを超音波接合によって圧着している。
【0060】
一方、負極合剤は厚み10μmの銅箔の両面に塗布し、その後120℃で1時間真空乾燥した。真空乾燥後、ローラープレスによって電極を加圧成型して厚みを175μmとした。単位面積当りの合剤塗布量は25mg/cmであり、幅40mm,長さ290mmの大きさに切り出して負極を作製した。正極と同様に、負極の両端の長さ10mmの部分は負極合剤が塗布されておらず銅箔が露出しており、この一方に負極タブを超音波接合によって圧着した。
【0061】
セパレータは、厚み25μm,幅44mmのポリプロピレン製の微孔膜を用いた。正極、セパレータ、負極、セパレータの順で重ね合わせ、これを捲回して電極群とした。これを電池缶に挿入して、負極タブを缶底溶接し正極蓋をかしめるための絞り部を設けた。体積比が1:1のエチレンカーボネートとジエチルカーボネートの混合溶媒に六フッ化リン酸リチウムを1mol/l溶解させた電解液を電池缶に注入した後、正極タブを正極蓋に溶接した後、正極蓋をかしめ付けて電池を作製した。
【0062】
この電池を用いて、充放電電流300mA,充放電終止電圧をそれぞれ4.2V,2.8Vとして充放電を繰り返した。また、充電電流を300mAから900mAの範囲で変化させ、急速充放電を行った。
【0063】
比較例3
比較のため、従来黒鉛粉末(本発明の黒鉛粉末の原料粉末と同じもの)を用いて、該実施例5と同様にリチウム二次電池を作製し、実施例5と同じ電池特性を検討した。
【0064】
以下、該実施例5(本発明)と、比較例3(従来技術)とのリチウムの吸蔵・放出に関する比較結果について説明する。
【0065】
図9は、リチウム二次電池の充放電を繰返し行った際の電池の放電容量の変化を示す図である。曲線60は実施例5の放電容量を示している。曲線61は、比較例3の放電容量を示している。実施例5の場合、最高の放電容量は683mAh/gであり、200サイクル目における放電容量の最高容量に対する維持率は86%であった。一方、比較例3の場合、最高の放電容量は492mAh/gであり、200サイクル目における放電容量の最高容量に対する維持率は63%であった。
【0066】
さらに、図10に、急速充放電を行った場合の充放電電流と放電容量の関係を示す。曲線70は実施例5の放電容量を示している。曲線71は比較例3の放電容量を示している。充放電電流900mAにおいて、実施例5の場合、放電容量は573mAh/gであるのに対し、比較例3の場合、放電容量は256mAh/gであった。これらの場合、充放電電流300mAにおける放電容量に対する容量低下率は、それぞれ16%、48%であり、本発明の黒鉛粉末を負極活物質として用いることにより、容量低下率が30%以上改善され、本発明のリチウム二次電池は優れた急速充放電特性を有することが示された。
【0067】
【発明の効果】
上述してきたように、本発明によれば、高容量、かつ、急速充放電特性に優れたリチウム二次電池を得るための、リチウム吸蔵・放出容量の大きいリチウム二次電池用負極材料を提供することができる。
【図面の簡単な説明】
【図1】従来黒鉛のX線回折パターンを示す図である。
【図2】本発明の実施例1(加熱処理温度:900度)の黒鉛粉末のX線回折パターンを示す図である。
【図3】本発明の実施例1(加熱処理温度:2850度)の黒鉛粉末のX線回折パターンを示す図である。
【図4】比較例1において製造した黒鉛粉末のX線回折パターンを示す図である。
【図5】本発明の実施例2の黒鉛粉末のX線回折パターンを示す図である。
【図6】実施例3及び比較例2において用いたセルを示す図である。
【図7】電極電位とリチウム吸蔵・放出容量の関係を示す図である。
【図8】本発明の実施例5で作成したリチウム二次電池を示す図である。
【図9】放電容量と充放電サイクル回数との関係を示す図である。
【図10】放電容量と充放電電流との関係を示す図である。
【符号の説明】
30…作用極集電体、31…作用極、32…セパレーター、33…対極、34…対極集電体、35…セル容器、36…セル蓋、37…参照電極、40,41,42,43…電位変化、50…正極、51…負極、52…セパレーター、53…正極タブ、54…負極タブ、55…正極蓋、56…電池缶、
57…ガスケット、60,61,70,71…放電容量[0001]
[Industrial application fields]
The present invention relates to a carbon material that occludes and releases lithium, and a method for producing the same. Further, the carbon material is used as a negative electrode active material, and is suitable for use in portable devices, electric vehicles, power storage, and the like. The present invention relates to a long-life lithium secondary battery.
[0002]
[Prior art]
Lithium secondary batteries using lithium metal as a negative electrode have a dendrite-like lithium in the lithium metal negative electrode due to repeated charge and discharge, and an internal short circuit occurs between the positive electrode and the negative electrode. There's a problem.
[0003]
Thus, carbon materials have been proposed as negative electrode active materials that replace lithium metal. The charge / discharge reaction is a reaction in which lithium ions are occluded / released in the carbon material, and dendritic lithium is not generated. Japanese Patent Publication No. 62-23433 discloses graphite as such a carbon material.
[0004]
[Problems to be solved by the invention]
Graphite according to the technology disclosed in Japanese Patent Publication No. 62-23433 forms an intercalation compound with lithium and occludes and releases lithium, and is used as a negative electrode material for a lithium secondary battery. In order to use the above graphite as a negative electrode active material, it is necessary to increase the area of the active material surface, which is a charge / discharge reaction field, so that the charge / discharge reaction takes place quickly, and it is desirable that the powder has a particle size of 100 μm or less. There is. However, as can be seen from the fact that graphite is used as a lubricating material, the interlayer easily transitions. Therefore, the crystal structure is changed by pulverization, which adversely affects the formation of an intercalation compound with lithium. Therefore, the graphite subjected to the pulverization treatment includes many crystal structural defects, and when this is used as a negative electrode material for a lithium secondary battery, there is a disadvantage that a high capacity cannot be obtained. Furthermore, there is a problem that the lithium occlusion / release reaction is hindered by the above-described defects, and the capacity reduction due to rapid charge / discharge is remarkable.
[0005]
The object of the present invention has been proposed in view of the above-mentioned conventional circumstances,An object of the present invention is to provide a negative electrode material for a lithium secondary battery having a large lithium storage / release capacity in order to obtain a lithium secondary battery having a high capacity and excellent rapid charge / discharge characteristics..
[0006]
[Means for Solving the Problems]
The crystal structure of the graphite powder of the present invention is characterized by a small proportion of rhombohedral structure (20% or less). In addition, it is characterized by a high proportion of hexagonal crystal structures (80% or more). The existence ratio of such rhombohedral structure and hexagonal structure can be verified by examining the intensity ratio of the peak of X-ray diffraction.
Specifically, in an X-ray diffraction pattern by CuKα rays, a diffraction peak (P 1 ) And a diffraction peak (P 2 ) And the intensity ratio (P 2 / P 1 ) Of 0.92 or less can be used.
In addition, in the X-ray diffraction pattern by CuKα rays, a diffraction peak (P 1 ) And a diffraction peak (P Three ) And the intensity ratio (P Three / P 1 ) Can be used.
Further, a diffraction peak (P Four Graphite having a half width of 0.45 degrees or less can be used.
[0009]
further,Of a lithium secondary battery using the negative electrode material of the present inventionAs the positive electrode active material, LixMO2(Where x is in the range of 0 to 1 and M represents at least one element of Co, Ni, Mn and Fe), that is, a lithium transition metal composite oxide is used.it can.
[0010]
[Action]
The active material of a battery is generally used as a powder in order to increase the surface area of the active material serving as a charging / discharging reaction field so that the charging / discharging reaction occurs quickly. It is considered that the performance is excellent. Moreover, when manufacturing the electrode by applying a mixture obtained by adding a binder to the active material to the current collector, the active material particle size is desirably 100 μm or less from the viewpoints of applicability and electrode thickness accuracy. .
[0011]
Natural graphite, artificial graphite, and the like have been proposed as negative electrode active materials for lithium secondary batteries, but these carbon materials need to be pulverized for the reasons described above. Therefore, ball mills, jet mills, colloidal mills were used for pulverization, the pulverization method and pulverization time were changed, various graphite powders with particle sizes of 100 μm or less were manufactured, the lithium storage / release capacity was examined, and the lithium secondary battery We searched for an excellent carbon material as a negative electrode.
[0012]
However, the graphite powder obtained by the above-described method has a lithium storage / release amount of about 200 to 250 mAh / g per weight, and has a small capacity as a lithium secondary battery negative electrode.
[0013]
In order to investigate this cause, the crystal structure of the graphite was analyzed by X-ray diffraction. FIG. 1 shows an example of the result. Four peaks appeared when the diffraction angle (2θ, θ: Bragg angle) of the X-ray diffraction pattern was in the range of 40 to 50 degrees. The peaks near 42.3 and 44.4 degrees are diffraction patterns of the (100) plane and the (101) plane of the hexagonal crystal structure of graphite, respectively. The peaks near 43.3 degrees and 46.0 degrees are the diffraction patterns of the rhombohedral (101) plane and (012) plane, respectively. Thus, it was found that the pulverized graphite has two types of crystal structures.
[0014]
Further, the existence ratio (x) of the rhombohedral structure in the graphite powder is determined by measuring the measured peak intensity (P1), Measured peak intensity (P) of (101) plane of rhombohedral structure2) And the theoretical intensity ratio of the X-ray pattern. As a result, it was shown that about 30% of rhombohedral graphite was present in all natural graphite powder pulverized to 100 μm or less.
[0015]
[Expression 1]
x = 3P2/ (11P1+ 3P2)
Further, the measured peak intensity (P of the hexagonal crystal structure (100) plane)1), Measured peak intensity of (012) plane of rhombohedral structure (P3) And the relationship between the theoretical intensity ratios of the X-ray patterns, similarly, the existence ratio (x) of the rhombohedral structure in the graphite powder was verified. In this case, instead of the above formula 1, the following formula 2 was used. As a result, it was reconfirmed that about 30% of rhombohedral graphite was present in all the natural graphite powder pulverized to 100 μm or less.
[0016]
[Expression 2]
x = P3/ (3P1+ P3)
As described above, the reason why the two types of crystal structures existed was that graphite, which had lubricity, was subjected to a strong impact and pulverized, so that the hexagonal graphite was originally rearranged into a rhombohedral structure. It is done. Further, in the case of natural graphite having a particle size of several μ or less after further pulverization, the X-ray diffraction peak (P4) Markedly spread, and its half-value width increased, indicating that amorphous carbon also increased. Therefore, the reason why the lithium storage / release capacity is small in the conventional graphite powder is that the crystal structure of graphite is rearranged to a rhombohedral structure by pulverization, or amorphous carbon is generated, thereby causing the lithium storage / release reaction. This is thought to be due to inhibition.
[0017]
Moreover, when the impurities of the above-mentioned natural graphite powder were analyzed, it became clear that impurities such as Si and Fe were contained at 1000 ppm or more. In addition to the impurities originally contained in the raw material, impurities may be mixed from a processing machine such as a ball mill or a jet mill during pulverization. In addition to the above points, the negative electrode capacity is also affected by these impurities.
[0018]
Therefore, in the present invention, from the above viewpoint, a graphite powder having a particle size of 100 μm or less, particularly reducing the abundance of the rhombohedral structure from 30%, and having less amorphous carbon has been developed. At the same time, the graphite powder of the present invention is characterized by having extremely high purity in which Si having a high content as an impurity is reduced to 10 ppm or less. However, the numerical value of the particle size of 100 μm or less is intended for use as a battery as described above. Therefore, when the graphite powder of the present invention is used for other purposes, the particle size is not necessarily 100 μm or less.
[0019]
Below, the graphite powder of this invention and the detail of the manufacturing method are demonstrated.
[0020]
Here, two methods (Production Method 1 and Production Method 2) are proposed as methods for obtaining graphite having a small proportion of rhombohedral crystal structure.
[0021]
[Production method 1]
The raw material (raw material graphite) of the graphite powder of the present invention may be either natural graphite or artificial graphite, but scaly natural graphite is desirable. The raw graphite is such that the diffraction angle (2θ, θ: Bragg angle) of the maximum diffraction peak in the X-ray diffraction pattern by CuKα rays appears in the range of 26.2 degrees to 26.5 degrees, That is, it is desirable that the graphite interlayer distance is 0.34 nm or less. This is because a graphite powder with less rhombohedral structure can be obtained as the crystallinity of the raw material is higher.
[0022]
Moreover, as a processing machine which grind | pulverizes raw material graphite to a particle size of 100 micrometers or less, a jet mill is preferable. This is because the amount of amorphous carbon produced is reduced.
[0023]
As described above, the pulverized raw material graphite (raw material powder) contains about 30% rhombohedral graphite. In Method 1, the ratio of the rhombohedral structure is reduced by subjecting the raw material powder to the following heat treatment.
[0024]
The heat treatment is performed at a temperature of 900 ° C. or higher in an inert atmosphere. The inert atmosphere is a nitrogen gas, argon gas atmosphere or the like. An inert atmosphere is also maintained by covering the heated object with coke and blocking it from the atmosphere.
[0025]
This heat treatment is the most important treatment in the present invention for transferring the rhombohedral structure to the hexagonal crystal structure, and after pulverizing the raw material graphite (more preferably, at the end of the production of the graphite powder of the present invention). It is necessary to carry out in the process.
[0026]
In addition, if the graphite is heat-treated and then pulverized, it is not possible to obtain graphite with a small rhombohedral structure as intended by the present invention. As in the present invention, by performing heat treatment after pulverization (more preferably, in the final step of producing the graphite powder of the present invention), graphite having a small rhombohedral structure can be obtained for the first time. .
[0027]
The raw material powder contains a large amount of Al, Ca, Fe, especially Si as impurities. By setting the above-mentioned heating temperature to 2700 degrees Celsius or higher, these substances can be vaporized and removed. Therefore, it is more desirable that the heat treatment temperature be 2700 degrees Celsius or higher in order to simultaneously perform the purification process.
[0028]
[Production method 2]
The raw material graphite and the treatment for pulverizing it are the same as in the above production method 1.
[0029]
Treating the graphite powder obtained by grinding with an acidic solution containing at least one selected from the group consisting of sulfuric acid, nitric acid, perchloric acid, phosphoric acid and hydrofluoric acid, washing with water, neutralizing and drying Can also be obtained. This is because a compound is formed between the anion of the acidic solution and graphite, and at that time, rhombohedral graphite disappears due to the formation of this compound. In addition, this compound is washed with water, neutralized and dried to remove the anion of the acidic solution, and the graphite powder of the present invention is obtained.
[0030]
As a result of analyzing the crystal structure of the graphite powder of the present invention produced by the above production methods 1 and 2 by X-ray diffraction,1And P2Ratio to (P2/ P1) Is 0.92 or less, P4The half width of was 0.45 degrees or less. In addition, the aforementioned P1And P3Ratio to (P3/ P1) Was 0.75 or less.
[0031]
By substituting these measurement results into the above formulas 1 and 2, the abundance ratio of the rhombohedral structure is reduced to 20% or less, and the abundance ratio of the hexagonal crystal structure is 80% or more. That was confirmed. At the same time, as a result of analyzing the impurities, it was confirmed that the Si content was 10 ppm or less.
[0032]
Next, an electrode was prepared using the graphite powder of the present invention as an active material, and lithium storage / release capacity was studied. As a result, in the graphite powder of the present invention, the lithium occlusion / release capacity was 320 to 360 mAh / g per active material weight, which was greatly improved compared to the occlusion / release capacity (200 to 250 mAh / g) of the conventional graphite material. . In addition, among the graphite powders of the present invention, it was shown that the smaller the rhombohedral crystal structure, the larger the capacity, and it is most desirable that the ratio be 10% or less.
[0033]
Therefore, it is clear that the rhombohedral crystal structure is a crystal structure that is difficult to occlude and release lithium, and the graphite powder of the present invention reduces the ratio of the rhombohedral crystal structure and increases the hexagonal crystal structure. It is considered that a high lithium storage / release capacity was developed.
[0034]
Furthermore, the lithium secondary battery of the present invention is characterized by using the graphite powder of the present invention as a negative electrode active material. The lithium secondary battery of the present invention has a large negative electrode capacity and can realize a high energy density.
[0035]
Furthermore, as a result of evaluating the characteristics of the lithium secondary battery of the present invention, it showed excellent performance in terms of rapid charge / discharge characteristics, and the capacity reduction rate was improved by 30% or more compared to conventional lithium batteries under the same rapid charge / discharge conditions. It was. The reason for this is that the graphite powder of the present invention has a rhombohedral crystal structure that is reduced, and the reversibility to lithium occlusion / release reaction is eliminated by eliminating the influence of impurities mainly composed of Si. This is thought to be due to an improvement compared to other carbon materials.
[0036]
In addition, as the lithium secondary battery positive electrode active material of the present invention, LixCoO2, LixNiO2, LixMn2O4These materials (where x is in the range of 0 to 1) and the like are preferable because a high discharge voltage of 3.5 V or more is obtained and the reversibility of charge and discharge of the positive electrode itself is excellent.
[0037]
As an electrolytic solution, a mixed solvent obtained by adding at least one of ethylene carbonate to dimethoxyethane, diethyl carbonate, dimethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, methyl propionate, ethyl propionate, and LiClO.4, LiPF6, LiBF4, LiCF3SO3It is desirable that the electric conductivity of the electrolyte is large because at least one kind of electrolyte such as a salt containing lithium is used and the lithium concentration is in the range of 0.5 to 2 mol / l.
[0038]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0039]
Example 1
A scaly natural graphite made from Madagascar was used as a raw material, and pulverized to a particle size of 46 μm or less by a jet mill to obtain a powder. And raw material powder was obtained by sieving this. The average particle size of the raw material powder is 8.0 μm. Continuing, raw material powder in Celsius in nitrogen gas atmosphere900After heating for 10 days at a temperature of 2850 degrees Celsius, the graphite powder of the present invention was obtained.
[0040]
The crystal structure analysis of the graphite powder and raw material powder of the present invention was analyzed by an X-ray diffraction method, and the impurity concentration was analyzed by an induction plasma (ICP) emission method. RU-200 made by Rigaku Corporation was used for the former analytical instrument, and P-5200 made by Hitachi was used for the latter.
[0041]
2 and 3 show the X-ray diffraction patterns of the graphite powder of the present invention measured with a tube voltage of 40 kV and a tube current of 150 mA using CuKα rays as a radiation source. 2 shows the case where the heat treatment is performed at 900 degrees Celsius, and FIG. 3 shows the case where the heat treatment is performed at 2850 degrees Celsius. The X-ray diffraction pattern of the graphite powder of the present invention showed that the peaks near 43.3 degrees and 46.0 degrees attributed to the rhombohedral structure were reduced by any of the above heat treatments.
[0042]
The amount of Si contained as an impurity in the graphite powder of the present invention was 1140 ppm when the heating temperature was 900 degrees, and 27 ppm when the heating temperature was 2850 degrees. Therefore, it was shown that when heat treatment was performed at a high temperature of 2700 degrees Celsius or higher where Si can be removed, Si was removed and a high-purity graphite powder was obtained.
[0043]
Comparative Example 1
For comparison, raw graphite that had not been pulverized was heat-treated at 2850 degrees Celsius, and then pulverized to obtain graphite powder. The X-ray diffraction pattern of the graphite powder thus obtained is shown in FIG. As is clear from FIG. 4, the peaks near 43.3 degrees and 46.0 degrees attributed to the rhombohedral structure are not decreased. That is, the rhombohedral crystal structure could not be removed by such a procedure.
[0044]
Example 2
In Example 2, raw material graphite was pulverized to 100 μm or less by a jet mill. Subsequently, the graphite powder was immersed in a mixed acid of sulfuric acid and nitric acid for 1 day. Thereafter, washing with distilled water and neutralization with a dilute aqueous sodium hydroxide solution were performed. The product thus obtained was dried at 120 degrees Celsius to produce the graphite powder of the present invention. FIG. 5 shows an X-ray diffraction pattern of the graphite powder produced in Example 2. Since the peaks near 43.3 degrees and 46.0 degrees attributed to the rhombohedral structure decreased, it was found that the rhombohedral structure was removed.
[0045]
Example 3
In Example 3, a carbon electrode was produced using the graphite powder of the present invention as an electrode active material, and lithium storage / release capacity, in other words, negative electrode capacity as a lithium secondary battery was examined.
[0046]
10 wt% of polyvinylidene fluoride (PVDF) as a binder was added to two types of graphite powders of the present invention produced in Example 1 and having a heat treatment of 900 ° C. or 2850 ° C., and N-methyl was added thereto. 2-Pyrrolidone was added and mixed to prepare a mixture slurry. This mixture slurry was applied to one side of a 10 μm thick copper foil and then vacuum dried at 120 ° C. for 1 hour. After vacuum drying, the electrode was pressure molded by a roller press to a thickness in the range of 85 to 90 μm. Average amount of mixture applied per unit area is 10 mg / cm2It cut out to the magnitude | size of 10 mm x 10 mm, and produced the electrode.
[0047]
FIG. 6 is a diagram showing a cell used for examining the lithium storage / release capacity of this electrode. The working electrode current collector 30, the electrode 31 of the present invention as the working electrode, the separator 32, the lithium metal 33 as the counter electrode, and the counter electrode current collector 34 are overlapped and inserted into the cell container 35, and the cell lid 36 is tightened. It has a configuration. A lithium metal 37 as a reference electrode is attached to this cell. As the electrolytic solution, a mixed solvent of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1 and lithium hexafluorophosphate were used, and the lithium concentration was adjusted to 1 mol / l.
[0048]
Lithium insertion / extraction was repeated by applying a constant current between the working electrode and the counter electrode, and the capacity at that time was examined. Here, the lower and upper potentials of the working electrode were set to 0V and 5V, respectively.
[0049]
Comparative Example 2
For comparison, a carbon electrode was produced in the same manner as in Example 3 using the graphite powder produced in Comparative Example 1, and the negative electrode capacity (lithium occlusion / release amount) was examined. A similar study was performed using conventional graphite powder (same as the raw material powder in Example 1).
[0050]
Below, the comparison result regarding the occlusion / release of lithium between the electrode of Example 3 (the present invention), the electrode of Comparative Example 2 (prior art), and the electrode of conventional graphite powder will be described. FIG. 7 is a diagram showing the relationship between the lithium storage / release capacity and the electrode potential in the fifth cycle when the storage / release of lithium was repeated and the capacities thereof were in a steady state. In FIG. 7, a curve 40 shows the potential change of the electrode using the graphite powder that was heat-treated at 900 degrees Celsius in Example 3. A curve 41 shows the potential change of the electrode using the graphite powder that was heat-treated at 2850 degrees Celsius in Example 3. A curve 42 shows a potential change of an electrode using conventional graphite, and a curve 43 shows a potential change of an electrode using graphite powder produced by changing the processing order in Comparative Example 1. In the case of using the conventional graphite of Comparative Example 2 (curve 42) and the case of using the graphite of Comparative Example 1 (curve 43), both the lithium storage capacity and the release capacity were 250 mAh / g or less per active material weight. It was. On the other hand, in the case of Example 3 (curves 40 and 41) in which the graphite powder of Example 1 according to the present invention was used as the electrode active material, both the lithium storage capacity and the release capacity were 300 mAh / g or more per active material weight. Met. That is, a large capacity negative electrode was obtained by using the graphite powder of the present invention having a small rhombohedral structure. Moreover, the lithium storage capacity and the release capacity showed larger values when using high-purity graphite powder that was heat-treated at 2850 degrees Celsius.
[0051]
Example 4
The fourth example is performed mainly for confirming the influence of the heat treatment time in the present invention.
[0052]
In Example 4, the graphite powder of the present invention was obtained basically in the same manner as in Example 1 (heating the raw material powder at 2850 degrees Celsius in a nitrogen gas atmosphere). However, in Example 4, the processing time is changed in the range of 4 hours to 10 days.
[0053]
From the peak intensity of the X-ray diffraction pattern, the abundance ratio of the rhombohedral structure was determined. Similarly to Example 3, an electrode was prepared using these graphite powders, and lithium occlusion / release was repeated. Table 1 shows the results of the lithium storage / release capacity in the fifth cycle.
[0054]
[Table 1]
Figure 0003614734
[0055]
From this result, it was found that as the abundance ratio of the rhombohedral crystal structure is smaller, the lithium occlusion / release amount is increased, and the abundance ratio is particularly preferably 10% or less.
[0056]
Example 5
This example is a cylindrical lithium secondary battery. The basic configuration of the secondary battery is shown in FIG. In FIG. 8, reference numeral 50 denotes a positive electrode. Similarly, reference numeral 51 denotes a negative electrode, 52 denotes a separator, 53 denotes a positive electrode tab, 54 denotes a negative electrode tab, 55 denotes a positive electrode lid, 56 denotes a battery can, and 57 denotes a gasket.
[0057]
The lithium secondary battery of the present invention shown in FIG. 8 was produced as follows. LiCoO as positive electrode active material2Then, 7 wt% of acetylene black as a conductive agent and 5 wt% of polyvinylidene fluoride (PVDF) as a binder were added, and N-methyl-2-pyrrolidone was added thereto and mixed to prepare a positive electrode mixture slurry.
[0058]
Similarly, the graphite powder of the present invention was added as a negative electrode active material and 10 wt% of PVDF was added as a binder, and N-methyl-2-pyrrolidone was added thereto and mixed to prepare a negative electrode mixture slurry.
[0059]
The positive electrode mixture was applied to both surfaces of an aluminum foil having a thickness of 25 μm, and then vacuum-dried at 120 ° C. for 1 hour. After vacuum drying, the electrode was press-molded with a roller press to a thickness of 195 μm. The amount of mixture applied per unit area is 55 mg / cm2Thus, a positive electrode was produced by cutting into a size of 40 mm in width and 285 mm in length. However, the positive electrode mixture is not applied to the 10 mm long portions at both ends of the positive electrode, and the aluminum foil is exposed, and the positive electrode tab is pressure-bonded to this one by ultrasonic bonding.
[0060]
On the other hand, the negative electrode mixture was applied on both sides of a copper foil having a thickness of 10 μm and then vacuum-dried at 120 ° C. for 1 hour. After vacuum drying, the electrode was pressure molded by a roller press to a thickness of 175 μm. The amount of mixture applied per unit area is 25 mg / cm2A negative electrode was produced by cutting into a width of 40 mm and a length of 290 mm. As with the positive electrode, the negative electrode mixture was not applied to the 10 mm long portions at both ends of the negative electrode, and the copper foil was exposed, and a negative electrode tab was pressure bonded to this one by ultrasonic bonding.
[0061]
The separator used was a microporous membrane made of polypropylene having a thickness of 25 μm and a width of 44 mm. The positive electrode, the separator, the negative electrode, and the separator were stacked in this order, and this was wound to form an electrode group. This was inserted into a battery can, and a negative electrode tab was welded to the bottom of the can to provide a throttle for caulking the positive electrode lid. After injecting into the battery can an electrolytic solution in which 1 mol / l of lithium hexafluorophosphate was dissolved in a mixed solvent of ethylene carbonate and diethyl carbonate having a volume ratio of 1: 1, the positive electrode tab was welded to the positive electrode lid, A battery was produced by caulking the lid.
[0062]
Using this battery, charge / discharge was repeated with a charge / discharge current of 300 mA and a charge / discharge end voltage of 4.2 V and 2.8 V, respectively. Moreover, the charging current was changed in the range of 300 mA to 900 mA, and rapid charging / discharging was performed.
[0063]
Comparative Example 3
For comparison, a lithium secondary battery was produced in the same manner as in Example 5 using conventional graphite powder (same as the raw material powder of graphite powder of the present invention), and the same battery characteristics as in Example 5 were examined.
[0064]
Hereinafter, the comparison result regarding insertion and extraction of lithium between Example 5 (the present invention) and Comparative Example 3 (prior art) will be described.
[0065]
FIG. 9 is a diagram showing a change in the discharge capacity of the battery when the lithium secondary battery is repeatedly charged and discharged. Curve 60 shows the discharge capacity of Example 5. A curve 61 shows the discharge capacity of Comparative Example 3. In the case of Example 5, the maximum discharge capacity is 683 mAh / g, which corresponds to the maximum discharge capacity at the 200th cycle.Retention rateWas 86%. On the other hand, in the case of Comparative Example 3, the maximum discharge capacity is 492 mAh / g, which is the discharge capacity with respect to the maximum capacity at the 200th cycle.Retention rateWas 63%.
[0066]
Furthermore, FIG. 10 shows the relationship between charge / discharge current and discharge capacity when rapid charge / discharge is performed. Curve 70 shows the discharge capacity of Example 5. Curve 71 shows the discharge capacity of Comparative Example 3. At a charge / discharge current of 900 mA, in the case of Example 5, the discharge capacity was 573 mAh / g, whereas in the case of Comparative Example 3, the discharge capacity was 256 mAh / g. In these cases, the capacity reduction rate with respect to the discharge capacity at a charge / discharge current of 300 mA is 16% and 48%, respectively, and by using the graphite powder of the present invention as the negative electrode active material, the capacity reduction rate is improved by 30% or more, It was shown that the lithium secondary battery of the present invention has excellent rapid charge / discharge characteristics.
[0067]
【The invention's effect】
As described above, according to the present invention, there is provided a negative electrode material for a lithium secondary battery having a large lithium storage / release capacity for obtaining a lithium secondary battery having a high capacity and excellent rapid charge / discharge characteristics. be able to.
[Brief description of the drawings]
FIG. 1 is a diagram showing an X-ray diffraction pattern of conventional graphite.
FIG. 2 is a diagram showing an X-ray diffraction pattern of the graphite powder of Example 1 (heat treatment temperature: 900 ° C.) of the present invention.
FIG. 3 is a diagram showing an X-ray diffraction pattern of the graphite powder of Example 1 (heat treatment temperature: 2850 ° C.) of the present invention.
4 is a diagram showing an X-ray diffraction pattern of graphite powder produced in Comparative Example 1. FIG.
FIG. 5 is an X-ray diffraction pattern of the graphite powder of Example 2 of the present invention.
6 is a diagram showing cells used in Example 3 and Comparative Example 2. FIG.
FIG. 7 is a diagram showing the relationship between electrode potential and lithium storage / release capacity;
FIG. 8 is a view showing a lithium secondary battery prepared in Example 5 of the present invention.
FIG. 9 is a diagram showing the relationship between the discharge capacity and the number of charge / discharge cycles.
FIG. 10 is a diagram showing the relationship between discharge capacity and charge / discharge current.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 30 ... Working electrode current collector, 31 ... Working electrode, 32 ... Separator, 33 ... Counter electrode, 34 ... Counter electrode current collector, 35 ... Cell container, 36 ... Cell lid, 37 ... Reference electrode, 40, 41, 42, 43 ... Potential change, 50 ... Positive electrode, 51 ... Negative electrode, 52 ... Separator, 53 ... Positive electrode tab, 54 ... Negative electrode tab, 55 ... Positive electrode lid, 56 ... Battery can,
57 ... Gasket, 60, 61, 70, 71 ... Discharge capacity

Claims (14)

正極または負極にてイオンを放出あるいは吸蔵するリチウム二次電池用の負極材料であって、
粒径が100μm以下の黒鉛であり、前記黒鉛中の、六方晶構造の存在割合は80%以上であることを特徴とする、リチウム二次電池用の負極材料。
A negative electrode material for a lithium secondary battery that releases or occludes ions at a positive electrode or a negative electrode,
A negative electrode material for a lithium secondary battery, wherein the negative electrode material is a graphite having a particle size of 100 µm or less, and a ratio of the hexagonal crystal structure in the graphite is 80% or more.
正極または負極にてイオンを放出あるいは吸蔵するリチウム二次電池用の負極材料であって、
六方晶構造と菱面体晶構造とを有する黒鉛であり、前記黒鉛中の、前記六方晶構造の存在割合が80%以上であることを特徴とする、リチウム二次電池用の負極材料。
A negative electrode material for a lithium secondary battery that releases or occludes ions at a positive electrode or a negative electrode,
A negative electrode material for a lithium secondary battery, wherein the negative electrode material is a graphite having a hexagonal crystal structure and a rhombohedral crystal structure, and the ratio of the hexagonal crystal structure in the graphite is 80% or more.
正極または負極にてイオンを放出あるいは吸蔵するリチウム二次電池用の負極材料であって、
黒鉛結晶の粒子からなり、
前記粒子は、粒径100μm以下であって、六方晶構造の存在割合が80%以上であることを特徴とする、リチウム二次電池用の負極材料。
A negative electrode material for a lithium secondary battery that releases or occludes ions at a positive electrode or a negative electrode,
Composed of graphite crystal particles,
The negative electrode material for a lithium secondary battery, wherein the particles have a particle size of 100 μm or less and a hexagonal structure existing ratio is 80% or more.
正極または負極にてイオンを放出あるいは吸蔵するリチウム二次電池用の負極材料であって、
天然黒鉛の結晶の粒子からなり、当該粒子中の、六方晶構造の存在割合が80%以上であることを特徴とする、リチウム二次電池用の負極材料。
A negative electrode material for a lithium secondary battery that releases or occludes ions at a positive electrode or a negative electrode,
A negative electrode material for a lithium secondary battery, characterized by comprising natural graphite crystal particles, wherein the presence ratio of the hexagonal crystal structure in the particles is 80% or more.
正極または負極にてイオンを放出あるいは吸蔵するリチウム二次電池用の負極材料であって、
黒鉛結晶の粒子からなり、
前記粒子は、粒径100μm以下であって、六方晶構造の存在割合が80%以上であり、
前記黒鉛結晶の粒子は、リチウムの放出容量が320mAh/g以上であることを特徴とする、リチウム二次電池用の負極材料。
A negative electrode material for a lithium secondary battery that releases or occludes ions at a positive electrode or a negative electrode,
Composed of graphite crystal particles,
The particles have a particle size of 100 μm or less and a hexagonal structure existing ratio of 80% or more,
The negative electrode material for a lithium secondary battery, wherein the graphite crystal particles have a lithium release capacity of 320 mAh / g or more.
正極または負極にてイオンを放出あるいは吸蔵するリチウム二次電池用の負極材料であって、
六方晶構造の存在割合が80%以上の黒鉛であり、
前記黒鉛はリチウムの放出容量が320mAh/g以上であることを特徴とする、リチウム二次電池用の負極材料。
A negative electrode material for a lithium secondary battery that releases or occludes ions at a positive electrode or a negative electrode,
It is graphite having a hexagonal structure existing ratio of 80% or more,
The negative electrode material for a lithium secondary battery, wherein the graphite has a lithium release capacity of 320 mAh / g or more.
正極または負極にてイオンを放出あるいは吸蔵するリチウム二次電池用の負極材料であって、
六方晶構造と菱面体晶構造とを有する、粒径100μm以下の黒鉛であり、
前記黒鉛中の、前記六方晶構造の存在割合は80%以上であることを特徴とする、リチウム二次電池用の負極材料。
A negative electrode material for a lithium secondary battery that releases or occludes ions at a positive electrode or a negative electrode,
A graphite having a hexagonal structure and a rhombohedral structure and having a particle size of 100 μm or less;
The negative electrode material for a lithium secondary battery, wherein the presence ratio of the hexagonal crystal structure in the graphite is 80% or more.
正極または負極にてイオンを放出あるいは吸蔵するリチウム二次電池用の負極材料であって、
六方晶構造と菱面体晶構造とを有する黒鉛であり、
前記黒鉛中の、前記六方晶構造の存在割合80%は以上であり、
前記黒鉛はリチウムの放出容量が320mAh/g以上であることを特徴とする、リチウム二次電池用の負極材料。
A negative electrode material for a lithium secondary battery that releases or occludes ions at a positive electrode or a negative electrode,
A graphite having a hexagonal structure and a rhombohedral structure;
The presence ratio of the hexagonal crystal structure in the graphite is 80% or more.
The negative electrode material for a lithium secondary battery, wherein the graphite has a lithium release capacity of 320 mAh / g or more.
正極または負極にてイオンを放出あるいは吸蔵するリチウム二次電池用の負極材料であって、
黒鉛結晶の粒子からなり、
当該粒子中の、六方晶構造の存在割合は80%以上であり、
前記黒鉛はリチウムの放出容量が320mAh/g以上であることを特徴とする、リチウム二次電池用の負極材料。
A negative electrode material for a lithium secondary battery that releases or occludes ions at a positive electrode or a negative electrode,
Consisting of graphite crystal particles,
The proportion of hexagonal structure in the particles is 80% or more,
The negative electrode material for a lithium secondary battery, wherein the graphite has a lithium release capacity of 320 mAh / g or more.
正極または負極にてイオンを放出あるいは吸蔵するリチウム二次電池用の負極材料であって、
粒径100μm以下の黒鉛であり、
前記黒鉛中の、六方晶構造の存在割合は、80%以上であり、
前記黒鉛は、リチウムの放出容量が320mAh/g以上であることを特徴とする、リチウム二次電池用の負極材料。
A negative electrode material for a lithium secondary battery that releases or occludes ions at a positive electrode or a negative electrode,
Graphite having a particle size of 100 μm or less,
The ratio of the hexagonal crystal structure in the graphite is 80% or more,
The negative electrode material for a lithium secondary battery, wherein the graphite has a lithium release capacity of 320 mAh / g or more.
正極または負極にてイオンを放出あるいは吸蔵するリチウム二次電池用の負極材料であって、
天然黒鉛結晶の粒子からなり、
前記粒子は、粒径が100μm以下であり、六方晶構造の存在割合が80%以上であることを特徴とする、リチウム二次電池用の負極材料。
A negative electrode material for a lithium secondary battery that releases or occludes ions at a positive electrode or a negative electrode,
Consisting of natural graphite crystal particles,
The negative electrode material for a lithium secondary battery, wherein the particles have a particle size of 100 μm or less and a hexagonal structure existing ratio of 80% or more.
正極または負極にてイオンを放出あるいは吸蔵するリチウム二次電池用の負極材料であって、
天然黒鉛結晶の粒子からなり、
前記黒鉛結晶の粒子中の、六方晶構造の存在割合は80%以上であり、
前記黒鉛結晶の粒子はリチウムの放出容量は320mAh/g以上であることを特徴とする、リチウム二次電池用の負極材料。
A negative electrode material for a lithium secondary battery that releases or occludes ions at a positive electrode or a negative electrode,
Consisting of natural graphite crystal particles,
The ratio of the hexagonal crystal structure in the graphite crystal particles is 80% or more,
The negative electrode material for a lithium secondary battery, wherein the graphite crystal particles have a lithium release capacity of 320 mAh / g or more.
正極または負極にてイオンを放出あるいは吸蔵するリチウム二次電池用の負極材料であって、
六方晶構造と菱面体晶構造とを有する粒径100μm以下の黒鉛であり、
当該黒鉛は、前記六方晶構造の存在割合が80%以上であり、リチウムの放出容量が320mAh/g以上であることを特徴とする、リチウム二次電池用の負極材料。
A negative electrode material for a lithium secondary battery that releases or occludes ions at a positive electrode or a negative electrode,
A graphite having a hexagonal crystal structure and a rhombohedral crystal structure and having a particle size of 100 μm or less,
A negative electrode material for a lithium secondary battery, wherein the graphite has a hexagonal structure existing ratio of 80% or more and a lithium release capacity of 320 mAh / g or more.
請求項1ないし13のいずれかに記載の、リチウム二次電池用の負極材料において、
前記黒鉛は、Siの含有率が10ppm以下であることを特徴とする、リチウム二次電池用の負極材料。
The negative electrode material for a lithium secondary battery according to any one of claims 1 to 13 ,
The negative electrode material for a lithium secondary battery, wherein the graphite has a Si content of 10 ppm or less.
JP29269199A 1999-10-14 1999-10-14 Negative electrode material for lithium secondary battery Expired - Lifetime JP3614734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29269199A JP3614734B2 (en) 1999-10-14 1999-10-14 Negative electrode material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29269199A JP3614734B2 (en) 1999-10-14 1999-10-14 Negative electrode material for lithium secondary battery

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7084196A Division JP3069509B2 (en) 1995-04-10 1995-04-10 Non-aqueous secondary battery and method for producing graphite powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004279352A Division JP2005050822A (en) 2004-09-27 2004-09-27 Lithium secondary cell

Publications (2)

Publication Number Publication Date
JP2000106183A JP2000106183A (en) 2000-04-11
JP3614734B2 true JP3614734B2 (en) 2005-01-26

Family

ID=17785066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29269199A Expired - Lifetime JP3614734B2 (en) 1999-10-14 1999-10-14 Negative electrode material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3614734B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4561041B2 (en) * 2002-03-28 2010-10-13 Tdk株式会社 Lithium secondary battery
KR101837785B1 (en) * 2010-05-12 2018-03-12 미쯔비시 케미컬 주식회사 Nonaqueous-electrolyte secondary battery
JP5799752B2 (en) * 2010-10-29 2015-10-28 三菱化学株式会社 Non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2000106183A (en) 2000-04-11

Similar Documents

Publication Publication Date Title
JP3069509B2 (en) Non-aqueous secondary battery and method for producing graphite powder
JP3997702B2 (en) Nonaqueous electrolyte secondary battery
JP3988374B2 (en) Non-aqueous electrolyte secondary battery
JP4491946B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP3921931B2 (en) Cathode active material and non-aqueous electrolyte battery
KR100865242B1 (en) Non-aqueous electrolyte cell
JP4742413B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4734700B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP5940529B2 (en) Lithium titanate aggregate, lithium ion secondary battery and lithium ion capacitor using the same
WO2011068255A1 (en) Pyrophosphate compound and method for producing same
JP2002110164A (en) Method for manufacturing positive electrode active material and nonaqueous electrolytic battery
JP4491949B2 (en) Method for producing positive electrode active material and method for producing non-aqueous electrolyte battery
JP4724911B2 (en) Nonaqueous electrolyte secondary battery
CN114864894B (en) High-pressure-resistant coating modified lithium-rich manganese-based positive electrode material and preparation method and application thereof
CN108878880B (en) Negative electrode active material for nonaqueous secondary battery and nonaqueous secondary battery
JP3614734B2 (en) Negative electrode material for lithium secondary battery
US20060228630A1 (en) Non-aqueous secondary battery having negative electrode including graphite powder
JP3614743B2 (en) Anode material for lithium secondary battery
JP2017107843A (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
US10497967B2 (en) Negative-electrode active material for non-aqueous secondary battery and non-aqueous secondary battery
JP2005050822A (en) Lithium secondary cell
JP2002117837A (en) Manufacturing method of positive electrode active material and manufacturing method of nonaqueous electrolyte battery
JP2018113192A (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery
JP2017107844A (en) Negative electrode active material, negative electrode using the same, and lithium ion secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term