JP3614337B2 - Pressure controller - Google Patents

Pressure controller Download PDF

Info

Publication number
JP3614337B2
JP3614337B2 JP2000025313A JP2000025313A JP3614337B2 JP 3614337 B2 JP3614337 B2 JP 3614337B2 JP 2000025313 A JP2000025313 A JP 2000025313A JP 2000025313 A JP2000025313 A JP 2000025313A JP 3614337 B2 JP3614337 B2 JP 3614337B2
Authority
JP
Japan
Prior art keywords
pressure
valve
diaphragm
pressure side
spring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000025313A
Other languages
Japanese (ja)
Other versions
JP2001216031A (en
Inventor
元久 平野
正成 庄司
佳一 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2000025313A priority Critical patent/JP3614337B2/en
Publication of JP2001216031A publication Critical patent/JP2001216031A/en
Application granted granted Critical
Publication of JP3614337B2 publication Critical patent/JP3614337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Safety Valves (AREA)
  • Control Of Fluid Pressure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば化学物質の分析装置や半導体の製造装置等で用いる各種の流体の流量制御装置に用いられ、流路内の流体の圧力を制御する圧力制御器に関する。
【0002】
【従来の技術】
近年、ダイオキシン汚染等の環境汚染が社会問題となり、その対策の一環として、環境汚染物質を現場および屋外で容易に測定分析する分析装置が求められている。現場および屋外での測定分析には分析装置の小型化が必須であり、分析装置に用いる気体や液体の流量制御装置の小型化が不可欠になっている。この流量制御装置には、例えば高圧ガスボンベ内の高圧ガスを所定の低圧力に変換する機能を有する圧力制御器が備えられており、流量制御装置の小型化にはまず圧力制御器の小型化が必要になる。
【0003】
図9は、従来の圧力制御器の断面構成を示す。図において、高圧側Aと低圧側Bとの間には、流体の流量調節および封止機能を有する弁1が配置される。弁1は、流体圧力の設定機能を有する調圧スプリング2およびダイヤフラム3と、封止時に弁1の気密性を高めるためのばね4に挟まれ、開閉の釣り合いがとられている。
【0004】
調圧スプリング2の押込み力が0、低圧側Bの圧力が0でダイヤフラム3の押上げ力が0の場合には、高圧側Aの圧力とばね4の押上げ力により弁1が閉じ、封止状態になって気密性が維持される。
【0005】
ここで、調圧スプリング2を押し込むと弁1が開き、高圧側Aから低圧側Bに流体が流れ、ダイヤフラム3にかかる低圧側Bの圧力が増して設定された値を越えると、調圧スプリング2の押込み力よりも勝って弁1が閉じる。また、弁1が閉じた状態で低圧側Bの圧力が低下すると、ダイヤフラム3にかかる圧力が低下して調圧スプリング2の押込み力が勝り、弁1が開いて低圧側Bの圧力が上昇する。これを繰り返すことにより、低圧側Bの圧力が調圧スプリング2により設定される所定圧力に維持される。
【0006】
【発明が解決しようとする課題】
従来の圧力制御器は、封止状態のときに気密性を高めるために、弁1にかかる高圧側Aの圧力だけでは十分でないので、ばね4を用いて弁1を上向きに押しつける構造になっていた。従来の圧力制御器にはこのばね4に要するスペースが必要であり、これが小型化を阻む要因になっており、延いては流量制御装置全体の小型を阻む要因になっていた。
【0007】
本発明は、気密性を高めるばねを省略しても気密性を維持し、小型化を図ることができる圧力制御器を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、高圧側から低圧側に流入する流体の流量調節および封止機能を有する弁と、流体圧力の設定機能を有する調圧スプリングおよびダイヤフラムとを備え、高圧側の圧力により弁に作用する力および低圧側の圧力によりダイヤフラムに作用する力と調圧スプリングが弁に作用する力の均衡により弁を開閉し、低圧側の流体圧力を制御する圧力制御器において、ダイヤフラムは、弁に対して閉じる方向にばね力を与える変形を有するとともに、弁が閉じた位置で、さらに弁を閉じる方向にばね力を与える変形を有する構造とする(請求項1)。
【0009】
また、ダイヤフラムの変形およびその変形により生じるばね力は、ダイヤフラムの撓みによる復元力である構造とする(請求項2)。
【0010】
【発明の実施の形態】
図1は、本発明の圧力制御器の実施形態の断面構成を示す。図において、高圧側Aと低圧側Bとの間には、流体の流量調節および封止機能を有する弁1が配置される。弁1は、流体圧力の設定機能を有する調圧スプリング2およびダイヤフラム3に固定され、開閉する構成である。
【0011】
ここで、本発明の圧力制御器に用いるダイヤフラム3は、ホルダー5を介してハウジング6に保持され、弁1を閉じる方向の上向きの力(予圧)がかかるように変形されていることが特徴である。このようなダイヤフラム3は、金属(ステンレス等)、ゴム、高分子材料等の薄板構造により可能であり、その構造や材質等により予圧の大きさが異なる。この予圧は、従来のばね4による押上げ力に相当するので、ばね4がなくても封止時の気密性を高めることができる。このばね4がない構造により、従来構成に比べて小型化することができる。
【0012】
図2は、本発明の圧力制御器の動作原理を示す。ここで、高圧側Aの圧力P1 が弁1に作用する上向きの力をF1 、低圧側Bの圧力P2 がダイヤフラム3に作用する上向きの力をF2 、調圧スプリング2の下向きに作用するばね力をF3 、ダイヤフラム3の変形によって発生する上向きのばね力をF4 とする。
【0013】
図2(a) は、調圧スプリング2を押し込まない場合に弁1が閉じた封止状態を示す。このとき、ダイヤフラム3を中立位置から図中下向きに撓ませておくことにより、その復元力により弁2に図中上向きのばね力F4 を作用させ、弁2に予圧をかけて気密性を高めることができる。このため、高圧側Aに高圧ボンベを接続した場合でも、弁2の気密性により高圧流体が低圧側Bに流入することを防ぐことができる。なお、本状態では、P1 ≠0、P2 =0、F1 ≠0、F2 =0、F3 =0、F4 ≠0である。
【0014】
次に、低圧側Bの圧力P2 を所定の圧力に設定するには、図2(b) に示すように調圧スプリング2を押し込む(F3 ≠0)。調圧スプリング2の押し込みにより、ダイヤフラム3を介して弁1が図中下向きに押されて開放状態になり、高圧流体が低圧側Bに流入して低圧側Bの圧力P2 が上昇する。このとき、弁1の開閉は、弁1に作用する力の釣り合い条件によって決まり、
F1+F2+F4 <F3 …(1)
のように、弁1に対して上向きに作用する力が下向きに作用する力より小さければ開放状態となる。そして、低圧側Bの圧力が上昇してP2 ≠0、F2 ≠0となる。すなわち、(1) 式は、F1 ≠0、F2 ≠0、F3 ≠0、F4 ≠0の条件下で成立する。
【0015】
この条件成立により弁1が開放状態になり、低圧側Bの圧力P2 が上昇してダイヤフラム3に作用する力F2 が増加しある閾値を越えると、(1) 式の不等号が逆転して
F1+F2+F4 >F3 …(2)
となり、弁1を上向きに押し上げる力が勝り、図2(c) に示すように弁1が閉じる。なお、調圧スプリング2のばね力F3 を調整することにより、(2) 式が成立して弁1が閉じるときの低圧側Bの圧力P2 (ダイヤフラム3に作用する力F2 )が決まる。
【0016】
(2) 式が成立して弁1が閉じた後に、低圧側Bの流体消費により圧力P2 が低下すると、ダイヤフラム3に作用する力F2 が低下して再び (1)式が成立し、弁1が開放状態になって高圧側Aから低圧側Bに流体が供給され、低圧側Bの圧力P2 が上昇する。その後、低圧側Bの圧力P2 が上昇して所定圧力に達すると、再び (2)式が成立して弁1が閉じる。以上の動作を繰り返すことにより、低圧側Bの圧力P2 を調圧スプリング2により設定される所定圧力に維持することができる。
【0017】
以上の動作原理を確認するために行った実験例を以下に示す。図3は、本発明の圧力制御器の動作を確認するための測定装置の構成例を示す。本発明の圧力制御器11の高圧側ポートAには5kg/cmの高圧ガスボンベ12を接続し、低圧側ポートBにはニードル弁13および圧力センサ14を接続する。圧力センサ14には、測定圧力データを蓄積するデータ蓄積部15を接続し、さらにパーソナルコンピュータ16でその蓄積データを処理して測定圧力の経時変化等を観測する。
【0018】
図4は第1の測定例であり、本発明の圧力制御器11の調圧スプリング2を調整するねじを順次回転し、低圧側Bの圧力を測定した結果を示す。この測定では、ニードル弁13を閉じ、圧力制御器11の圧力調整ねじを半回転ずつ回転し、各回転位置で10秒間程度静止したのちの圧力センサ14の出力値を用いた。各回転位置で、低圧側Bを所定の圧力に設定可能であることが確認できた。
【0019】
図5は第2の測定例であり、低圧側Bの圧力保持性能を測定した結果を示す。この測定では、低圧側Bの圧力を1,2,3気圧に設定し、各圧力で10分間程度の低圧側Bの圧力状態を観測した。各設定圧力で一定値に保持できることが確認できた。
【0020】
図6〜図8は第3の測定例であり、低圧側Bに生ずる負荷変動に対する追従性能を測定した結果を示す。この測定では、ニードル弁13を随時開閉し、低圧側Bの圧力を変動させた後に設定圧力になるまでの追従性能を観測した。図6は設定圧力が1気圧の場合、図7は設定圧力が2気圧の場合、図8は設定圧力が3気圧の場合を示す。本発明の圧力制御器では、低圧側Bの圧力が一時的に減少しても設定圧力が速やかに回復することが確認できた。
【0021】
【発明の効果】
以上説明したように、本発明の圧力制御器は、ダイヤフラムの変形により生じるばね力により、弁を閉じる方向に常に予圧をかけることが可能となり、気密性を高めるばねを省略しても気密性を維持することができる。
【0022】
また、気密性を高めるためのばねが不要となるので、その分だけ圧力制御器を小型化することができ、コスト低減を図ることができる。
【図面の簡単な説明】
【図1】本発明の圧力制御器の実施形態の断面構成を示す図。
【図2】本発明の圧力制御器の動作原理を説明する図。
【図3】本発明の圧力制御器の動作を確認するための測定装置の構成例を示す図。
【図4】本発明の圧力制御器の第1の測定例を示す図。
【図5】本発明の圧力制御器の第2の測定例を示す図。
【図6】本発明の圧力制御器の第3の測定例(設定圧力1気圧)を示す図。
【図7】本発明の圧力制御器の第3の測定例(設定圧力2気圧)を示す図。
【図8】本発明の圧力制御器の第3の測定例(設定圧力3気圧)を示す図。
【図9】従来の圧力制御器の断面構成を示す図。
【符号の説明】
1 弁
2 調圧スプリング
3 ダイヤフラム
4 ばね
5 ホルダー
6 ハウジング
11 本発明の圧力制御器
12 高圧ガスボンベ
13 ニードル弁
14 圧力センサ
15 データ蓄積部
16 パーソナルコンピュータ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pressure controller that is used in, for example, a flow control device for various fluids used in a chemical substance analysis device, a semiconductor manufacturing device, or the like, and controls the pressure of the fluid in a flow path.
[0002]
[Prior art]
In recent years, environmental pollution such as dioxin pollution has become a social problem, and as part of its countermeasures, there is a need for an analyzer that can easily measure and analyze environmental pollutants on site and outdoors. For measurement analysis in the field and outdoors, downsizing of the analyzer is indispensable, and downsizing of the gas and liquid flow control devices used in the analyzer is indispensable. This flow control device is provided with a pressure controller having a function of converting, for example, high pressure gas in a high pressure gas cylinder into a predetermined low pressure. For downsizing of the flow control device, first, downsizing of the pressure controller is required. I need it.
[0003]
FIG. 9 shows a cross-sectional configuration of a conventional pressure controller. In the figure, between the high pressure side A and the low pressure side B, a valve 1 having a fluid flow rate adjustment and sealing function is arranged. The valve 1 is sandwiched between a pressure regulating spring 2 and a diaphragm 3 having a fluid pressure setting function, and a spring 4 for enhancing the airtightness of the valve 1 at the time of sealing, and is balanced for opening and closing.
[0004]
When the pushing force of the pressure adjusting spring 2 is 0, the pressure on the low pressure side B is 0, and the pushing force of the diaphragm 3 is 0, the valve 1 is closed and sealed by the pressure on the high pressure side A and the pushing force of the spring 4 Airtightness is maintained by stopping.
[0005]
Here, when the pressure adjusting spring 2 is pushed in, the valve 1 opens, the fluid flows from the high pressure side A to the low pressure side B, and when the pressure on the low pressure side B applied to the diaphragm 3 increases and exceeds the set value, the pressure adjusting spring The valve 1 closes in excess of the pushing force of 2. In addition, when the pressure on the low pressure side B decreases with the valve 1 closed, the pressure applied to the diaphragm 3 decreases, the pushing force of the pressure regulating spring 2 increases, and the valve 1 opens to increase the pressure on the low pressure side B. . By repeating this, the pressure on the low pressure side B is maintained at a predetermined pressure set by the pressure adjusting spring 2.
[0006]
[Problems to be solved by the invention]
In the conventional pressure controller, the pressure on the high-pressure side A applied to the valve 1 is not sufficient in order to increase the airtightness in the sealed state, so that the valve 1 is pressed upward using the spring 4. It was. The space required for the spring 4 is required for the conventional pressure controller, which is a factor that hinders downsizing, and further hinders downsizing of the entire flow rate control device.
[0007]
An object of the present invention is to provide a pressure controller that maintains airtightness even when a spring that enhances airtightness is omitted, and can be downsized.
[0008]
[Means for Solving the Problems]
The present invention includes a valve having a flow rate adjustment and sealing function for fluid flowing from a high pressure side to a low pressure side, and a pressure adjusting spring and a diaphragm having a fluid pressure setting function, and acts on the valve by the pressure on the high pressure side. In the pressure controller that controls the fluid pressure on the low pressure side by opening and closing the valve by the balance between the force acting on the diaphragm by the force and the pressure on the low pressure side and the force acting on the valve by the pressure regulating spring, the diaphragm is and has a deformation to close providing a spring force in a direction, at a position where the valve is closed, a structure having a deformation further providing a spring force in the closing direction the valve (claim 1).
[0009]
Further, the diaphragm is deformed and the spring force generated by the deformation is a restoring force due to the bending of the diaphragm ( claim 2 ).
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a cross-sectional configuration of an embodiment of a pressure controller of the present invention. In the figure, between the high pressure side A and the low pressure side B, a valve 1 having a fluid flow rate adjustment and sealing function is arranged. The valve 1 is fixed to a pressure regulating spring 2 and a diaphragm 3 having a fluid pressure setting function, and is configured to open and close.
[0011]
Here, the diaphragm 3 used in the pressure controller of the present invention is held by the housing 6 via the holder 5, and is characterized in that it is deformed so that an upward force (preload) in the direction of closing the valve 1 is applied. is there. Such a diaphragm 3 can be formed by a thin plate structure such as metal (stainless steel, etc.), rubber, polymer material or the like, and the magnitude of the preload differs depending on the structure or material. Since this preload corresponds to the pushing force by the conventional spring 4, the airtightness at the time of sealing can be improved without the spring 4. Due to the structure without the spring 4, the size can be reduced as compared with the conventional configuration.
[0012]
FIG. 2 shows the operating principle of the pressure controller of the present invention. Here, an upward force acting on the valve 1 by the pressure P1 on the high pressure side A is F1, an upward force acting on the diaphragm 3 on the pressure P2 on the low pressure side B is F2, and a spring force acting on the pressure regulating spring 2 downward. Is F3, and the upward spring force generated by the deformation of the diaphragm 3 is F4.
[0013]
FIG. 2A shows a sealed state in which the valve 1 is closed when the pressure adjusting spring 2 is not pushed. At this time, by bending the diaphragm 3 downward from the neutral position in the figure, an upward spring force F4 in the figure is applied to the valve 2 by its restoring force, and preload is applied to the valve 2 to improve airtightness. Can do. For this reason, even when a high pressure cylinder is connected to the high pressure side A, the high pressure fluid can be prevented from flowing into the low pressure side B due to the airtightness of the valve 2. In this state, P1 ≠ 0, P2 = 0, F1 ≠ 0, F2 = 0, F3 = 0, and F4 ≠ 0.
[0014]
Next, to set the pressure P2 on the low pressure side B to a predetermined pressure, the pressure adjusting spring 2 is pushed in as shown in FIG. 2B (F3 ≠ 0). When the pressure adjusting spring 2 is pushed in, the valve 1 is pushed downward in the figure through the diaphragm 3 to be opened, and the high-pressure fluid flows into the low-pressure side B and the pressure P2 on the low-pressure side B rises. At this time, the opening and closing of the valve 1 is determined by the balance condition of the force acting on the valve 1,
F1 + F2 + F4 <F3 (1)
If the force acting upward with respect to the valve 1 is smaller than the force acting downward as in FIG. Then, the pressure on the low-pressure side B increases and P2 ≠ 0 and F2 ≠ 0. That is, the equation (1) is established under the conditions of F1 ≠ 0, F2 ≠ 0, F3 ≠ 0, and F4 ≠ 0.
[0015]
When this condition is satisfied, the valve 1 is opened, and when the pressure P2 on the low pressure side B increases and the force F2 acting on the diaphragm 3 increases and exceeds a certain threshold value, the inequality sign in the equation (1) is reversed and F1 + F2 + F4> F3 (2)
Thus, the force for pushing up the valve 1 is won, and the valve 1 is closed as shown in FIG. By adjusting the spring force F3 of the pressure adjusting spring 2, the pressure P2 on the low pressure side B (force F2 acting on the diaphragm 3) when the equation (2) is established and the valve 1 is closed is determined.
[0016]
After the expression (2) is established and the valve 1 is closed, when the pressure P2 is reduced due to the fluid consumption on the low pressure side B, the force F2 acting on the diaphragm 3 is reduced, and the expression (1) is established again. Is opened, fluid is supplied from the high pressure side A to the low pressure side B, and the pressure P2 on the low pressure side B rises. Thereafter, when the pressure P2 on the low pressure side B increases and reaches a predetermined pressure, the equation (2) is established again and the valve 1 is closed. By repeating the above operation, the pressure P2 on the low pressure side B can be maintained at a predetermined pressure set by the pressure adjusting spring 2.
[0017]
An example of an experiment conducted to confirm the above operation principle is shown below. FIG. 3 shows a configuration example of a measuring device for confirming the operation of the pressure controller of the present invention. A high pressure gas cylinder 12 of 5 kg / cm 2 is connected to the high pressure side port A of the pressure controller 11 of the present invention, and a needle valve 13 and a pressure sensor 14 are connected to the low pressure side port B. A data storage unit 15 for storing measured pressure data is connected to the pressure sensor 14, and the stored data is further processed by the personal computer 16 to observe changes in measured pressure over time.
[0018]
FIG. 4 is a first measurement example, and shows the result of measuring the pressure on the low pressure side B by sequentially rotating the screw for adjusting the pressure regulating spring 2 of the pressure controller 11 of the present invention. In this measurement, the output value of the pressure sensor 14 was used after the needle valve 13 was closed, the pressure adjusting screw of the pressure controller 11 was rotated half a turn, and rested at each rotational position for about 10 seconds. It was confirmed that the low pressure side B can be set to a predetermined pressure at each rotational position.
[0019]
FIG. 5 is a second measurement example, and shows the result of measuring the pressure holding performance on the low pressure side B. FIG. In this measurement, the pressure on the low-pressure side B was set to 1, 2, and 3 atmospheres, and the pressure state on the low-pressure side B was observed for about 10 minutes at each pressure. It was confirmed that a constant value could be maintained at each set pressure.
[0020]
6 to 8 show a third measurement example and show the results of measuring the follow-up performance with respect to the load fluctuation occurring on the low-pressure side B. FIG. In this measurement, the needle valve 13 was opened and closed as needed, and the follow-up performance until the set pressure was reached after the pressure on the low pressure side B was varied was observed. 6 shows a case where the set pressure is 1 atm, FIG. 7 shows a case where the set pressure is 2 atm, and FIG. 8 shows a case where the set pressure is 3 atm. In the pressure controller of the present invention, it was confirmed that the set pressure quickly recovered even if the pressure on the low pressure side B temporarily decreased.
[0021]
【The invention's effect】
As described above, the pressure controller of the present invention can always apply a preload in the direction in which the valve is closed by the spring force generated by the deformation of the diaphragm. Can be maintained.
[0022]
Further, since a spring for improving the airtightness is not necessary, the pressure controller can be reduced in size, and the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cross-sectional configuration of an embodiment of a pressure controller of the present invention.
FIG. 2 is a diagram for explaining the operating principle of the pressure controller of the present invention.
FIG. 3 is a diagram showing a configuration example of a measuring apparatus for confirming the operation of the pressure controller of the present invention.
FIG. 4 is a diagram showing a first measurement example of the pressure controller of the present invention.
FIG. 5 is a diagram showing a second measurement example of the pressure controller of the present invention.
FIG. 6 is a diagram showing a third measurement example (set pressure 1 atm) of the pressure controller of the present invention.
FIG. 7 is a diagram showing a third measurement example (set pressure 2 atm) of the pressure controller of the present invention.
FIG. 8 is a diagram showing a third measurement example (set pressure of 3 atm) of the pressure controller of the present invention.
FIG. 9 is a diagram showing a cross-sectional configuration of a conventional pressure controller.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Valve 2 Pressure regulation spring 3 Diaphragm 4 Spring 5 Holder 6 Housing 11 Pressure controller 12 of this invention High pressure gas cylinder 13 Needle valve 14 Pressure sensor 15 Data storage part 16 Personal computer

Claims (2)

高圧側から低圧側に流入する流体の流量調節および封止機能を有する弁と、前記流体圧力の設定機能を有する調圧スプリングおよびダイヤフラムとを備え、前記高圧側の圧力により前記弁に作用する力および前記低圧側の圧力により前記ダイヤフラムに作用する力と前記調圧スプリングが弁に作用する力の均衡により前記弁を開閉し、前記低圧側の流体圧力を制御する圧力制御器において、
前記ダイヤフラムは、前記弁に対して閉じる方向にばね力を与える変形を有するとともに、前記弁が閉じた位置で、さらに前記弁を閉じる方向にばね力を与える変形を有することを特徴とする圧力制御器。
A force that acts on the valve by the pressure on the high pressure side, comprising: a valve having a function of regulating and sealing the flow rate of fluid flowing from the high pressure side to the low pressure side; and a pressure adjusting spring and a diaphragm having a function of setting the fluid pressure. And a pressure controller that opens and closes the valve by a balance between a force acting on the diaphragm by the pressure on the low pressure side and a force acting on the valve by the pressure adjusting spring, and controls the fluid pressure on the low pressure side,
The diaphragm has a deformation for applying a spring force in a closing direction with respect to the valve, and has a deformation for applying a spring force in a closing direction of the valve at a position where the valve is closed. vessel.
前記ダイヤフラムの変形およびその変形により生じるばね力は、前記ダイヤフラムの撓みによる復元力であることを特徴とする請求項1に記載の圧力制御器。The pressure controller according to claim 1 , wherein the deformation of the diaphragm and the spring force generated by the deformation are a restoring force due to the deflection of the diaphragm.
JP2000025313A 2000-02-02 2000-02-02 Pressure controller Expired - Fee Related JP3614337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000025313A JP3614337B2 (en) 2000-02-02 2000-02-02 Pressure controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000025313A JP3614337B2 (en) 2000-02-02 2000-02-02 Pressure controller

Publications (2)

Publication Number Publication Date
JP2001216031A JP2001216031A (en) 2001-08-10
JP3614337B2 true JP3614337B2 (en) 2005-01-26

Family

ID=18551188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000025313A Expired - Fee Related JP3614337B2 (en) 2000-02-02 2000-02-02 Pressure controller

Country Status (1)

Country Link
JP (1) JP3614337B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050040253A (en) * 2003-10-28 2005-05-03 현대자동차주식회사 Pressure control valve for noise reduction of disel engine
US7316240B2 (en) * 2005-04-21 2008-01-08 Taiwan Semiconductor Manufacturing Co., Ltd. Exhaust system and mini-exhaust static pressure controlling apparatus thereof

Also Published As

Publication number Publication date
JP2001216031A (en) 2001-08-10

Similar Documents

Publication Publication Date Title
JP3863505B2 (en) Pressure sensor, pressure control device, and automatic zero point correction device for pressure type flow rate control device
US7964317B2 (en) Valve having valve element displaced by at least one of a movement of a diaphragm and a movement of an actuator, and fuel cell using the valve
KR101572407B1 (en) Diagnostic mechanism in differential pressure type mass flow controller
JP4719516B2 (en) Electronically controlled back pressure regulator
JP3276936B2 (en) Flow control valve
US8714188B2 (en) Method for water hammerless opening of fluid passage, and method for supplying chemical solutions and device for water hammerless opening for which the method is used
JP5892559B2 (en) Pump device
EP1356260A1 (en) Product leak testing
EP2065779A1 (en) Pressure regulator and vibration isolator
US7314208B1 (en) Apparatus and method for selectively channeling a fluid
US5340081A (en) Means for positively seating a piezoceramic element in a piezoelectric valve during inlet gas injection
JP3614337B2 (en) Pressure controller
KR100686595B1 (en) Method for closing fluid passage, and water hammerless valve
US8469047B2 (en) System to control pressure in a test device
JP6090454B2 (en) Pressure control valve and supercritical fluid chromatograph
CN114791050A (en) Automatic back pressure valve and fluid metering and adding system
KR100916658B1 (en) Apparatus for generating and controlling small pressure
TWI228170B (en) Method for closing fluid passage, water hammerless valve and water hammerless closing device
JP4659739B2 (en) Expansion valve block with regulated high and low pressure circuit control means
Hoffmann et al. Palladium Based Mems Hydrogen Sensors
WO2015029251A1 (en) Pressure control valve and supercritical fluid chromatograph
RU52208U1 (en) GAS PRESSURE REGULATOR
SU582479A1 (en) Device for gas analysis
Dür et al. Measured Reed Valve Dynamics of Diaphragm Pumps with Laser Doppler Vibrometer
EP3557363A1 (en) Gas pressure regulator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071112

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees