JP3614051B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP3614051B2
JP3614051B2 JP27066899A JP27066899A JP3614051B2 JP 3614051 B2 JP3614051 B2 JP 3614051B2 JP 27066899 A JP27066899 A JP 27066899A JP 27066899 A JP27066899 A JP 27066899A JP 3614051 B2 JP3614051 B2 JP 3614051B2
Authority
JP
Japan
Prior art keywords
catalyst
fuel
air
exhaust
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27066899A
Other languages
Japanese (ja)
Other versions
JP2001090591A (en
Inventor
信也 広田
孝充 浅沼
俊祐 利岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP27066899A priority Critical patent/JP3614051B2/en
Publication of JP2001090591A publication Critical patent/JP2001090591A/en
Application granted granted Critical
Publication of JP3614051B2 publication Critical patent/JP3614051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の排気浄化装置に関する。
【0002】
【従来の技術】
機関排気通路内に触媒を配置した場合には触媒温度が十分に高くならないと触媒による良好な排気浄化作用は行われない。そこで機関の出力を発生させるための主燃料の噴射に加え副燃料を膨張行程中に追加噴射し、副燃料を燃焼させることにより排気ガス温を上昇させ、それによって触媒の温度を上昇させるようにした内燃機関が公知である(特開平10−212995号公報参照)。
【0003】
【発明が解決しようとする課題】
しかしながらこの内燃機関において機関排気通路内に一対の触媒を直列に配置し、副燃料を追加噴射することにより下流側の触媒の温度を上昇させようとすると上流側の触媒の温度が過度に高くなってしまうという問題がある。
【0004】
【課題を解決するための手段】
上記問題点を解決するために1番目の発明では、機関排気通路内に第1の触媒を配置すると共に第1の触媒下流の機関排気通路内に第2の触媒を配置した内燃機関において、第2の触媒を異なる気筒に対して共通の機関排気通路内に配置し、第2の触媒が活性化するまでは各気筒に対し主燃料に加えて膨張行程中又は排気行程中に副燃料を噴射して第1の触媒および第2の触媒を昇温させ、第2の触媒が活性化したときには副燃料の噴射を停止し上述の異なる気筒のうちの一部の気筒の空燃比をリッチにすると共に残りの気筒の空燃比をリーンにして第2の触媒を昇温するようにしている。
【0005】
2番目の発明では1番目の発明において、第の触媒下流の機関排気通路内に排気制御弁を配置して第の触媒が活性化するまでは排気制御弁をほぼ全閉にするようにしている。
【0006】
【発明の実施の形態】
図1および図2は本発明を成層燃焼式内燃機関に適用した場合を示している。しかしながら本発明は均一リーン空燃比のもとで燃焼が行われる火花点火式内燃機関、および空気過剰のもとで燃焼が行われるディーゼル機関にも適用することができる。
【0007】
図1を参照すると、1は機関本体を示し、機関本体1は1番気筒#1、2番気筒#2、3番気筒#3および4番気筒#4からなる4つの気筒を有する。図2は各気筒#1,#2,#3,#4の側面断面図を示している。図2を参照すると、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6はシリンダヘッド3の内壁面周縁部に配置された燃料噴射弁、7はシリンダヘッド3の内壁面中央部に配置された点火栓、8は吸気弁、9は吸気ポート、10は排気弁、11は排気ポートを夫々示す。
【0008】
図1および図2を参照すると、吸気ポート9は対応する吸気枝管12を介してサージタンク13に連結され、サージタンク13は吸気ダクト14およびエアフローメータ15を介してエアクリーナ16に連結される。吸気ダクト14内にはステップモータ17により駆動されるスロットル弁18が配置される。一方、図1に示される実施例では点火順序が1−3−4−2とされており、図1に示されるように点火順序が一つおきの気筒#1,#4の排気ポート11は共通の第1の排気マニホルド19に連結され、点火順序が一つおきの残りの気筒#2,#3の排気ポート11は共通の第2の排気マニホルド20に連結される。これら第1の排気マニホルド19と第2の排気マニホルド20の各枝管内には夫々第1の触媒21が配置される。
【0009】
一方、第1の排気マニホルド19および第2の排気マニホルド20は夫々対応する第2の触媒22を介して共通の排気管23に連結される。この共通の排気管23は排気管24および第3の触媒25を介して排気管26に連結され、この排気管26内には負圧ダイアフラム装置又は電気モータからなるアクチュエータ27により駆動される排気制御弁28が配置される。
【0010】
図1に示されるように排気管23とサージタンク13とは排気ガス再循環(以下EGRと称す)通路29を介して互いに連結され、EGR通路29内には電気制御式EGR制御弁30が配置される。燃料噴射弁6は共通の燃料リザーバ、いわゆるコモンレール31に連結される。このコモンレール31内へは燃料タンク32内の燃料が電気制御式の吐出量可変な燃料ポンプ33を介して供給され、コモンレール31内に供給された燃料が各燃料噴射弁6に供給される。コモンレール31にはコモンレール31内の燃料圧を検出するための燃料圧センサ34が取付けられ、燃料圧センサ34の出力信号に基づいてコモンレール31内の燃料圧が目標燃料圧となるように燃料ポンプ33の吐出量が制御される。
【0011】
電子制御ユニット40はデジタルコンピュータからなり、双方向性バス41によって互いに接続されたROM(リードオンリメモリ)42、RAM(ランダムアクセスメモリ)43、CPU(マイクロプロセッサ)44、入力ポート45および出力ポート46を具備する。エアフローメータ15は吸入空気量に比例した出力電圧を発生し、この出力電圧は対応するAD変換器47を介して入力ポート45に入力される。更に入力ポート45には燃料圧センサ34の出力信号が対応するAD変換器47を介して入力される。また、第2の触媒22の温度を検出するための温度センサ35および第3の触媒36の温度を検出するための温度センサ36が設けられ、これら温度センサ35,36の出力信号が対応するAD変換器47を介して入力ポート45に入力される。更に排気管24内には空燃比センサ37が配置され、この空燃比センサ37の出力信号が対応するAD変換器47を介して入力ポート45に入力される。
【0012】
また、アクセルペダル50にはアクセルペダル50の踏込み量Lに比例した出力電圧を発生する負荷センサ51が接続され、負荷センサ51の出力電圧は対応するAD変換器47を介して入力ポート45に入力される。また、入力ポート45にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ52が接続される。一方、出力ポート46は対応する駆動回路48を介して燃料噴射弁6、点火栓7、スロットル弁制御用ステップモータ17、排気制御弁制御用アクチュエータ27、EGR制御弁30および燃料ポンプ33に接続される。
【0013】
図3は燃料噴射量Q1,Q2,Q(=Q+Q)、噴射開始時期θS1,θS2、噴射完了時期θE1,θE2および燃焼室5内における平均燃料比A/Fを示している。なお、図3において横軸Lはアクセルペダル50の踏込み量、即ち要求負荷を示している。
図3からわかるように要求負荷LがLよりも低いときには圧縮行程末期のθS2からθE2の間において燃料噴射Q2が行われる。このときには平均空燃比A/Fはかなりリーンとなっている。要求負荷LがLとLの間のときには吸気行程初期のθS1からθE1の間において第1回目の燃料噴射Q1が行われ、次いで圧縮行程末期のθS2からθE2の間において第2回目の燃料噴射Q2が行われる。このときにも空燃比A/Fはリーンとなっている。要求負荷LがLよりも大きいときには吸気行程初期のθS1からθE1の間において燃料噴射Q1が行われる。このときには要求負荷Lが低い領域では平均空燃比A/Fがリーンとされており、要求負荷Lが高くなると平均空燃比A/Fが理論空燃比とされ、要求負荷Lが更に高くなると平均空燃比A/Fがリッチとされる。なお、圧縮行程末期にのみ燃料噴射Q2が行われる運転領域、二回に亘って燃料噴射Q1およびQ2が行われる運転領域および吸気行程初期にのみ燃料噴射Q1が行われる運転領域は要求負荷Lのみにより定まるのではなく、実際には要求負荷Lおよび機関回転数により定まる。
【0014】
図2は要求負荷LがL(図3)よりも小さいとき、即ち圧縮行程末期においてのみ燃料噴射Q2が行われる場合を示している。図2に示されるようにピストン4の頂面上にはキャビティ4aが形成されており、要求負荷LがLよりも低いときには燃料噴射弁6からキャビティ4aの底壁面に向けて圧縮行程末期に燃料が噴射される。この燃料はキャビティ4aの周壁面により案内されて点火栓7に向かい、それによって点火栓7の周りに混合気Gが形成される。次いでこの混合気Gは点火栓7により着火せしめられる。
【0015】
一方、前述したように要求負荷LがLとLとの間にあるときには二回に分けて燃料噴射が行われる。この場合、吸気行程初期に行われる第1回目の燃料噴射Q1によって燃焼室5内に稀薄混合気が形成される。次いで圧縮行程末期に行われる第2回目の燃料噴射Q2によって点火栓7周りに最適な濃度の混合気が形成される。この混合気が点火栓7により着火せしめられ、この着火火炎によって稀薄混合気が燃焼せしめられる。
【0016】
一方、要求負荷LがLよりも大きいときには図3に示されるように燃焼室5内にはリーン又は理論空燃比又はリッチ空燃比の均一混合気が形成され、この均一混合気が点火栓7により着火せしめられる。
第1の触媒21および第2の触媒22としては酸化触媒又は三元触媒が用いられ、第3の触媒25としては酸化触媒、三元触媒又はNO吸収剤が用いられる。NO吸収剤は燃焼室5内における平均空燃比がリーンのときにNOを吸収し、燃焼室5内における平均空燃比がリッチになるとNOを放出する機能を有する。
【0017】
このNO吸収剤は例えばアルミナを担体とし、この担体上に例えばカリウムK、ナトリウムNa、リチウムLi、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つと、白金Ptのような貴金属とが担持されている。
【0018】
なお、図1に示す実施例では第1の触媒21および第2の触媒22として三元触媒が用いられており、第3の触媒25としてNO吸収剤が用いられている。さて、機関始動時には三元触媒21、三元触媒22およびNO吸収剤25はいずれも温度が低く、従ってこれら三元触媒21、三元触媒22およびNO吸収剤25により排気ガスを浄化するためにはこれら三元触媒21、三元触媒22およびNO吸収剤25をできるだけ早く活性化する必要がある。ところでこれらのうちで最も活性化しやすいのは最も上流側に位置する三元触媒21であり、従って本発明による実施例ではまず初めに最も上流側に位置する三元触媒21を活性化させ、次いで次に上流側に位置する三元触媒22を活性化させ、最後にNO吸収剤25を活性化させるようにしている。
【0019】
即ち、本発明による実施例では機関の運転が開始されると最も上流側に位置する三元触媒21を活性化するために図4に示されるように圧縮上死点前(BTDC)に噴射される主燃料Qmに加え圧縮上死点後(ATDC)の膨張行程中に副燃料Qaが追加噴射される。この場合、本発明による実施例では主燃料Qmは副燃料Qaの燃焼時に十分な空気が存在するように空気過剰のもとで燃焼せしめられる。このように副燃料Qaを追加噴射すると燃焼室5内から排出される排気ガス温が初めて高くなり、斯くして三元触媒21は急速に加熱される。
【0020】
ところでこの場合、本発明者による実験によると図2に示される成層燃焼式内燃機関では副燃料Qaが圧縮上死点後(ATDC)60°から70°付近において噴射されたときに排気ガス温が最も高くなる。従ってこの実施例では図4に示されるように副燃料Qaの噴射時期はほぼ圧縮上死点後(ATDC)60°付近とされる。なお、副燃料Qaの最適な噴射時期は機関の型式によって異なり、例えばディーゼル機関では副燃料Qaの最適な噴射時期は膨張行程中か又は排気行程中となる。従って本発明では副燃料Qaの燃料噴射は膨張行程中又は排気行程中に行われる。
【0021】
上述したように燃焼室5内から排出される排気ガス温が極めて高くなると少なくとも三元触媒21の上流端は短時間のうちに活性化する。その結果機関の運転開始後短時間のうちに排気ガス中に含まれる未燃HCの酸化作用が促進される。また、図1に示される実施例ではこのとき空燃比センサ37の出力信号に基づいて全吸入空気量と全燃料量(Qm+Qa)との比である空燃比が理論空燃比となるように例えば副燃料Qaの噴射量がフィードバック制御される。このように空燃比が理論空燃比となるようにフィードバック制御されると排気ガス中の未燃HCばかりでなくNOも三元触媒21によって浄化せしめられる。
【0022】
更に本発明による実施例ではこのとき排気制御弁28上流の排気通路内の圧力、即ち背圧が60KPa から80KPa 程度となるように排気制御弁28がほぼ全閉せしめられる。背圧が60KPa から80KPa 程度まで上昇せしめられると燃焼室5から排出された排気ガスはさほど圧力低下せず、さほど温度低下しなくなる。従って排気ガス温が一層高くなるために三元触媒21は急速に活性化温度以上になる。
【0023】
副燃料Qaの追加噴射は三元触媒22が活性化するまで行われる。即ち、三元触媒22が活性化した後も副燃料Qaを追加噴射し続けると三元触媒22の温度は次第に高くなるが三元触媒21の温度は三元触媒22の温度に比べて極めて高くなる。即ち、三元触媒21は過熱せしめられる。
そこで本発明による実施例では三元触媒22が活性化すると副燃料Qaの追加噴射を停止すると共に排気制御弁28を全開せしめ、例えば1番気筒#1および2番気筒#2の空燃比がリッチとされ、3番気筒#3および4番気筒#4の空燃比がリーンとされる。即ち、各三元触媒22へはリッチ空燃比の気筒#1,#2からの排気ガスと、リーン空燃比の気筒#3,#4からの排気ガスが流入することになる。
【0024】
この場合、リッチ空燃比の気筒#1,#2から排出される排気ガス中には多量の未燃HCが含まれており、リーン空燃比の気筒#3,#4から排出される排気ガス中には多量の過剰酸素が含まれている。従ってリッチ空燃比の気筒#1,#2からの排気ガスと、リーン空燃比の気筒#3、#4からの排気ガスが各三元触媒22内に供給されると三元触媒22内において多量の未燃HCが多量の酸素により酸化せしめられ、斯くして多量の酸化反応熱が発生する。その結果、三元触媒22の温度はこの酸化反応熱によって急速に上昇せしめられる。
【0025】
なお、本発明による実施例ではこのとき空燃比センサ37の出力信号に基づいて各三元触媒22に流入する排気ガスの空燃比が理論空燃比となるようにリッチ空燃比の気筒#1,#2への主燃料Qmの噴射量、およびリーン空燃比の気筒#3,#4への主燃料Qmの噴射量が制御される。従ってこの場合にも排気ガス中の未燃HCに加えNOも三元触媒21および三元触媒22により浄化せしめられる。
【0026】
このような三元触媒22の昇温制御はNO吸収剤25が活性化するまで行われる。この間、副燃料Qaの追加噴射が停止されているので三元触媒21は過度に温度上昇することなく活性化温度以上に保持される。
NO吸収剤25が活性化すると暖機完了後の運転に切換えられ、このとき図3に示されるように大部分の運転状態において空燃比がリーンとされる。このとき発生するNOはNO吸収剤25に吸収される。NO吸収剤25に吸収されているNO量が許容量を越えたと判断されたときには空燃比が一時的にリッチとされ、NO吸収剤25からNOが放出される。
【0027】
図5は運転制御ルーチンを示している。
図5を参照するとまず初めにステップ100では温度センサ35の出力信号に基づいて三元触媒22の温度Taが活性化温度Taを越えたか否かが判別される。Ta≦Taのとき、即ち三元触媒22が活性化していないときにはステップ101に進んで排気制御弁28がほぼ全閉せしめられ、次いでステップ102では主燃料Qmの噴射制御が行われる。次いでステップ103では副燃料Qaの噴射制御が行われる。このとき空燃比は理論空燃比にフィードバック制御される。
【0028】
一方、ステップ100においてTa>Taであると判断されたとき、即ち三元触媒22が活性化したときにはステップ104に進んで排気制御弁28が全開せしめられる。次いでステップ105では温度センサ36の出力信号に基づいてNO吸収剤25の温度Tbが活性化温度Tbを越えたか否かが判別される。Tb≦Tbのとき、即ちNO吸収剤25が活性化していないときにはステップ106に進んで例えば1番気筒#1および2番気筒#2の空燃比がリッチとなり、3番気筒#3および4番気筒#4の空燃比がリーンとなるように主燃料Qmの噴射量が制御される。このとき、各三元触媒22に流入する排気ガスの空燃比は理論空燃比に維持される。なお、このとき副燃料Qaの噴射は停止される。
【0029】
一方、ステップ105においてTb>Tbであると判断されたとき、即ちNO吸収剤25が活性化したときにはステップ107に進んで図3に示される空燃比となるように主燃料Qmの噴射量が制御される。次いでステップ108ではNO吸収剤25に吸収されているNO量が許容量を越えたと判断されたときにNO吸収剤25からのNO放出処理が行われる。
【0030】
【発明の効果】
機関排気通路内に触媒が直列配置されている場合に上流側の触媒を過度に昇温させることなく下流側触媒を昇温させることができる。
【図面の簡単な説明】
【図1】内燃機関の全体図である。
【図2】燃焼室の側面断面図である。
【図3】噴射量、噴射時期および空燃比を示す図である。
【図4】噴射時期を示す図である。
【図5】運転制御を行うためのフローチャートである。
【符号の説明】
19,20…排気マニホルド
21…第1の触媒
22…第2の触媒
25…第3の触媒
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust emission control device for an internal combustion engine.
[0002]
[Prior art]
When a catalyst is arranged in the engine exhaust passage, a good exhaust purification action by the catalyst is not performed unless the catalyst temperature becomes sufficiently high. Therefore, in addition to the injection of the main fuel for generating the output of the engine, the auxiliary fuel is additionally injected during the expansion stroke, and the auxiliary fuel is burned to raise the exhaust gas temperature, thereby raising the temperature of the catalyst. Such an internal combustion engine is known (see Japanese Patent Laid-Open No. 10-212995).
[0003]
[Problems to be solved by the invention]
However, in this internal combustion engine, if a pair of catalysts are arranged in series in the engine exhaust passage and the temperature of the downstream catalyst is increased by additionally injecting secondary fuel, the temperature of the upstream catalyst becomes excessively high. There is a problem that it ends up.
[0004]
[Means for Solving the Problems]
In order to solve the above problem, in a first invention, in an internal combustion engine in which a first catalyst is disposed in an engine exhaust passage and a second catalyst is disposed in an engine exhaust passage downstream of the first catalyst, Two catalysts are arranged in a common engine exhaust passage for different cylinders, and sub fuel is injected during the expansion stroke or exhaust stroke in addition to the main fuel to each cylinder until the second catalyst is activated. the first catalyst and the second catalyst was warmed to, when the second catalyst is activated to stop the injection of the auxiliary fuel, the rich air-fuel ratio of some cylinders of the different cylinders of above At the same time, the air-fuel ratio of the remaining cylinders is made lean to raise the temperature of the second catalyst .
[0005]
In the first invention in the second aspect, up to the second catalyst by placing the exhaust control valve to the second catalyst downstream of the engine exhaust passage is activated so as to substantially fully closed the exhaust control valve ing.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
1 and 2 show a case where the present invention is applied to a stratified combustion internal combustion engine. However, the present invention can also be applied to a spark ignition type internal combustion engine in which combustion is performed under a uniform lean air-fuel ratio and a diesel engine in which combustion is performed under excess air.
[0007]
Referring to FIG. 1, reference numeral 1 denotes an engine body, and the engine body 1 has four cylinders including a first cylinder # 1, a second cylinder # 2, a third cylinder # 3, and a fourth cylinder # 4. FIG. 2 shows a side sectional view of each cylinder # 1, # 2, # 3, # 4. Referring to FIG. 2, 2 is a cylinder block, 3 is a cylinder head, 4 is a piston, 5 is a combustion chamber, 6 is a fuel injection valve disposed on the peripheral edge of the inner wall surface of the cylinder head 3, and 7 is an inside of the cylinder head 3. An ignition plug disposed at the center of the wall surface, 8 is an intake valve, 9 is an intake port, 10 is an exhaust valve, and 11 is an exhaust port.
[0008]
Referring to FIGS. 1 and 2, the intake port 9 is connected to a surge tank 13 via a corresponding intake branch pipe 12, and the surge tank 13 is connected to an air cleaner 16 via an intake duct 14 and an air flow meter 15. A throttle valve 18 driven by a step motor 17 is disposed in the intake duct 14. On the other hand, in the embodiment shown in FIG. 1, the ignition order is 1-3-3-4-2, and as shown in FIG. The exhaust ports 11 of the remaining cylinders # 2 and # 3, which are connected to a common first exhaust manifold 19 and have an alternate ignition order, are connected to a common second exhaust manifold 20. A first catalyst 21 is arranged in each branch pipe of the first exhaust manifold 19 and the second exhaust manifold 20.
[0009]
On the other hand, the first exhaust manifold 19 and the second exhaust manifold 20 are connected to a common exhaust pipe 23 via corresponding second catalysts 22. The common exhaust pipe 23 is connected to an exhaust pipe 26 through an exhaust pipe 24 and a third catalyst 25, and the exhaust control is driven by an actuator 27 comprising a negative pressure diaphragm device or an electric motor. A valve 28 is arranged.
[0010]
As shown in FIG. 1, the exhaust pipe 23 and the surge tank 13 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 29, and an electrically controlled EGR control valve 30 is disposed in the EGR passage 29. Is done. The fuel injection valve 6 is connected to a common fuel reservoir, so-called common rail 31. The fuel in the fuel tank 32 is supplied into the common rail 31 via an electrically controlled fuel pump 33 with variable discharge amount, and the fuel supplied in the common rail 31 is supplied to each fuel injection valve 6. A fuel pressure sensor 34 for detecting the fuel pressure in the common rail 31 is attached to the common rail 31, and the fuel pump 33 is configured so that the fuel pressure in the common rail 31 becomes the target fuel pressure based on the output signal of the fuel pressure sensor 34. The discharge amount is controlled.
[0011]
The electronic control unit 40 comprises a digital computer and is connected to each other by a bidirectional bus 41. A ROM (read only memory) 42, a RAM (random access memory) 43, a CPU (microprocessor) 44, an input port 45 and an output port 46 are connected. It comprises. The air flow meter 15 generates an output voltage proportional to the amount of intake air, and this output voltage is input to the input port 45 via the corresponding AD converter 47. Further, the output signal of the fuel pressure sensor 34 is input to the input port 45 via a corresponding AD converter 47. Further, a temperature sensor 35 for detecting the temperature of the second catalyst 22 and a temperature sensor 36 for detecting the temperature of the third catalyst 36 are provided, and the output signals of these temperature sensors 35 and 36 correspond to the corresponding AD. The signal is input to the input port 45 via the converter 47. Further, an air-fuel ratio sensor 37 is disposed in the exhaust pipe 24, and an output signal of the air-fuel ratio sensor 37 is input to the input port 45 via the corresponding AD converter 47.
[0012]
A load sensor 51 that generates an output voltage proportional to the depression amount L of the accelerator pedal 50 is connected to the accelerator pedal 50, and the output voltage of the load sensor 51 is input to the input port 45 via the corresponding AD converter 47. Is done. The input port 45 is connected to a crank angle sensor 52 that generates an output pulse every time the crankshaft rotates, for example, 30 °. On the other hand, the output port 46 is connected to the fuel injection valve 6, spark plug 7, throttle valve control step motor 17, exhaust control valve control actuator 27, EGR control valve 30, and fuel pump 33 through corresponding drive circuits 48. The
[0013]
FIG. 3 shows the fuel injection amounts Q1, Q2, Q (= Q 1 + Q 2 ), the injection start timings θS1, θS2, the injection completion timings θE1, θE2, and the average fuel ratio A / F in the combustion chamber 5. In FIG. 3, the horizontal axis L indicates the amount of depression of the accelerator pedal 50, that is, the required load.
When 3 required load L as can be seen from is lower than L 1 is the fuel injection Q2 is performed between θE2 from θS2 of the end of the compression stroke. At this time, the average air-fuel ratio A / F is considerably lean. Required load L first fuel injection Q1 is performed between θE1 from the beginning of the intake stroke of θS1 when between L 1 and L 2, then the second fuel in between θS2 of θE2 of the end of the compression stroke Injection Q2 is performed. Also at this time, the air-fuel ratio A / F is lean. When the required load L is greater than L 2 the fuel injection Q1 is performed between θE1 from the beginning of the intake stroke of the? S1. At this time, the average air-fuel ratio A / F is lean in the region where the required load L is low, the average air-fuel ratio A / F is made the stoichiometric air-fuel ratio when the required load L increases, and the average air-fuel ratio A / F becomes higher when the required load L becomes higher. The fuel ratio A / F is made rich. Note that only the required load L is the operation region in which the fuel injection Q2 is performed only at the end of the compression stroke, the operation region in which the fuel injections Q1 and Q2 are performed twice, and the operation region in which the fuel injection Q1 is performed only in the early stage of the intake stroke. Is actually determined by the required load L and the engine speed.
[0014]
FIG. 2 shows a case where the fuel injection Q2 is performed only when the required load L is smaller than L 1 (FIG. 3), that is, at the end of the compression stroke. The top surface of the piston 4 as shown in FIG. 2 and cavity 4a is formed, the required load L is the end of the compression stroke toward the fuel injection valve 6 in the bottom wall of the cavity 4a when less than L 1 Fuel is injected. This fuel is guided by the peripheral wall surface of the cavity 4 a and travels toward the spark plug 7, whereby an air-fuel mixture G is formed around the spark plug 7. Next, the air-fuel mixture G is ignited by the spark plug 7.
[0015]
On the other hand, the fuel injection is performed in two batches when the required load L as described above is between L 1 and L 2. In this case, a lean air-fuel mixture is formed in the combustion chamber 5 by the first fuel injection Q1 performed at the beginning of the intake stroke. Next, an air-fuel mixture having an optimum concentration is formed around the spark plug 7 by the second fuel injection Q2 performed at the end of the compression stroke. The air-fuel mixture is ignited by the spark plug 7, and the lean air-fuel mixture is combusted by the ignition flame.
[0016]
On the other hand, when the required load L is larger than L 2 , as shown in FIG. 3, a homogeneous mixture of lean, stoichiometric air-fuel ratio or rich air-fuel ratio is formed in the combustion chamber 5. It can be ignited by.
As the first catalyst 21 and the second catalyst 22, an oxidation catalyst or a three-way catalyst is used, and as the third catalyst 25, an oxidation catalyst, a three-way catalyst, or a NO x absorbent is used. The NO x absorbent has a function of absorbing NO x when the average air-fuel ratio in the combustion chamber 5 is lean, and releasing NO x when the average air-fuel ratio in the combustion chamber 5 becomes rich.
[0017]
This NO x absorbent has, for example, alumina as a carrier, and on this carrier, for example, alkali metal such as potassium K, sodium Na, lithium Li, cesium Cs, alkaline earth such as barium Ba, calcium Ca, lanthanum La, yttrium. At least one selected from rare earths such as Y and a noble metal such as platinum Pt are supported.
[0018]
In the embodiment shown in FIG. 1, a three-way catalyst is used as the first catalyst 21 and the second catalyst 22, and a NO x absorbent is used as the third catalyst 25. Now, the engine startup three-way catalyst 21, the three-way catalyst 22 and the NO x absorbent 25 Any temperature is low, therefore these three-way catalyst 21, for purifying the exhaust gas by the three-way catalyst 22 and the NO x absorbent 25 For this purpose, it is necessary to activate the three-way catalyst 21, the three-way catalyst 22 and the NO x absorbent 25 as soon as possible. Of these, the three-way catalyst 21 that is most easily activated is the three-way catalyst 21 that is located on the most upstream side. Therefore, in the embodiment according to the present invention, the three-way catalyst 21 that is located on the most upstream side is first activated. Next, the three-way catalyst 22 located upstream is activated, and finally the NO x absorbent 25 is activated.
[0019]
That is, in the embodiment according to the present invention, when the operation of the engine is started, it is injected before the compression top dead center (BTDC) as shown in FIG. 4 in order to activate the three-way catalyst 21 located on the most upstream side. In addition to the main fuel Qm, the auxiliary fuel Qa is additionally injected during the expansion stroke after compression top dead center (ATDC). In this case, in the embodiment according to the present invention, the main fuel Qm is burned under excess air so that sufficient air exists when the sub fuel Qa is burned. When the auxiliary fuel Qa is additionally injected in this way, the temperature of the exhaust gas discharged from the combustion chamber 5 becomes high for the first time, and thus the three-way catalyst 21 is rapidly heated.
[0020]
In this case, according to an experiment by the present inventor, in the stratified combustion internal combustion engine shown in FIG. 2, when the auxiliary fuel Qa is injected in the vicinity of 60 ° to 70 ° after compression top dead center (ATDC), the exhaust gas temperature is Highest. Therefore, in this embodiment, as shown in FIG. 4, the injection timing of the auxiliary fuel Qa is approximately 60 ° after compression top dead center (ATDC). Note that the optimal injection timing of the auxiliary fuel Qa varies depending on the engine type. For example, in a diesel engine, the optimal injection timing of the auxiliary fuel Qa is in the expansion stroke or in the exhaust stroke. Therefore, in the present invention, the fuel injection of the auxiliary fuel Qa is performed during the expansion stroke or the exhaust stroke.
[0021]
As described above, when the temperature of the exhaust gas discharged from the combustion chamber 5 becomes extremely high, at least the upstream end of the three-way catalyst 21 is activated in a short time. As a result, the oxidizing action of unburned HC contained in the exhaust gas is promoted within a short time after the start of engine operation. Further, in the embodiment shown in FIG. 1, at this time, for example, the sub-air ratio is set so that the air-fuel ratio which is the ratio of the total intake air amount and the total fuel amount (Qm + Qa) becomes the stoichiometric air-fuel ratio based on the output signal of the air-fuel ratio sensor 37. The injection amount of the fuel Qa is feedback controlled. When feedback control is performed so that the air-fuel ratio becomes the stoichiometric air-fuel ratio in this way, not only unburned HC but also NO x in the exhaust gas is purified by the three-way catalyst 21.
[0022]
Further, in the embodiment according to the present invention, at this time, the exhaust control valve 28 is almost fully closed so that the pressure in the exhaust passage upstream of the exhaust control valve 28, that is, the back pressure is about 60 KPa to 80 KPa. When the back pressure is increased from about 60 KPa to about 80 KPa, the exhaust gas discharged from the combustion chamber 5 does not decrease in pressure so much and the temperature does not decrease so much. Accordingly, since the exhaust gas temperature becomes higher, the three-way catalyst 21 rapidly becomes higher than the activation temperature.
[0023]
The additional injection of the auxiliary fuel Qa is performed until the three-way catalyst 22 is activated. That is, if the auxiliary fuel Qa continues to be injected even after the three-way catalyst 22 is activated, the temperature of the three-way catalyst 22 gradually increases, but the temperature of the three-way catalyst 21 is extremely higher than the temperature of the three-way catalyst 22. Become. That is, the three-way catalyst 21 is overheated.
Therefore, in the embodiment according to the present invention, when the three-way catalyst 22 is activated, the additional injection of the auxiliary fuel Qa is stopped and the exhaust control valve 28 is fully opened, for example, the air-fuel ratio of the first cylinder # 1 and the second cylinder # 2 is rich. The air-fuel ratio of the third cylinder # 3 and the fourth cylinder # 4 is lean. That is, the exhaust gas from the rich air-fuel ratio cylinders # 1 and # 2 and the exhaust gas from the lean air-fuel ratio cylinders # 3 and # 4 flow into each three-way catalyst 22.
[0024]
In this case, the exhaust gas discharged from the rich air-fuel ratio cylinders # 1 and # 2 contains a large amount of unburned HC, and the exhaust gas discharged from the lean air-fuel ratio cylinders # 3 and # 4 Contains a large amount of excess oxygen. Therefore, when exhaust gas from the cylinders # 1 and # 2 with rich air-fuel ratio and exhaust gas from the cylinders # 3 and # 4 with lean air-fuel ratio are supplied into each three-way catalyst 22, a large amount is generated in the three-way catalyst 22. Unburned HC is oxidized by a large amount of oxygen, and thus a large amount of heat of oxidation reaction is generated. As a result, the temperature of the three-way catalyst 22 is rapidly raised by this heat of oxidation reaction.
[0025]
In the embodiment according to the present invention, the rich air-fuel ratio cylinders # 1, # are set so that the air-fuel ratio of the exhaust gas flowing into each three-way catalyst 22 becomes the stoichiometric air-fuel ratio based on the output signal of the air-fuel ratio sensor 37 at this time. 2 and the injection quantity of the main fuel Qm into the lean air-fuel ratio cylinders # 3 and # 4 are controlled. Accordingly, in this case as well, NO x is purified by the three-way catalyst 21 and the three-way catalyst 22 in addition to the unburned HC in the exhaust gas.
[0026]
Such temperature increase control of the three-way catalyst 22 is performed until the NO x absorbent 25 is activated. During this time, since the additional injection of the auxiliary fuel Qa is stopped, the three-way catalyst 21 is maintained at the activation temperature or higher without excessively increasing the temperature.
When the NO x absorbent 25 is activated, the operation is switched to the operation after the warm-up is completed, and at this time, the air-fuel ratio is made lean in most operation states as shown in FIG. The NO x generated at this time is absorbed by the NO x absorbent 25. Air-fuel ratio when the amount of NO x is absorbed in the NO x absorbent 25 is judged to have exceeded the allowable amount is temporarily rich, NO x is released from the NO x absorbent 25.
[0027]
FIG. 5 shows an operation control routine.
Whether or not the temperature Ta of the three-way catalyst 22 based on the output signal of the first, at step 100 the temperature sensor 35 and the reference exceeds the activation temperature Ta 0 is judged to FIG. When Ta ≦ Ta 0 , that is, when the three-way catalyst 22 is not activated, the routine proceeds to step 101 where the exhaust control valve 28 is almost fully closed, and then at step 102, injection control of the main fuel Qm is performed. Next, at step 103, injection control of the auxiliary fuel Qa is performed. At this time, the air-fuel ratio is feedback-controlled to the stoichiometric air-fuel ratio.
[0028]
On the other hand, when it is determined in step 100 that Ta> Ta 0, that is, when the three-way catalyst 22 is activated, the routine proceeds to step 104 where the exhaust control valve 28 is fully opened. Next, at step 105, it is determined based on the output signal of the temperature sensor 36 whether or not the temperature Tb of the NO x absorbent 25 has exceeded the activation temperature Tb 0 . When Tb ≦ Tb 0 , that is, when the NO x absorbent 25 is not activated, the routine proceeds to step 106 where, for example, the air-fuel ratio of the first cylinder # 1 and the second cylinder # 2 becomes rich, and the third cylinders # 3 and 4 The injection amount of the main fuel Qm is controlled so that the air-fuel ratio of the number cylinder # 4 becomes lean. At this time, the air-fuel ratio of the exhaust gas flowing into each three-way catalyst 22 is maintained at the stoichiometric air-fuel ratio. At this time, the injection of the auxiliary fuel Qa is stopped.
[0029]
On the other hand, when it is determined in step 105 that Tb> Tb 0, that is, when the NO x absorbent 25 is activated, the routine proceeds to step 107, where the injection amount of the main fuel Qm is adjusted to the air-fuel ratio shown in FIG. Is controlled. Then the NO x releasing processing from the NO x absorbent 25 when the amount of NO x is absorbed in the NO x absorbent 25 at step 108 is determined to have exceeded the allowable amount is performed.
[0030]
【The invention's effect】
When the catalyst is arranged in series in the engine exhaust passage, the temperature of the downstream catalyst can be raised without excessively raising the temperature of the upstream catalyst.
[Brief description of the drawings]
FIG. 1 is an overall view of an internal combustion engine.
FIG. 2 is a side sectional view of a combustion chamber.
FIG. 3 is a diagram showing an injection amount, an injection timing, and an air-fuel ratio.
FIG. 4 is a diagram showing injection timing.
FIG. 5 is a flowchart for performing operation control.
[Explanation of symbols]
19, 20 ... Exhaust manifold 21 ... First catalyst 22 ... Second catalyst 25 ... Third catalyst

Claims (2)

機関排気通路内に第1の触媒を配置すると共に第1の触媒下流の機関排気通路内に第2の触媒を配置した内燃機関において、該第2の触媒を異なる気筒に対して共通の機関排気通路内に配置し、該第2の触媒が活性化するまでは各気筒に対し主燃料に加えて膨張行程中又は排気行程中に副燃料を噴射して第1の触媒および第2の触媒を昇温させ、該第2の触媒が活性化したときには副燃料の噴射を停止し上記異なる気筒のうちの一部の気筒の空燃比をリッチにすると共に残りの気筒の空燃比をリーンにして該第2の触媒を昇温するようにした内燃機関の排気浄化装置。In an internal combustion engine in which a first catalyst is disposed in an engine exhaust passage and a second catalyst is disposed in an engine exhaust passage downstream of the first catalyst, the second catalyst is used as a common engine exhaust for different cylinders. Until the second catalyst is activated in the passage, in addition to the main fuel, in addition to the main fuel, the auxiliary fuel is injected during the expansion stroke or the exhaust stroke, and the first catalyst and the second catalyst are injected. warmed, when the said second catalyst is activated to stop the injection of the auxiliary fuel, the air-fuel ratio of the remaining cylinders to lean with the air-fuel ratio of some cylinders of the different cylinders rich An exhaust gas purification apparatus for an internal combustion engine that raises the temperature of the second catalyst . の触媒下流の機関排気通路内に排気制御弁を配置して第の触媒が活性化するまでは該排気制御弁をほぼ全閉にするようにした請求項1に記載の内燃機関の排気浄化装置。 2. An internal combustion engine according to claim 1, wherein an exhaust control valve is disposed in the engine exhaust passage downstream of the second catalyst, and the exhaust control valve is substantially fully closed until the second catalyst is activated. Exhaust purification device.
JP27066899A 1999-09-24 1999-09-24 Exhaust gas purification device for internal combustion engine Expired - Lifetime JP3614051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27066899A JP3614051B2 (en) 1999-09-24 1999-09-24 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27066899A JP3614051B2 (en) 1999-09-24 1999-09-24 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001090591A JP2001090591A (en) 2001-04-03
JP3614051B2 true JP3614051B2 (en) 2005-01-26

Family

ID=17489294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27066899A Expired - Lifetime JP3614051B2 (en) 1999-09-24 1999-09-24 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3614051B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4458070B2 (en) 2006-06-22 2010-04-28 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4845762B2 (en) * 2007-02-13 2011-12-28 本田技研工業株式会社 Exhaust gas purification device for internal combustion engine
JP2013241849A (en) * 2012-05-18 2013-12-05 Nissan Motor Co Ltd Exhaust device for internal combustion engine
CN110671180B (en) * 2019-11-12 2024-06-14 江阴市卡利格机械有限公司 Tail gas treatment box

Also Published As

Publication number Publication date
JP2001090591A (en) 2001-04-03

Similar Documents

Publication Publication Date Title
JP3337931B2 (en) In-cylinder injection engine
JP3613018B2 (en) In-cylinder injection engine control device
JPH11210539A (en) Spark assist type self-firing internal combustion engine
EP1178197A2 (en) Exhaust emission control device of internal combustion engine
JP3598894B2 (en) Exhaust gas purification device for internal combustion engine
WO2017169640A1 (en) Engine control device
JP3052777B2 (en) In-cylinder injection internal combustion engine
JP3614051B2 (en) Exhaust gas purification device for internal combustion engine
JP4254021B2 (en) Catalyst early warm-up control device for in-cylinder internal combustion engine
JP3785870B2 (en) Exhaust gas purification device for internal combustion engine
JP3536739B2 (en) Exhaust gas purification device for internal combustion engine
JP3570306B2 (en) Exhaust gas purification device for internal combustion engine
JP2000257496A (en) Cylinder direct injection internal combustion engine
JP3960720B2 (en) Exhaust gas purification device for internal combustion engine
JPH10212986A (en) In-cylinder injection type engine
JP4292632B2 (en) Exhaust gas purification device for internal combustion engine
JP3598905B2 (en) Exhaust gas purification device for internal combustion engine
JP3386008B2 (en) Exhaust gas purification device for internal combustion engine
JP3721791B2 (en) In-cylinder direct injection spark ignition engine
JP3617382B2 (en) Exhaust gas purification device for internal combustion engine
JP2005201074A (en) Controller of internal combustion engine
JP3882401B2 (en) Exhaust gas purification device for internal combustion engine
JP3815140B2 (en) Exhaust gas purification device for internal combustion engine
JP3536749B2 (en) Exhaust gas purification device for internal combustion engine
JP2002021605A (en) Exhaust emission control device of internal combustion engine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041025

R150 Certificate of patent or registration of utility model

Ref document number: 3614051

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081112

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091112

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101112

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111112

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121112

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 9

EXPY Cancellation because of completion of term