JP3613024B2 - Tetrafluoroethylene copolymer for stretching and its use - Google Patents

Tetrafluoroethylene copolymer for stretching and its use Download PDF

Info

Publication number
JP3613024B2
JP3613024B2 JP24397698A JP24397698A JP3613024B2 JP 3613024 B2 JP3613024 B2 JP 3613024B2 JP 24397698 A JP24397698 A JP 24397698A JP 24397698 A JP24397698 A JP 24397698A JP 3613024 B2 JP3613024 B2 JP 3613024B2
Authority
JP
Japan
Prior art keywords
polymer
stretching
fluorinated comonomer
ptfe
units based
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24397698A
Other languages
Japanese (ja)
Other versions
JPH11240917A (en
Inventor
浩樹 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP24397698A priority Critical patent/JP3613024B2/en
Publication of JPH11240917A publication Critical patent/JPH11240917A/en
Application granted granted Critical
Publication of JP3613024B2 publication Critical patent/JP3613024B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明はテトラフルオロエチレン系共重合体(以下、PTFEという)のファインパウダおよびその多孔質体に関する。
【0002】
【従来の技術】
PTFEのファインパウダは、水性媒体中で乳化剤を使用して重合する、いわゆる乳化重合法によって得られる重合体微粒子を凝集させて製造される。テトラフルオロエチレン(以下、TFE)と、それと共重合可能なコモノマの比較的少量とを共重合してPTFEを変性することは技術的に公知である。また、ファインパウダに適当な助剤を添加してペースト押し出し加工する際の加工性を改良するため、PTFEの変性は有効であることが知られている。
【0003】
特公昭56−26242、特公昭56−26243には、クロロトリフルオロエチレン(以下、CTFEという)などのコモノマとTFEを使用する変性PTFEの製造において、実質重合終期に生成する重合体中のCTFEなどのコモノマに基づく重合単位の割合を多くなるようにする方法が提案されている。
【0004】
特公昭59−34724には、変性PTFEの各種コモノマに基づく重合単位の割合を重合初期に高くする方法が提案されているが、得られる変性PTFEの標準比重は2.2以上であり分子量が低く延伸加工に充分でない。
【0005】
特公昭56−26242には、重合中、終始コモノマを添加しつつ、かつ初期の段階での添加量を多くする方法が提案されている。この場合、PTFE中のコモノマに基づく重合単位の割合が多く延伸加工には不充分と推測される。
【0006】
また、特公平3−66926には、R−CH=CH2(Rは炭素数1〜10のペルフルオロアルキル基)をコモノマとしてPTFEを変性する方法が提案されている。ここでは初期に変性度を大きくなるように、コモノマを重合途中まで連続添加する方法が提案されている。
【0007】
上記の変性は、主にファインパウダのペースト押し出し加工性の改良、例えば押し出し圧の低減などを目的として行われており、コモノマに基づく重合単位の含有割合は0.5重量%以下であるが、実質的には0.1重量%以上と比較的大量に含有している。このため、実質的に溶融成形性を有していないが、かなりの結晶性の低下を伴っている。また、変性されたPTFEは、導入されたコモノマ構造による耐熱性が低下する問題がある。さらに、コモノマ構造により分子配向が起こりにくく、そのため延伸時に破断が生じ、実質上延伸多孔質体の製造に使用できない。
【0008】
【発明が解決しようとする課題】
本発明は押し出し加工性に優れ、均一な延伸加工が可能で、高強度の多孔質体が得られる延伸用PTFEを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者は、TFEと共重合するコモノマに基づく重合単位の導入量を加工性に影響を及ぼさない程度に限定することで延伸加工による均一、かつ高強度の多孔質体製造に適切な変性PTFEが得られることを見いだした。
【0010】
すなわち、本発明は、TFEと一般式CH2=CH−R(ただし、Rは炭素数が1〜10のペルフルオロアルキル基)で表されるフッ素化コモノマとの共重合体であって、該フッ素化コモノマを初期に一括して添加して製造した、フッ素化コモノマに基づく重合単位の含有量が0.005〜0.05モル%であり、標準比重が2.155より小さく、2.130以上であることを特徴とする延伸用PTFEを提供する
た、上記延伸用PTFEからなるファインパウダをペースト押し出し後、250℃以上の温度で延伸されたものであることを特徴とするPTFEの多孔質体を提供する。
【0011】
フッ素化コモノマとしては、(ペルフルオロエチル)エチレン、(ペルフルオロブチル)エチレンおよび(ペルフルオロオクチル)エチレンが、得られるPTFEの延伸加工性、延伸加工した加工物の均一性、および機械的強度の点から好ましく、特に、(ペルフルオロブチル)エチレンが好ましい。これらのフッ素化コモノマは、IRfで表されるヨウ素化合物に過酸化物存在下にエチレンを付加し、その後KOHなどの塩基性化合物で脱HIすることにより容易に製造される。
【0012】
本発明におけるフッ素化コモノマに基づく重合単位の含有量は、延伸加工性の観点から厳密に制御される必要がある。含有量は変性PTFE中0.005〜0.05モル%の範囲である。0.05モル%を超えるとポリマの結晶性が微妙に低下し、ペースト押し出し圧は低下するが延伸加工性が著しく低下する。また、0.005モル%未満では、延伸加工品の物性改良など実質的に変性の効果が得られにくい。特に、0.01〜0.04モル%であることが好ましい。
【0013】
本発明の延伸用PTFEは、フッ素化コモノマに基づく重合単位の含有量が前記特公平3−66926の実施例に記載されている変性PTFE(0.17重量%以上(0.069モル%以上に相当))より実質的に少ない。また、本発明の延伸用PTFEは、ペースト押し出し加工性がTFE単独重合体と変わらないことから、従来の変性PTFEと区別される。
【0014】
さらに、延伸加工性の点からPTFEの分子量が充分高いことが好ましい。一般に分子量と相関のある重合体の標準比重をもって分子量の尺度としている。すなわち、分子量が高いほど標準比重は小さい値となる。共重合体の場合はその原理上標準比重による分子量は厳密には単独重合体とは異なるが、本発明では、添加するフッ素化コモノマ量が少ないことから便宜上分子量の目安として標準比重を採用している。
【0015】
本発明の延伸用PTFEの標準比重は2.155より小さく、2.130以上である。高分子量であることが好ましい。またあまりに高分子量では結晶化度が極端に低下して耐熱性が低下する。
【0016】
本発明の延伸用PTFEは、PTFEの製造に通常に使用される乳化重合により製造される。この重合方法は、米国特許第3142665号、第3391099号などに記述されている。
【0017】
オートクレーブに水、通常の遊離基重合開始剤、凝集物の生成を抑制するためのパラフィンワックスおよび乳化剤を仕込んだ後、撹拌しながらTFEを圧入する。この後、オートクレーブを穏やかに撹拌し、適当な温度および圧力で重合を行う。重合完了時に得られる乳化分散液はそのままでも使用できるが、一般に成形用途には、通常重合体微粒子を公知の方法によって凝集させて得られるファインパウダを使用する。
【0018】
本発明の延伸用PTFEの製造においては、フッ素化コモノマを連続添加や途中添加を行わず、初期に一括して必要量だけ添加する。初期一括添加することで、重合初期に生成する重合体微粒子のコア部分のフッ素化コモノマに基づく重合単位の割合が高く、重合の進行とともに徐々にその割合が低下し、重合終期の重合体微粒子のシェル部では実質的にフッ素化コモノマを含まないホモポリマが生成する。このような構造は、延伸性、延伸加工品の物性の観点で好ましい。
TFEとフッ素化コモノマとの乳化重合により生成する重合体微粒子の、少なくともコア部分が本発明の延伸用PTFEであることが好ましい。
【0019】
フッ素化コモノマを連続添加する方法、または重合のある時期まで添加する方法は、フッ素化コモノマに基づく重合単位の割合の比較的高い部分が全体の粒子に占め、ペースト押し出し加工には有利であっても延伸加工に有利なファインパウダが得られにくい。
【0020】
また、TFEを初期に一括添加して重合して製造できるが、重合初期に生成する重合体微粒子のコア部のフッ素化コモノマに基づく重合単位の割合を高くするためにTFEを連続添加や途中分割添加し重合して製造することが好ましい。
【0021】
本発明においてTFEと共重合可能なフッ素化コモノマを1種または2種以上使用でき、またこれ以外の共重合可能なモノマを併用することもできる。この場合に併用されるモノマはTFEと共重合する重合性化合物であればその構造は特に限定されないが、得られる変性PTFEの耐熱性の観点から、ペルフルオロの重合性化合物が好ましい。
【0022】
乳化分散液中の重合体微粒子の大きさは、公知の方法で制御できる。例えば、米国特許第3391099号の記載のように、乳化剤の添加を制御することで所望の粒子径が得られる。また、特開昭60−76516に示されるように重合中のTFE圧力を変動させることで制御できる。
【0023】
乳化剤には、連鎖移動に関与しないペルフルオロアルカンカルボン酸の塩またはペルフルオロアルカンスルホン酸の塩を使用できる。特に炭素数7〜9のペルフルオロアルカンカルボン酸アンモニウムが好ましく用いられる。
【0024】
開始剤はジコハク酸ペルオキシド、ジグルタル酸ペルオキシドなどのペルオキシドまたは過硫酸アンモニウム、過硫酸カリウムなどの過硫酸塩を単独でまたは併用して用いられる。また、亜硫酸ナトリウムなどの還元剤と共用しレドックス系にして用いられる。
さらに、重合中に、ヒドロキノン、カテコールなどのラジカル捕捉剤を添加したり、亜硫酸アンモニウムなどのペルオキシド分解剤を添加するなどにより重合中のラジカル濃度を調節することもできる。
【0025】
重合は、通常、温度50〜120℃、圧力6〜40kg/cm2 で行われる。通常、重合体の濃度が20〜40重量%となった時点で系外に未反応モノマを放出し撹拌を停止し重合を終了した後、重合体微粒子を凝集させる。
【0026】
凝集は公知の方法により行いうる。すなわち、重合体の濃度を10〜20重量%になるように水で希釈した後、激しく撹拌して凝集させる。場合によってはpHを調節してもよく、電解質や水溶性の有機溶剤などの凝集助剤を加えて行ってもよい。その後、適度な撹拌を行うことによって、凝集した重合体を水から分離し、造粒および整粒され、次いで乾燥して、粉末粒子状の重合体すなわちファインパウダが得られる。
【0027】
乾燥は、通常凝集で得られた湿潤粉末をあまり流動させない状態、好ましくは静置し、真空、高周波、熱風などで行う。ファインパウダは小さな剪断力でも簡単にフィブリル化して、元の重合終了後の結晶構造の状態を失う性質を有する。特に延伸加工用途において、加工性の低下を防止するため、特に高い温度での粉体どうしの接触ないし摩擦は好ましくない。乾燥は10〜250℃、特には100〜250℃で行うことが好ましい。
本発明のファインパウダは、乳化重合により生成する重合体微粒子のコア部分のフッ素化コモノマに基づく重合単位の含有量が、シェル部分のフッ素化コモノマに基づく重合単位の含有量よりも大きい構造を有する重合体微粒子から得られる本発明の延伸用PTFEからなるファインパウダである。
【0028】
通常の変性PTFEはフッ素化コモノマに基づく重合単位の含有量が多いため延伸できず破断するが、本発明のPTFEの多孔質体は、一般的な方法で製造しうる。すなわち、ファインパウダに対して5〜20重量%の潤滑剤を添加し、混合した後密閉容器内で充分に熟成する。
【0029】
用いられる潤滑剤は、例えばソルベントナフサ、ホワイトオイルなどの石油系溶剤、トルオール類、ケトン類、エステル類などの炭化水素油、シリコーンオイル、フッ素オイル、含フッ素化合物などであり、ファインパウダを濡らし、かつ押し出し後容易に押し出し成形体から蒸発除去されるものであればよい。
【0030】
潤滑剤を添加したファインパウダを、1〜50kg/cm2 程度の圧力で予備成形したのち、ペースト押し出しする。場合によっては押し出し物をカレンダリング等によってシート化する。
【0031】
押し出しにおいて、ファインパウダ粒子の配向を促進することが重要で、押し出し機のリダクションレシオR/R(バレル面積と押し出しダイの面積比)を充分とることが好ましい。R/R=50〜800で行うのがよく、好ましくは、80〜200で行われる。このとき、ペーストにかかる圧力を押し出し圧力というが、通常100〜1000kg/cm2 である。押し出し圧力が小さいほど押し出し加工性が良好であるが、あまりに小さいと粒子の配向が充分でなく、延伸性が低下する。これらの点からR/Rが設定される。
【0032】
この後、押し出し成形体に含まれる潤滑剤を蒸発除去し、250℃以上の温度にて2〜50倍に延伸することによって好ましい多孔質体が得られる。250℃未満では延伸倍率の小さな多孔質体のみ得られやすく、350℃以上ではPTFEが融解するため多孔質体が得られにくい。
本発明の多孔質体は、延伸用PTFEからなるファインパウダをペースト押し出し後、250℃以上の温度で延伸されたものである。
【0033】
多孔質体は、延伸が均一に行われることが好ましい。均一とは、延伸により成形体全体が均等に延伸されることであり、具体的には、多孔質体の延伸方向の重量分布や孔径分布が均一であることをいう。
【0034】
延伸倍率は特に限定されないが、延伸倍率2倍以下では実質的に多孔質構造とならず、50倍以上では安定した多孔質構造とならず場合によっては延伸時に破断等が起きやすく、2〜50倍程度で行うことが好ましい。また、延伸速度は特に限定されないが、通常50〜1000%/秒にて行われる。
【0035】
本発明の延伸用PTFEの乳化分散液を塗料原料とすることもでき、ロール、調理器具への塗装、ガラスクロス含浸加工などに使用できる。特に、延伸加工品に好適に使用できる。
本発明のPTFEの多孔質体は延伸均一性、強度が特に優れる。この多孔質体は、特に耐久性の要求される工業用品、例えば、バグフィルタ、パッキン、ガスケット、その他被覆用途などに有用である。
【0036】
【実施例】
以下に、本発明を実施例(例1〜3、6〜8)、比較例(例4、5)で説明するが、本発明はこれらによって限定されない。
【0037】
[例1]
邪魔板、撹拌機を備えた、100リットルのステンレス鋼製オートクレーブに、ペルフルオロオクタン酸アンモニウム35g、パラフィンワックス78g、脱イオン水63.4リットルを仕込んだ。オートクレーブを窒素置換し、さらにTFEで再度置換後、撹拌しながら72℃に昇温した。TFEを19kg/cmまで昇圧し、(ペルフルオロブチル)エチレン(以下、PFBEという)5.0g、水3リットルに溶解したジコハク酸ペルオキシド5.4gを注入した。約3分ほどで内圧が18.5kg/cm2 まで降下した。
【0038】
オートクレーブ内圧を19kg/cmに保つようにTFEを添加しながら重合を進行させた。TFEの添加量が720gになったところで、水3リットルに溶解した65gのペルフルオロオクタン酸アンモニウムを圧入した。TFEの添加量が25kgになったところで反応を終了させ、オートクレーブ中のTFEを大気放出した。
得られた乳化分散液を冷却し、上澄みのパラフィンワックスを除去した。乳化分散液の重合体微粒子濃度は約28.1重量%であり、重合体微粒子の平均粒子径は0.210μmであった。
【0039】
この乳化分散液をイオン交換水で重合体微粒子濃度10重量%に希釈し、凝固するまで激しく撹拌した。凝固後さらに5分間撹拌し、ついで凝固した重合体を200℃で乾燥した。得られた重合体の標準比重は2.149であった。また、赤外分光計で求めた、重合体中のPFBEに基づく重合単位の含量は、仕込んだPFBEのすべてが反応した量である0.02モル%であった。得られた重合体を用い、下記に示す延伸加工試験を行った試験結果を表1に示す。
【0040】
得られた重合体の特性は下記の方法で測定した。
(1)標準比重:粉末状の重合体の標準比重はASTM D1457−69法に従い標準の成形試験試料で置換される水量によって測定した。この標準の成形試験試料は次のようにして作成した。まず、粉末状重合体12.0gを直径2.86cmの金型に充填し、352kg/cmの圧力下に2分間保持し予備成形する。ついでこの予備成形体をオーブン中で300℃から380℃まで2℃/分で加熱し、380℃で30分保持し、次いで1℃/分の速度で294℃まで冷却した後オーブンから取り出し、23℃にて3時間以上保持したのち試験試料とした。
【0041】
(2)重合体微粒子の粒子径:レーザ回折式の粒径測定装置(大塚電子製、LPA−3000/3100)を用い重合体微粒子の濃度約0.1重量%にて25℃で積算回数100回の測定を3回行い、その平均値を重合体微粒子の粒子径とした。
【0042】
(3)延伸加工性評価試料の作成:重合体50gと炭化水素油である押し出し潤滑剤(出光石油化学製、スーパーゾルFP)11.8gを混合し、25℃で1時間以上熟成する。次にシリンダ(内径9.95mm)付きの押し出しダイ(絞り角度30℃で内径1mmのオリフィスを有する)に上記混合物を充填し、20kgの負荷をシリンダに挿入したピストンに加え10分保持する。この後ラムスピード100mm/分にて押し出しロッド状物を得る。押し出し後半において圧力が平衡状態になる部分における押し出し物をオーブンにいれ、180℃にて潤滑剤を蒸発除去する。これを約50mmに切断し延伸加工評価用試料とした。
【0043】
(4)延伸加工性試験:上記試料を恒温槽付きの引張試験器を用い、チャック間距離10mm、温度250℃、引張速度1000%/秒にて10倍の長さに延伸した。この条件での延伸性を外観、均一性の観点から評価した。外観は、A:滑らか、B:わずかにムラあり、C:かなりムラあり、D:延伸中に切断、の基準で評価した。
(5)延伸ロッドの強度評価:上記(3)、(4)で得られた延伸ロッド5本の強度を測定し、平均値をロッド1本当たりの強度(kg)で示した。
【0044】
(6)多孔質体の均一性評価:延伸前試料(チャック間10mm)の中心(チャックより5mm)にマーキングし、延伸後試料(100mm)の中心(チャックより50mm)の位置からマーキングまでのずれの距離L(mm)を測定し、以下の式による値を均一性(%)の指標とした。この値が大きいほど均一性が高いことを示す。
【0045】
【数1】

Figure 0003613024
【0046】
[例2]
PFBEを2.5g用いること以外は例1と同様にして重合体を得た。乳化分散液の重合体微粒子濃度は約27.6重量%、重合体微粒子の平均粒子径は0.233μm、重合体の標準比重は2.150であった。例1と同様の方法で求めた、重合体中のPFBEに基づく重合単位の含量は0.01モル%であった。例1と同様にした延伸加工試験の結果を表1に示す。
【0047】
[例3]
PFBEを12g用いること以外は例1と同様にして重合体を得た。乳化分散液の重合体微粒子濃度は約28.3重量%、重合体微粒子の平均粒子径は0.208μm、重合体の標準比重は2.150であった。例1と同様の方法で求めた、重合体中のPFBEに基づく重合単位の含量は0.048モル%であった。例1と同様にした延伸加工試験の結果を表1に示す。
【0048】
[例4(比較例)]
PFBEを43g用いること以外は例1と同様にして重合体を得た。乳化分散液の重合体微粒子濃度は約28.0重量%、重合体微粒子の平均粒子径は0.204μm、重合体の標準比重は2.141であった。例1と同様の方法で求めた、重合体中のPFBEに基づく重合単位の含量は0.17モル%であった。例1と同様にした延伸加工試験の結果を表1に示す。
【0049】
[例5(比較例)]
PFBEを用いないこと以外は例1と同様にして重合体を得た。乳化分散液の重合体微粒子濃度は約28.0重量%、重合体微粒子の平均粒子径は0.258μm、重合体の標準比重は2.151であった。例1と同様にした延伸加工試験の結果を表1に示す。
【0050】
例1〜3、例5においては、いずれも延伸多孔質体が得られた。PFBE含量の高い例4は、ペースト押し出し圧が低く押し出し加工性に優れていたが、延伸加工時に破断して多孔質体が得られなかった。また、例1〜3においては、例5と比較して優れた強度の多孔質体が得られた。
【0051】
[例6]
PFBEの代わりに(ペルフルオロエチル)エチレン(以下、PFEEという)5.0gを用いる以外は例1と同様にして重合体を得た。乳化分散液の重合体微粒子濃度は約27.9重量%、重合体微粒子の平均粒子径は0.225μm、重合体の標準比重は2.150であった。例1と同様の方法で求めた、重合体中のPFEEに基づく重合単位の含量は0.02モル%であった。例1と同様にした延伸加工試験の結果を表1に示す。例6においては、例5と比較して優れた均一性および強度の多孔質体が得られた。
【0052】
[例7]
PFBEの代わりに(ペルフルオクチル)エチレン(以下、PFOEという)5.0gを用いる以外は例1と同様にして重合体を得た。乳化分散液の重合体微粒子濃度は約28.1重量%、重合体微粒子の平均粒子径は0.211μm、重合体の標準比重は2.149であった。例1と同様の方法で求めた、PFOEに基づく重合単位の含量は0.02モル%であった。例1と同様にした延伸加工試験の結果を表1に示す。例7においては、例5と比較して優れた均一性および強度の多孔質体が得られた。
【0053】
[例8(比較例)]
PFBEを1.0g用いること以外は例1と同様にして重合体を得た。乳化分散液の重合体微粒子濃度は約27.8重量%であり、重合体微粒子の平均粒子径は0.236μmであり、重合体の標準比重は2.151であった。例1と同様の方法で求めた、重合体中のPFBEに基づく重合単位の含量は0.004モル%であった。例1と同様にした延伸加工試験の結果を表1に示す。
【0054】
【表1】
Figure 0003613024
【0055】
【発明の効果】
TFEにペルフルオロアルキル基を有する特定構造のフッ素化コモノマを微量共重合させることにより、特に延伸加工に有用なポリテトラフルオロエチレン系共重合体が得られる。この共重合体よりなる多孔質体は、均一性および強度に優れた性質を示す。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fine powder of a tetrafluoroethylene copolymer (hereinafter referred to as PTFE) and a porous body thereof.
[0002]
[Prior art]
A fine powder of PTFE is produced by agglomerating polymer fine particles obtained by a so-called emulsion polymerization method in which an emulsifier is used in an aqueous medium. It is known in the art to modify PTFE by copolymerizing tetrafluoroethylene (hereinafter TFE) and a relatively small amount of a comonomer copolymerizable therewith. Further, it is known that PTFE modification is effective in order to improve workability when paste extrusion processing is performed by adding an appropriate auxiliary agent to fine powder.
[0003]
JP-B-56-26242 and JP-B-56-26243 include CTFE in a polymer produced at the end of substantial polymerization in the production of modified PTFE using a comonomer such as chlorotrifluoroethylene (hereinafter referred to as CTFE) and TFE. There has been proposed a method for increasing the proportion of polymerized units based on these comonomers.
[0004]
Japanese Examined Patent Publication No. SHO 59-34724 proposes a method in which the ratio of polymerized units based on various comonomers of modified PTFE is increased at the initial stage of polymerization, but the standard specific gravity of the obtained modified PTFE is 2.2 or more and the molecular weight is low. Not enough for drawing.
[0005]
Japanese Examined Patent Publication No. 56-26242 proposes a method of adding a comonomer throughout the polymerization and increasing the amount added in the initial stage. In this case, it is presumed that the ratio of polymerized units based on the comonomer in PTFE is large and is insufficient for stretching.
[0006]
Japanese Patent Publication No. 3-66926 proposes a method of modifying PTFE using R f —CH═CH 2 (R f is a C 1-10 perfluoroalkyl group) as a comonomer. Here, a method has been proposed in which a comonomer is continuously added to the middle of polymerization so as to increase the degree of modification in the initial stage.
[0007]
The above modification is performed mainly for the purpose of improving the fine powder paste extrusion processability, for example, reducing the extrusion pressure, and the content of the polymerized units based on the comonomer is 0.5% by weight or less. It is contained in a relatively large amount of substantially 0.1% by weight or more. For this reason, it has substantially no melt moldability, but is accompanied by a considerable decrease in crystallinity. Further, the modified PTFE has a problem that the heat resistance due to the introduced comonomer structure is lowered. Furthermore, molecular orientation is unlikely to occur due to the comonomer structure, so that breakage occurs during stretching, and it cannot be used for the production of a stretched porous body.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a PTFE for stretching which is excellent in extrusion processability, can be uniformly stretched, and can obtain a high-strength porous body.
[0009]
[Means for Solving the Problems]
The present inventor has limited modified PTFE suitable for producing a uniform and high-strength porous body by stretching by limiting the amount of polymerized units based on a copolymer copolymerized with TFE to such an extent that the processability is not affected. I found out that
[0010]
That is, the present invention, TFE and general formula CH 2 = CH-R f (where R f is the number of carbon atoms perfluoroalkyl group having 1 to 10) a copolymer of a fluorinated comonomer represented by, the fluorinated comonomers were prepared by adding at once initially, the content of polymerized units based on the fluorinated comonomer is Ri 0.005 to 0.05 mol% der, standard specific gravity is less than 2.155, 2 to provide a draw for the PTFE which is characterized in der Rukoto more than .130.
Also, after the fine powder to paste extrusion made of the draw PTFE, provides a porous body of PTFE, characterized in that having been stretched at 250 ° C. or higher.
[0011]
As the fluorinated comonomer, (perfluoroethyl) ethylene, (perfluorobutyl) ethylene and (perfluorooctyl) ethylene are preferable from the viewpoint of the stretchability of the obtained PTFE, the uniformity of the stretched workpiece, and the mechanical strength. In particular, (perfluorobutyl) ethylene is preferred. These fluorinated comonomers are easily produced by adding ethylene to the iodine compound represented by IR f in the presence of a peroxide and then de-HI using a basic compound such as KOH.
[0012]
The content of the polymerized units based on the fluorinated comonomer in the present invention needs to be strictly controlled from the viewpoint of stretch processability. The content is in the range of 0.005 to 0.05 mol% in the modified PTFE. If it exceeds 0.05 mol%, the crystallinity of the polymer is slightly lowered, and the paste extrusion pressure is lowered, but the drawing processability is remarkably lowered. On the other hand, if it is less than 0.005 mol%, it is difficult to substantially obtain the effect of modification such as improvement of physical properties of the stretched product. In particular, 0.01 to 0.04 mol% is preferable.
[0013]
The PTFE for stretching of the present invention has a modified PTFE (0.17% by weight or more (0.069% by mole or more) described in the examples of JP-B-3-66926 based on the content of polymerized units based on a fluorinated comonomer. Equivalent)) substantially less. Moreover, the PTFE for stretching of the present invention is distinguished from conventional modified PTFE because the paste extrusion processability is not different from that of a TFE homopolymer.
[0014]
Furthermore, it is preferable that the molecular weight of PTFE is sufficiently high from the viewpoint of stretch processability. In general, the standard specific gravity of a polymer having a correlation with the molecular weight is used as a measure of the molecular weight. That is, the higher the molecular weight, the smaller the standard specific gravity. In the case of a copolymer, the molecular weight based on the standard specific gravity is strictly different from that of the homopolymer in principle, but in the present invention, the standard specific gravity is adopted as a standard for the molecular weight for convenience because the amount of fluorinated comonomer to be added is small. Yes.
[0015]
Standard specific gravity draw PTFE of the present invention is minor than 2.155, is 2.130 or more. High molecular weight is preferred. Also the too high molecular weight you decrease the heat resistance was extremely reduced that the degree of crystallization.
[0016]
The PTFE for stretching of the present invention is produced by emulsion polymerization usually used for the production of PTFE. This polymerization method is described in US Pat. Nos. 3,142,665 and 3,391,099.
[0017]
Water, a normal free radical polymerization initiator, paraffin wax and an emulsifier for suppressing the formation of aggregates are charged into the autoclave, and then TFE is injected with stirring. Thereafter, the autoclave is gently stirred and polymerized at an appropriate temperature and pressure. Although the emulsified dispersion obtained upon completion of the polymerization can be used as it is, generally a fine powder obtained by agglomerating polymer fine particles by a known method is generally used for molding.
[0018]
In the manufacture of draw PTFE of the present invention, the fluorinated comonomer without continuous addition or middle addition, you added required amount at once initially. By the initial batch addition, the ratio of the polymer units based on the fluorinated comonomer in the core part of the polymer fine particles generated at the initial stage of polymerization is high, and the ratio gradually decreases with the progress of the polymerization. In the shell part, a homopolymer substantially free of fluorinated comonomer is produced. Such a structure is preferable from the viewpoint of stretchability and physical properties of the stretched product.
It is preferable that at least a core portion of the polymer fine particles produced by emulsion polymerization of TFE and a fluorinated comonomer is the PTFE for stretching of the present invention.
[0019]
The method of continuously adding the fluorinated comonomer or the method of adding it until a certain time of polymerization is advantageous for paste extrusion processing because a relatively high portion of the polymerized units based on the fluorinated comonomer occupies the entire particle. However, it is difficult to obtain fine powder advantageous for stretching.
[0020]
In addition, TFE can be added and polymerized at the initial stage for polymerization, but in order to increase the proportion of polymerized units based on the fluorinated monomer in the core of polymer fine particles produced at the initial stage of polymerization, TFE is continuously added or divided in the middle. It is preferable to add and polymerize.
[0021]
In the present invention, one or more fluorinated monomers copolymerizable with TFE can be used, and other copolymerizable monomers can be used in combination. The monomer used in this case is not particularly limited as long as it is a polymerizable compound copolymerized with TFE, but from the viewpoint of the heat resistance of the resulting modified PTFE, a perfluoro polymerizable compound is preferred.
[0022]
The size of the polymer fine particles in the emulsified dispersion can be controlled by a known method. For example, as described in US Pat. No. 3,391,099, a desired particle size can be obtained by controlling the addition of an emulsifier. Further, as shown in JP-A-60-76516, it can be controlled by changing the TFE pressure during polymerization.
[0023]
As the emulsifier, a salt of perfluoroalkanecarboxylic acid or a salt of perfluoroalkanesulfonic acid that does not participate in chain transfer can be used. In particular, an ammonium perfluoroalkanecarboxylate having 7 to 9 carbon atoms is preferably used.
[0024]
As the initiator, a peroxide such as disuccinic acid peroxide or diglutaric acid peroxide or a persulfate such as ammonium persulfate or potassium persulfate may be used alone or in combination. It is also used as a redox system in common with a reducing agent such as sodium sulfite.
Furthermore, the radical concentration during the polymerization can be adjusted by adding a radical scavenger such as hydroquinone or catechol or adding a peroxide decomposing agent such as ammonium sulfite during the polymerization.
[0025]
The polymerization is usually performed at a temperature of 50 to 120 ° C. and a pressure of 6 to 40 kg / cm 2 . Usually, when the concentration of the polymer reaches 20 to 40% by weight, the unreacted monomer is discharged out of the system, the stirring is stopped and the polymerization is terminated, and then the polymer fine particles are aggregated.
[0026]
Aggregation can be performed by a known method. That is, after diluting with water so that the concentration of the polymer becomes 10 to 20% by weight, the polymer is agglomerated by vigorous stirring. In some cases, the pH may be adjusted, or an aggregating aid such as an electrolyte or a water-soluble organic solvent may be added. Thereafter, by performing appropriate stirring, the agglomerated polymer is separated from water, granulated and sized, and then dried to obtain a powder particle polymer, that is, fine powder.
[0027]
Drying is usually carried out in a state where the wet powder obtained by agglomeration does not flow so much, preferably still, under vacuum, high frequency, hot air, or the like. Fine powder has a property of easily fibrillating even with a small shearing force and losing the crystal structure after the completion of the original polymerization. Particularly in stretching applications, contact or friction between powders at a particularly high temperature is not preferable in order to prevent deterioration of workability. Drying is preferably performed at 10 to 250 ° C, particularly 100 to 250 ° C.
The fine powder of the present invention has a structure in which the content of polymerized units based on the fluorinated comonomer in the core part of the polymer fine particles produced by emulsion polymerization is larger than the content of polymerized units based on the fluorinated comonomer in the shell part. It is a fine powder made of PTFE for stretching of the present invention obtained from polymer fine particles.
[0028]
Although ordinary modified PTFE has a large content of polymerized units based on a fluorinated comonomer, it cannot be stretched and breaks. However, the porous body of PTFE of the present invention can be produced by a general method. That is, 5 to 20% by weight of lubricant is added to the fine powder, and after mixing, the mixture is sufficiently aged in a sealed container.
[0029]
The lubricant used is, for example, petroleum-based solvents such as solvent naphtha and white oil, hydrocarbon oils such as toluols, ketones and esters, silicone oil, fluorine oil, fluorine-containing compounds, etc., which wet fine powder, And what is necessary is just to be evaporated and removed from an extrusion molded object easily after extrusion.
[0030]
A fine powder to which a lubricant is added is preformed at a pressure of about 1 to 50 kg / cm 2 and then extruded. In some cases, the extrudate is made into a sheet by calendering or the like.
[0031]
In the extrusion, it is important to promote the orientation of the fine powder particles, and it is preferable to take a reduction ratio R / R (barrel area to extrusion die area ratio) of the extruder sufficiently. R / R is preferably 50 to 800, and preferably 80 to 200. At this time, the pressure applied to the paste is referred to as the extrusion pressure, and is usually 100 to 1000 kg / cm 2 . The extrusion processability is better as the extrusion pressure is lower. However, if the extrusion pressure is too low, the orientation of the particles is not sufficient, and the stretchability is lowered. From these points, R / R is set.
[0032]
Thereafter, the lubricant contained in the extruded molded body is removed by evaporation, and a preferred porous body is obtained by stretching 2 to 50 times at a temperature of 250 ° C. or higher. If it is less than 250 degreeC, it will be easy to obtain only a porous body with a small draw ratio, and if it is 350 degreeC or more, since PTFE will fuse | melt, it will be difficult to obtain a porous body.
The porous body of the present invention is obtained by extruding a fine powder composed of PTFE for stretching and then stretching it at a temperature of 250 ° C. or higher.
[0033]
The porous body is preferably stretched uniformly. Uniform means that the entire molded body is uniformly stretched by stretching, and specifically means that the weight distribution and pore size distribution in the stretching direction of the porous body are uniform.
[0034]
The draw ratio is not particularly limited, but when the draw ratio is 2 times or less, it does not substantially have a porous structure, and when it is 50 times or more, it does not become a stable porous structure. It is preferable to carry out at about twice. The stretching speed is not particularly limited, but it is usually performed at 50 to 1000% / second.
[0035]
The emulsified dispersion of PTFE for stretching of the present invention can also be used as a raw material for coating, and can be used for coating on rolls, cooking utensils, glass cloth impregnation processing, and the like. In particular, it can be suitably used for stretched products.
The porous PTFE material of the present invention is particularly excellent in stretch uniformity and strength. This porous body is particularly useful for industrial products that require durability, such as bag filters, packings, gaskets, and other coating applications.
[0036]
【Example】
Hereinafter, the present invention will be described with reference to Examples (Examples 1 to 3, 6 to 8) and Comparative Examples (Examples 4 and 5), but the present invention is not limited thereto.
[0037]
[Example 1]
A 100 liter stainless steel autoclave equipped with baffles and a stirrer was charged with 35 g ammonium perfluorooctanoate, 78 g paraffin wax, and 63.4 liter deionized water. The autoclave was purged with nitrogen and further replaced with TFE, and then heated to 72 ° C. with stirring. The pressure of TFE was increased to 19 kg / cm 2, and 5.0 g of (perfluorobutyl) ethylene (hereinafter referred to as PFBE) and 5.4 g of disuccinic acid peroxide dissolved in 3 liters of water were injected. The inner pressure dropped to 18.5 kg / cm 2 in about 3 minutes.
[0038]
Polymerization was allowed to proceed while adding TFE so as to keep the internal pressure of the autoclave at 19 kg / cm 2 . When the amount of TFE added reached 720 g, 65 g of ammonium perfluorooctanoate dissolved in 3 liters of water was injected. The reaction was terminated when the amount of TFE added reached 25 kg, and TFE in the autoclave was released into the atmosphere.
The resulting emulsified dispersion was cooled to remove the supernatant paraffin wax. The polymer fine particle concentration in the emulsified dispersion was about 28.1% by weight, and the average particle size of the polymer fine particles was 0.210 μm.
[0039]
This emulsified dispersion was diluted with ion exchange water to a polymer fine particle concentration of 10% by weight and stirred vigorously until solidified. After solidification, the mixture was further stirred for 5 minutes, and then the solidified polymer was dried at 200 ° C. The standard specific gravity of the obtained polymer was 2.149. Further, the content of polymerized units based on PFBE in the polymer determined by an infrared spectrometer was 0.02 mol%, which is the amount of all the PFBE charged. Table 1 shows the test results of the stretching process test shown below using the obtained polymer.
[0040]
The characteristics of the obtained polymer were measured by the following method.
(1) Standard specific gravity: The standard specific gravity of the powdered polymer was measured by the amount of water replaced with a standard molding test sample according to ASTM D1457-69 method. This standard molding test sample was prepared as follows. First, 12.0 g of a powdery polymer is filled in a mold having a diameter of 2.86 cm, and preliminarily molded by holding for 2 minutes under a pressure of 352 kg / cm 2 . The preform was then heated in an oven from 300 ° C. to 380 ° C. at 2 ° C./minute, held at 380 ° C. for 30 minutes, then cooled to 294 ° C. at a rate of 1 ° C./minute and then removed from the oven. It was set as the test sample after hold | maintaining at 3 degreeC for 3 hours or more.
[0041]
(2) Particle diameter of polymer fine particles: Using a laser diffraction particle size measuring device (manufactured by Otsuka Electronics, LPA-3000 / 3100), the number of integration is 100 at 25 ° C. at a polymer fine particle concentration of about 0.1 wt%. The measurement was performed three times, and the average value was taken as the particle size of the polymer fine particles.
[0042]
(3) Preparation of stretch processability evaluation sample: 50 g of polymer and 11.8 g of extrusion lubricant (made by Idemitsu Petrochemical Co., Ltd., Supersol FP) as a hydrocarbon oil are mixed and aged at 25 ° C. for 1 hour or longer. Next, the above mixture is filled in an extrusion die with a cylinder (inner diameter: 9.95 mm) (having an orifice with an inner diameter of 1 mm at a throttle angle of 30 ° C.), and a load of 20 kg is added to the piston inserted in the cylinder and held for 10 minutes. Thereafter, an extruded rod-like product is obtained at a ram speed of 100 mm / min. The extrudate in the portion where the pressure is in an equilibrium state in the latter half of the extrusion is put in an oven, and the lubricant is removed by evaporation at 180 ° C. This was cut to about 50 mm and used as a sample for evaluation of stretch processing.
[0043]
(4) Stretching workability test: The above sample was stretched to a length of 10 times using a tensile tester with a thermostatic bath at a distance between chucks of 10 mm, a temperature of 250 ° C., and a tensile speed of 1000% / second. The stretchability under these conditions was evaluated from the viewpoints of appearance and uniformity. The appearance was evaluated on the basis of A: smooth, B: slightly uneven, C: considerably uneven, and D: cut during stretching.
(5) Strength evaluation of stretched rods: The strength of the 5 stretched rods obtained in the above (3) and (4) was measured, and the average value was shown as strength (kg) per rod.
[0044]
(6) Evaluation of the uniformity of the porous body: Marking the center (5 mm from the chuck) of the sample before stretching (10 mm between chucks), and the deviation from the position of the center (50 mm from the chuck) of the sample (100 mm) after stretching The distance L (mm) was measured, and the value of the following formula was used as an index of uniformity (%). A larger value indicates higher uniformity.
[0045]
[Expression 1]
Figure 0003613024
[0046]
[Example 2]
A polymer was obtained in the same manner as in Example 1 except that 2.5 g of PFBE was used. The polymer fine particle concentration of the emulsified dispersion was about 27.6% by weight, the average particle size of the polymer fine particles was 0.233 μm, and the standard specific gravity of the polymer was 2.150. The content of polymerized units based on PFBE in the polymer determined by the same method as in Example 1 was 0.01 mol%. Table 1 shows the results of the stretching test conducted in the same manner as in Example 1.
[0047]
[Example 3]
A polymer was obtained in the same manner as in Example 1 except that 12 g of PFBE was used. The polymer fine particle concentration of the emulsified dispersion was about 28.3% by weight, the average particle size of the polymer fine particles was 0.208 μm, and the standard specific gravity of the polymer was 2.150. The content of polymerized units based on PFBE in the polymer determined by the same method as in Example 1 was 0.048 mol%. Table 1 shows the results of the stretching test conducted in the same manner as in Example 1.
[0048]
[Example 4 (comparative example)]
A polymer was obtained in the same manner as in Example 1 except that 43 g of PFBE was used. The polymer fine particle concentration of the emulsified dispersion was about 28.0% by weight, the average particle size of the polymer fine particles was 0.204 μm, and the standard specific gravity of the polymer was 2.141. The content of polymerized units based on PFBE in the polymer determined by the same method as in Example 1 was 0.17 mol%. Table 1 shows the results of the stretching test conducted in the same manner as in Example 1.
[0049]
[Example 5 (comparative example)]
A polymer was obtained in the same manner as in Example 1 except that PFBE was not used. The polymer fine particle concentration of the emulsified dispersion was about 28.0% by weight, the average particle size of the polymer fine particles was 0.258 μm, and the standard specific gravity of the polymer was 2.151. Table 1 shows the results of the stretching test conducted in the same manner as in Example 1.
[0050]
In Examples 1 to 3 and Example 5, stretched porous bodies were obtained. In Example 4 having a high PFBE content, the paste extrusion pressure was low and the extrusion processability was excellent. However, the porous body was not obtained by breaking during stretching. Moreover, in Examples 1-3, the porous body of the intensity | strength excellent compared with Example 5 was obtained.
[0051]
[Example 6]
A polymer was obtained in the same manner as in Example 1 except that 5.0 g of (perfluoroethyl) ethylene (hereinafter referred to as PFEE) was used instead of PFBE. The polymer fine particle concentration of the emulsified dispersion was about 27.9% by weight, the average particle size of the polymer fine particles was 0.225 μm, and the standard specific gravity of the polymer was 2.150. The content of polymerized units based on PFEE in the polymer determined by the same method as in Example 1 was 0.02 mol%. Table 1 shows the results of the stretching test conducted in the same manner as in Example 1. In Example 6, a porous body having excellent uniformity and strength as compared with Example 5 was obtained.
[0052]
[Example 7]
A polymer was obtained in the same manner as in Example 1 except that 5.0 g of (perfluoctyl) ethylene (hereinafter referred to as PFOE) was used instead of PFBE. The polymer fine particle concentration of the emulsified dispersion was about 28.1% by weight, the average particle size of the polymer fine particles was 0.211 μm, and the standard specific gravity of the polymer was 2.149. The content of polymerized units based on PFOE determined by the same method as in Example 1 was 0.02 mol%. Table 1 shows the results of the stretching test conducted in the same manner as in Example 1. In Example 7, a porous body having excellent uniformity and strength as compared with Example 5 was obtained.
[0053]
[Example 8 (comparative example)]
A polymer was obtained in the same manner as in Example 1 except that 1.0 g of PFBE was used. The polymer fine particle concentration of the emulsified dispersion was about 27.8% by weight, the average particle size of the polymer fine particles was 0.236 μm, and the standard specific gravity of the polymer was 2.151. The content of polymerized units based on PFBE in the polymer obtained by the same method as in Example 1 was 0.004 mol%. Table 1 shows the results of the stretching test conducted in the same manner as in Example 1.
[0054]
[Table 1]
Figure 0003613024
[0055]
【The invention's effect】
A polytetrafluoroethylene-based copolymer particularly useful for drawing is obtained by micro-copolymerizing a fluorinated comonomer having a specific structure having a perfluoroalkyl group on TFE. A porous body made of this copolymer exhibits properties excellent in uniformity and strength.

Claims (5)

テトラフルオロエチレンと一般式CH2=CH−R(ただし、Rは炭素数が1〜10のペルフルオロアルキル基)で表されるフッ素化コモノマとの共重合体であって、該フッ素化コモノマを初期に一括して添加して製造した、フッ素化コモノマに基づく重合単位の含有量が0.005〜0.05モル%であり、標準比重が2.155より小さく、2.130以上であることを特徴とする延伸用テトラフルオロエチレン系共重合体。Tetrafluoroethylene and general formula CH 2 = CH-R f (where R f is the number of carbon atoms perfluoroalkyl group having 1 to 10) a copolymer of a fluorinated comonomer represented by, the fluorinated comonomer was prepared by adding at once initially, the content of polymerized units based on the fluorinated comonomer is Ri 0.005 to 0.05 mol% der, standard specific gravity is less than 2.155, at 2.130 or more draw tetrafluoroethylene copolymer, wherein Rukoto Oh. フッ素化コモノマが(ペルフルオロブチル)エチレンである請求項1に記載の延伸用テトラフルオロエチレン系共重合体。The tetrafluoroethylene copolymer for drawing according to claim 1, wherein the fluorinated comonomer is (perfluorobutyl) ethylene. テトラフルオロエチレンとフッ素化コモノマとの乳化重合により生成する重合体微粒子の、少なくともコア部分が請求項1または2に記載の重合体である延伸用テトラフルオロエチレン系共重合体。A tetrafluoroethylene copolymer for stretching , in which at least a core part of polymer fine particles produced by emulsion polymerization of tetrafluoroethylene and a fluorinated comonomer is the polymer according to claim 1 or 2. 乳化重合により生成する重合体微粒子のコア部分のフッ素化コモノマに基づく重合単位の含有量が、シェル部分のフッ素化コモノマに基づく重合単位の含有量よりも大きい構造を有する重合体微粒子から得られる請求項1、2または3に記載の延伸用テトラフルオロエチレン系共重合体からなるファインパウダ。Claims obtained from polymer fine particles having a structure in which the content of polymerized units based on the fluorinated comonomer in the core portion of the polymer fine particles produced by emulsion polymerization is larger than the content of polymerized units based on the fluorinated comonomer in the shell portion Item 4. A fine powder comprising the tetrafluoroethylene-based copolymer for stretching according to item 1, 2 or 3 . 請求項に記載の延伸用テトラフルオロエチレン系共重合体からなるファインパウダをペースト押し出し後、250℃以上の温度で延伸されたものであることを特徴とするテトラフルオロエチレン系共重合体の多孔質体。A fine powder composed of a tetrafluoroethylene copolymer for stretching according to claim 4 is extruded at a temperature of 250 ° C. or higher after extruding the paste. Body.
JP24397698A 1997-12-26 1998-08-28 Tetrafluoroethylene copolymer for stretching and its use Expired - Lifetime JP3613024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24397698A JP3613024B2 (en) 1997-12-26 1998-08-28 Tetrafluoroethylene copolymer for stretching and its use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-359779 1997-12-26
JP35977997 1997-12-26
JP24397698A JP3613024B2 (en) 1997-12-26 1998-08-28 Tetrafluoroethylene copolymer for stretching and its use

Publications (2)

Publication Number Publication Date
JPH11240917A JPH11240917A (en) 1999-09-07
JP3613024B2 true JP3613024B2 (en) 2005-01-26

Family

ID=26536514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24397698A Expired - Lifetime JP3613024B2 (en) 1997-12-26 1998-08-28 Tetrafluoroethylene copolymer for stretching and its use

Country Status (1)

Country Link
JP (1) JP3613024B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102639574A (en) * 2009-11-09 2012-08-15 旭硝子株式会社 Aqueous polytetrafluoroethylene emulsion and process for production thereof, aqueous polytetrafluoroethylene dispersion obtained using the emulsion, polytetrafluoroethylene fine powder, and stretch-expanded body

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6541589B1 (en) * 2001-10-15 2003-04-01 Gore Enterprise Holdings, Inc. Tetrafluoroethylene copolymer
JP4466368B2 (en) * 2002-05-02 2010-05-26 住友電気工業株式会社 Stretched polytetrafluoroethylene molded body and method for producing the same
US7531611B2 (en) * 2005-07-05 2009-05-12 Gore Enterprise Holdings, Inc. Copolymers of tetrafluoroethylene
US9040646B2 (en) 2007-10-04 2015-05-26 W. L. Gore & Associates, Inc. Expandable TFE copolymers, methods of making, and porous, expanded articles thereof
US9650479B2 (en) 2007-10-04 2017-05-16 W. L. Gore & Associates, Inc. Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same
EP2657291B1 (en) * 2010-12-21 2017-02-01 Daikin Industries, Ltd. Polytetrafluoroethylene mixture
JP5418584B2 (en) * 2010-12-21 2014-02-19 ダイキン工業株式会社 Polytetrafluoroethylene mixture
EP2840115B1 (en) 2012-04-20 2018-06-06 Daikin Industries, Ltd. Composition mainly composed of ptfe, mixed powder, molding material, filtering medium for filter, air filter unit, and porous membrane manufacturing method
US10245545B2 (en) 2013-10-23 2019-04-02 Daikin Industries, Ltd. Embossed air filter filtration medium, filter pack, air filter unit, and method for manufacturing filtration medium for embossed air filter
KR102112645B1 (en) 2013-11-29 2020-05-19 아사히 가세이 가부시키가이샤 Polymer electrolyte film
CN105793300B (en) 2013-11-29 2018-01-05 大金工业株式会社 Modified Teflon fine powder and simple tension porous plastid
EP3076465B1 (en) 2013-11-29 2020-07-15 Asahi Kasei Kabushiki Kaisha Polymer electrolyte membrane
US20170002156A1 (en) 2013-11-29 2017-01-05 Daikin Industries, Ltd. Biaxially-stretched porous membrane
TWI631144B (en) 2013-11-29 2018-08-01 大金工業股份有限公司 Porous body, polymer electrolyte membrane, filter material for filter and filter unit
CN103665240B (en) * 2013-12-11 2015-09-30 中昊晨光化工研究院有限公司 The preparation method of polytetrafluoroethyldispersion dispersion resin
US9644054B2 (en) 2014-12-19 2017-05-09 W. L. Gore & Associates, Inc. Dense articles formed from tetrafluoroethylene core shell copolymers and methods of making the same
JP6583650B2 (en) * 2015-04-22 2019-10-02 Agc株式会社 Modified polytetrafluoroethylene fine powder, method for producing the same, and electric wire and tube using the same
JP6673230B2 (en) 2017-01-12 2020-03-25 ダイキン工業株式会社 Air filter media
JP6816746B2 (en) 2018-07-20 2021-01-20 ダイキン工業株式会社 Air filter Filter media, filter pack, and air filter unit
JP7227507B2 (en) 2018-09-28 2023-02-22 ダイキン工業株式会社 Air filter medium, filter pack, air filter unit, and manufacturing method thereof
JP7181480B2 (en) 2021-02-04 2022-12-01 ダイキン工業株式会社 Air filter medium, method for manufacturing air filter medium, filter medium for mask, and filter medium for pleated mask
KR20240016337A (en) 2021-06-04 2024-02-06 다이킨 고교 가부시키가이샤 Air filter media, pleated filter media, air filter unit, mask filter media, and regeneration method of air filter media
WO2024019010A1 (en) * 2022-07-19 2024-01-25 Agc株式会社 Modified polytetrafluoroethylene, molded article, and stretched porous body production method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102639574A (en) * 2009-11-09 2012-08-15 旭硝子株式会社 Aqueous polytetrafluoroethylene emulsion and process for production thereof, aqueous polytetrafluoroethylene dispersion obtained using the emulsion, polytetrafluoroethylene fine powder, and stretch-expanded body
CN102639574B (en) * 2009-11-09 2015-11-25 旭硝子株式会社 Aqueous polytetrafluoroethyldispersion emulsion and manufacture method, the aqueous dispersion of polytetrafluoroethyland using this water-based emulsion to obtain, fine polytetrafluoroethylpowder powder and stretchable porous body
US9376520B2 (en) 2009-11-09 2016-06-28 Asahi Glass Company, Limited Polytetrafluoroethylene aqueous emulsion and process for its production, polytetrafluoroethylene aqueous dispersion obtainable by using such an aqueous emulsion, polytetrafluoroethylene fine powder, and stretched porous material

Also Published As

Publication number Publication date
JPH11240917A (en) 1999-09-07

Similar Documents

Publication Publication Date Title
JP3613024B2 (en) Tetrafluoroethylene copolymer for stretching and its use
EP1444277B1 (en) Tetrafluoroethene-perfluorobutylethene-copolymer
JP2560005B2 (en) Tetrafluoroethylene fine powder resin and method for producing the same
JP3669172B2 (en) Tetrafluoroethylene copolymer, production method thereof and use thereof
RU2378292C2 (en) Tetrafluoroethylene copolymers and method of producing tetrafluoroethylene copolymers
JP5625672B2 (en) Modified polytetrafluoroethylene fine powder and modified polytetrafluoroethylene molded product
JP5983633B2 (en) Method for producing polytetrafluoroethylene fine powder
EP1174448B1 (en) Fine powders of polytetrafluoroethylene
JPH043765B2 (en)
US4921922A (en) Production of tetrafluoroethylene polymers
JP4686861B2 (en) Method for producing modified polytetrafluoroethylene fine powder
JP3271524B2 (en) Modified polytetrafluoroethylene fine powder and method for producing the same
US4129618A (en) Tetrafluoroethylene polymers
JP4466002B2 (en) Tetrafluoroethylene copolymer, process for producing the same, and paste extrusion molding
EP0215624B1 (en) Preparation of tetrafluoroethylene fine powder resins
JP4561363B2 (en) Tetrafluoroethylene copolymer
EP1065223A1 (en) Process for producing aqueous dispersion containing polytetrafluoroethylene
US5756620A (en) Tetrafluoroethylene polymer for improved paste extrusion
WO2018221518A1 (en) Modified polytetrafluoroethylene and method for producing same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041018

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111105

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121105

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 9

EXPY Cancellation because of completion of term