JP3609144B2 - Alumina sintered abrasive grains and manufacturing method thereof - Google Patents

Alumina sintered abrasive grains and manufacturing method thereof Download PDF

Info

Publication number
JP3609144B2
JP3609144B2 JP09018695A JP9018695A JP3609144B2 JP 3609144 B2 JP3609144 B2 JP 3609144B2 JP 09018695 A JP09018695 A JP 09018695A JP 9018695 A JP9018695 A JP 9018695A JP 3609144 B2 JP3609144 B2 JP 3609144B2
Authority
JP
Japan
Prior art keywords
alumina
sintered
abrasive
abrasive grains
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09018695A
Other languages
Japanese (ja)
Other versions
JPH08259926A (en
Inventor
浩 三枝
哲雄 畠中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP09018695A priority Critical patent/JP3609144B2/en
Publication of JPH08259926A publication Critical patent/JPH08259926A/en
Application granted granted Critical
Publication of JP3609144B2 publication Critical patent/JP3609144B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は研削性能に優れ、硬度および靭性値が高いアルミナ質焼結砥粒に関する。
【0002】
【従来の技術】
従来のアルミナ質焼結砥粒にはアルミナ1水和物(擬ベーマイト)を原料としたゾルゲル法により造られた微細な結晶組織よりなる砥粒があり、それには種々の添加剤を用いて研磨材が造られている。
特開昭57−207672には、金属含有焼結助剤および0.05重量%より高く1.8重量%より低いナトリウム+カルシウムを含むゾルゲル法アルミナ質焼結砥粒およびその製造方法について記載されている。
また特開平3−234785には、酸化リチウムを含むゾルゲル法アルミナ質砥粒およびその製造方法が記載されており、この際改質成分としてMg、Ca、Co、Ni、Cr、Fe、Si、Zn、Mn、TiおよびZrを添加しても良いと記載されている。
またカルシウムを含むアルミナ系焼結体については、粉末焼結法によるものであるが特開平6−157133に板状または棒状のアルミナ系化合物組織と微細な粒状コランダム組織とが均一に分散しているアルミナ系複合焼結体およびその製造方法が記載されており、この時結晶を成長させるためCaO、TiO 、B 、ZnO、MnO 、LiF、Y 、La の少なくとも1種を添加し、結晶成長を抑えるためにZrO 、MgOの1種を添加すると記載されている。またこの時の微細なコランダム組織の好ましい大きさは1〜10μmであり、板状または棒状アルミナ系化合物組織の好ましい大きさは10〜100μmであると記載されている。
【0003】
【発明が解決しようとする課題】
粉末焼結法による場合、ある程度の焼結体の硬度を得るためには焼結温度を高くする必要があり、その結果、焼結体の結晶サイズはかなり大きくなり、強度、靭性値で問題となり、砥粒として優れたものは得難い。そのためサブミクロン組織の砥粒を得る目的で最近はゾルゲル法によるアルミナ質砥粒の製造方法が主に検討されているが、砥粒の硬度および靭性値をともに高くすることにはまだ改善が望まれている。
従って、ゾルゲル法によって均一な微細組織だけのものを造るのでなく、結晶組織を制御し、硬度をより高くするとともに靭性値も高い砥粒を提供することを本発明の目的とする。
【0004】
【課題を解決するための手段】
発明者は上記目的を達成すべき努力し、いろいろ検討した結果、本発明を見出した。即ち、カルシウムを含有する長径1μm以上の板状結晶粒を有し、板状結晶粒でない部分は平均粒径が0.23μm以下の結晶組織であり、リチウムを含有しないことを特徴とするアルミナ質焼結砥粒並びにその製造方法としてカルシウムイオンを含有するアルミナゾルにαアルミナ微粒子を添加し、ゲル化した後焼結することを特徴とするアルミナ質焼結砥粒の製造方法およびαアルミナ微粒子を含有するアルミナゾルをゲル化し、乾燥、仮焼後、カルシウムイオンを含浸し焼結することを特徴とするアルミナ質焼結砥粒の製造方法を見出した。
【0005】
まず、本発明のうち製造方法につき述べる。
(擬)ベーマイト(例えば、Condea社からSB Pural Aluminaなる商品名で市販されている)を硝酸、その他の酸と混合して、まずゾル化する。
このアルミナゾルにカルシウムイオンを入れる場合、水溶性のカルシウム塩(例えば、硝酸塩、ハロゲン化物、酢酸塩等)を溶液状態で添加する。この溶液は水溶液で添加するのがコスト的に好ましいが、低級アルコールの溶液でも可能であるが、上記の酢酸カルシウムはアルコールには不溶である。
本発明ではカルシウムの添加はゾル状態で添加するか、または含浸処理で添加するか、またはその両方で添加する方法がある。
【0006】
好ましいカルシウムの添加量はアルミナ質焼結砥粒としてCaO換算で0.5〜3wt%で、0.5wt%未満では板状結晶粒の析出が少なく高靭性化の効果が少なく、また3wt%を越えると板状結晶粒が多くなりすぎ砥粒の密度が低く好ましくない。
カルシウムの添加が、ゾル状態かまたは含浸処理のみの場合はその添加量は上記のアルミナ質焼結砥粒中の好ましい含有量になるような値であり、両方の段階で添加する場合は総量としてアルミナ質焼結砥粒中の含量を上記の好ましい範囲になるようにそれぞれの段階での添加量を調整する。
【0007】
本発明ではアルミナゾルに必ずαアルミナ微粒子を添加する。(擬)ベーマイトにαアルミナ微粒子を混合し、酸でゾル化してもよい。
添加するαアルミナ微粒子は、好ましくはBET値40m /g以上、より好ましくは60m /g以上の微粒子であり、その添加量はアルミナゾル中のアルミナの重量に対し、0.3〜3wt%が好ましい。0.3wt%未満では砥粒のアルミナ結晶サイズが微細にならず、また3wt%を越えても結晶の微細化がさらに向上することは殆ど認められず好ましくない。
【0008】
更にアルミナゾルに、砥粒のアルミナ結晶サイズの成長抑制剤としてMg、Ni、Co、Zr等の化合物を添加してもよい。
アルミナゾルにカルシウム塩を添加した場合、または、カルシウム塩を添加しなくても上記のMg化合物等の結晶成長抑制剤を添加するとゲル化する。
次に、アルミナゾルを乾燥するか、または上記のようにゲル化したものを乾燥する。ともにその乾燥条件は、80〜120℃で10〜72時間にて乾燥ゲル内に内包しないようにゆっくり乾燥する。
【0009】
乾燥ゲルを所定の砥粒の粒度になるように粉砕、整粒する。その後、仮焼し、ゾル化に用いた酸や結晶水を除去し、γアルミナ化する。
仮焼条件としては550〜900℃で全水分量の95wt%以上を除去させることが好ましく、仮焼時間は2時間程度が好ましい。
仮焼温度が900℃を越えると仮焼ゲル中に十分に細孔が形成されず、カルシウム塩溶液が粒子内に所定の量含浸され難く、特に砥粒内部への含浸が困難となる。また、仮焼ゲル中の残存水分が多くなり、乾燥ゲルの全水分量の95wt%未満の除去率でも同様な困難を生じる。仮焼温度が550℃未満では水分の除去率が低いためまた好ましくない。
【0010】
次に上記のように造られた仮焼ゲルに対し、ゾル状態で未添加の場合、前述の全量を、ゾル状態で一部添加した場合は前述の残量分を前述のようなカルシウム塩の溶液を含浸させる。該溶液の溶媒としては、水、エタノール、アセトン等が使用できるが、表面張力の小さな溶媒の方が砥粒内部への含浸効果が大きいので、エタノールが好ましく、生産コスト的には水が好ましい。また該溶液は、可能な限り濃度を高めるようにするのが望ましい。そのため、塩を溶かす溶媒は温度を上げて溶解度を高めた状態で使用することが望ましい。塩を溶解した溶液は濃度が高いため、その溶液を前述の仮焼ゲルに含浸するには、その溶液と仮焼ゲルとを混合するような状態で行えばよいが、仮焼ゲルを網目上にのせて含浸溶液中に浸した後、この仮焼ゲルを網目ごと引き上げる方法などがあり、特に限定されるものではない。また含浸の際の雰囲気の加圧や脱気を行っても構わないが、好ましい方法は所定量の含浸溶液をほぼ全体に行き渡るように注入した後、この湿潤物をかき混ぜて均一化するのが好ましい。より好ましい方法としては溶液をスプレー滴下し、仮焼ゲルに接触させるのがよい。
含浸後乾燥するが、また含浸する操作を繰り返し、前記の所定量のカルシウム塩溶液を含浸し、乾燥してもよい。
仮焼ゲルにカルシウム塩を含浸、乾燥後、または仮焼ゲルに対して含浸していない場合は、仮焼ゲルを以下のように焼結させる。
【0011】
カルシウムを含んだ仮焼ゲルをロータリーキルン等の炉で加熱し焼結させる。最高温度を1100〜1400℃の温度範囲で焼結する。この際に、900〜1100℃の温度範囲を90秒以内で急熱処理することが好ましい。急熱することにより、γアルミナからαアルミナへの相変態が急激に起こるとともに組織の緻密化が促進され、硬度も向上する。
焼結温度での保持時間は温度が高い程短くなり、1400℃で2分程度、1200〜1400℃の範囲では2分ないし10分間、1100〜1200℃の温度範囲では、10分ないし、10時間の保持時間が必要である。
また1100〜1300℃の温度範囲で2分ないし10分間保持した後、更に1000〜1200℃で1〜100時間保持するような2段焼結処理をしてもよい。
【0012】
次に本発明のアルミナ質焼結砥粒について説明する。添加されたカルシウムイオンは主にアルミナと反応しカルシウムアルミネートCaO・6Al23 となっている。平均粒径が0.23μm以下である微細な結晶組織からなるアルミナの粒界にCaOやCaO・6Al23 が存在するかどうかは1000倍程度のEPMA分析では不明である。本発明のアルミナ質焼結砥粒内に存在するCaO・6Al は、長径が1μm以上であり、多くの場合10μm以下であり、長径/短径比は多くの場合1〜3であり、また長径/厚さ比も多くの場合2以上であり、主には3〜10である。CaO・6Al23 よりなる板状結晶粒の長径は1μm以上であるが、アルミナ質焼結砥粒のうち板状結晶粒でない部分は平均粒径が0.23μm以下であるアルミナの微細な結晶組織である。
【0013】
本発明のアルミナ質焼結砥粒は上記のような結晶組織のため非常に高い靭性および硬度などを有し、優れた研削性能を発揮する。概して、その靭性値(タフネス;測定法は実施例1にて後述する)であるC係数は0.7以下、硬度(ヌープ、100g荷重、保持時間10秒)は15.5GPa以上、密度は理論値の90%以上である。
【0014】
【実施例】
以下に、実施例および比較例により説明する。
実施例1
Condea社製擬ベーマイト(SB Pural Alumina)500gを水1.9リットルに分散した。次に硝酸カルシウム・4水和物16.84g(アルミナに対しCaO換算量で1.1wt%)を水200gに溶解し、この水溶液を擬ベーマイト分散液に加えた。さらにαアルミナ微粒子(BET=64.7m /g)を5.0g(アルミナゾル中のアルミナ重量に対し、1.33wt%相当)を含む分散水溶液30.1gを添加した後、67.5%HNO 水溶液21.4mlと水21.4mlとの混合液を添加し、アルミナゾルを造った。このゾルをSUS製バットにて100℃で24時間静置乾燥を行い、乾燥ゲルを得た。それを粉砕し、焼成後JIS R 6001−1987の#60に相当するように、350〜500μmの粒に製粒した。この粒子を650℃で2時間仮焼した。そしてこれをロータリーキルンにて60秒で常温から急熱し、1350℃で2分間滞留させ焼結した。
得られた砥粒の組織を走査型電子顕微鏡で観察したところ、平均長径3.25μmの板状結晶粒と平均0.23μmの微細結晶粒からなっていた。
得られた砥粒の密度は、表1に示すように、水系のアルキメデス法による測定では3.88g/cm 、ヌープ硬度(100g荷重、保持時間10秒)は20.1GPaであった。
【0015】
得られた#60の砥粒の靭性値はJIS R 6128−1987(人造研削材のじん性の試験方法)に準じたC係数にて求めた。
C係数の測定法について述べる。
測定しようとする#60の砥粒約250gをJIS R 6128−1987に測定した#60に相当する標準ふるいの編成のロータップ試験機にて試料の調製をする。次にこの試験試料100gを内径114mmφ×120mmの約1.2リットル容量のボールミルポットに入れ、更に1/2インチφの鉄製ボール180個を入れ、95rpm の回転にて粉砕する。その後、JIS R 6128−1987に規定の操作、手順4〜7に従い、212μmのふるいに留まった試料重量を求め、それをR(X)とする。
次に、標準試料として黒色炭化けい素質研削材の#60につき上記と同様の操作を行い、粉砕後、212μmのふるいに留まった試料重量を求め、それをR(S)とし、次式にてC係数を算出する。
C係数=log(100/R(X))÷log(100/R(S))
【0016】
この値が小さい程、靭性が高いことになるが、実施例1の得られた#60の砥粒のC係数は0.63であった。
また、得られた砥粒につき1000倍のEPMA分析の結果、Caはカルシウムアルミネートからなる板状結晶粒に主に存在し、サブミクロンである微細な結晶組織からなるアルミナの粒界に存在するかどうかはよく分からなかった。
【0017】
実施例2
実施例1において硝酸カルシウムを添加する際に、さらに硝酸マグネシウム・6水和物5.7g(アルミナゾル中のアルミナ重量に対しMgO量で0.25wt%)を添加したこと以外は実施例1と同一条件、同一処理を行い砥粒を得た。その結果、得られた砥粒特性は表1に示すように、組織粒径は平均長径3.02μmの板状結晶粒と平均0.21μmの微細結晶粒であった。また密度は3.89g/cm 、ヌープ硬度は20.6GPaであり、C係数は0.65であった。
【0018】
実施例3
Condea社製擬ベーマイト(SB Pural Alumina)400gを水1.6リットルに分散し、αアルミナ微粒子(BET=64.7m /g)を4.0g(アルミナゾル中のアルミナ重量に対し、1.33wt%相当)を含む分散水溶液24.1gを添加し、67.5%HNO 水溶液16.8mlと水16.8mlとの混合液を添加し、アルミナゾルを造った。このゾルをSUS製バットにて100℃で24時間静置乾燥を行い、乾燥ゲルを得た。それを粉砕し、焼成後JIS R 6001−1987の#60の砥粒粒度にするため、350〜500μmの粒に粉砕乾燥ゲルを製粒した。この粒子を650℃で2時間仮焼し、硝酸にともなうNO および結晶水を除去した。次に硝酸カルシウム・4水和物14.27g(アルミナに対しCaO量で2.2wt%)および硝酸マグネシウム・6水和物4.90g(アルミナに対しMgO量で0.5wt%)を水70gに溶解し、この水溶液を150gの仮焼ゲルに含浸した。乾燥後再び仮焼した。そしてこれをロータリーキルンにて60秒で常温から1350℃に急熱し、その温度に2分間保持した。
得られた砥粒特性は表1に示すように、組織粒径は平均長径2.67μmの板状結晶粒と平均0.19μmの微細結晶粒であった。また密度は3.60g/cm 、ヌープ硬度は15.8GPaであり、C係数は0.63であった。
【0019】
実施例4
仮焼ゲルに含浸する際、硝酸カルシウム・4水和物7.04g(アルミナに対しCaO量で1.1wt%)、硝酸マグネシウム・6水和物2.42g(アルミナに対しMgO量で0.25wt%)としたこと以外は実施例3と同一条件、同一処理を行った。その結果、得られた砥粒特性は表1に示すように、組織粒径は平均長径3.14μmの板状結晶粒と平均0.19μmの微細結晶粒であった。また密度は3.90g/cm 、ヌープ硬度は21.1GPaであり、C係数は0.60であった。
ここで得られた砥粒の破断面の走査型電子顕微鏡写真(倍率1万倍)を図1に示す。板状結晶粒と微細結晶粒とが混在していることが分かる。
【0020】
比較例1
カルシウムを含有するが、αアルミナ微粒子をゾル段階で添加しない砥粒との比較のため、カルシウム(アルミナに対しCaO量で2.2wt%)およびマグネシウム(アルミナに対しMgO量で0.5wt%)を含むアルミナ質焼結砥粒を造った。すなわち、αアルミナ微粒子を添加しなかったこと以外は実施例3と同一条件、同一処理を行った。得られた砥粒特性は表1に示すように、組織粒径は平均長径2.20μmの板状結晶粒だけであった。また密度は3.61g/cm 、ヌープ硬度は15.9GPaであり、C係数は0.88であった。
【0021】
比較例2
カルシウムを含有しない砥粒との比較のため、ゾル段階でのαアルミナ微粒子入りアルミナ焼結砥粒を作成した。すなわち、実施例3の方法で含浸前のαアルミナ微粒子入り仮焼アルミナゲルを造り、含浸を行わずにロータリーキルンにて1280℃で2分間保持して焼結した。得られた砥粒特性は表1に示すように、組織は実質的に結晶粒子が全て1μm以下で、平均0.15μmの微細結晶粒であり、板状結晶粒はなかった。また密度は3.91g/cm 、ヌープ硬度は22.4GPaであり、C係数は0.75であった。
【0022】
【表1】

Figure 0003609144
【0023】
実施例5〜8
10重量部のレゾルシノール(1,3−ジオキシベンゼン)を10重量部のエタノールに溶解し、これと4種類の実施例1〜4で得られた砥粒100重量部とをそれぞれ混合し、それぞれにつき100℃にて1時間乾燥してエタノールを蒸発させ、表面がレゾルシノールでコーティングされた4種類の研磨材を得た。
圧縮不織布基材にフェノール樹脂接着剤BRL−2867(固形分約70%、昭和高分子(株)製)を100g/m の割合で均一に塗布した後、その上に上記コーティング処理された研磨材を散布し、過剰の研磨材を除去した。なおこの時の研磨材の基材への付着量は、4種類とも250g/m であった。それぞれのものにつき80℃で4時間乾燥した後、更にその上に前記接着剤を200g/m の割合で均一に塗布し、80℃で4時間乾燥させた後、2時間で80℃から135℃まで昇温し、135℃で30分保持して4種類の研磨布を得た。
それぞれの研磨布をパンチ抜きし、180mmφのディスク状研磨布を造り下記の条件にて乾式研削を行った。
【0024】
Figure 0003609144
研削量値を表2、表3に示す。
【0025】
比較例3〜4
比較例1、2で得られた2種類のそれぞれの砥粒に対し、実施例5と同様の条件、操作にて、ディスク状不織布基材研磨布を造り、研削試験を行った。研削量値を表2、表3に示す。
【0026】
【表2】
Figure 0003609144
【0027】
【表3】
Figure 0003609144
【0028】
【発明の効果】
本発明は、リチウムを含有することなく、カルシウムを含有する長径1μm以上の板状結晶粒を有し、板状結晶粒でない部分はサブミクロンの結晶組織であるアルミナ質焼結砥粒であって、従来よりも高靭性なアルミナ質焼結砥粒が得られ、優れた研削性能を発揮する。
【図面の簡単な説明】
【図1】実施例4によって得られた砥粒の破断面の結晶の構造または形状を表わしている走査型電子顕微鏡写真である。(倍率10,000倍)[0001]
[Industrial application fields]
The present invention relates to an alumina sintered grain having excellent grinding performance and high hardness and toughness values.
[0002]
[Prior art]
Conventional sintered alumina abrasive grains include abrasive grains composed of a fine crystal structure made by the sol-gel method using alumina monohydrate (pseudo boehmite) as a raw material, and are polished using various additives. The material is made.
Japanese Patent Application Laid-Open No. 57-207672 describes a sol-gel alumina sintered abrasive grain containing a metal-containing sintering aid and sodium + calcium higher than 0.05% by weight and lower than 1.8% by weight and a method for producing the same. ing.
JP-A-3-234785 describes a sol-gel-type alumina abrasive grain containing lithium oxide and a method for producing the same, and Mg, Ca, Co, Ni, Cr, Fe, Si, Zn as reforming components at this time , Mn, Ti and Zr may be added.
As for the alumina-based sintered body containing calcium, which is based on the powder sintering method, a plate-like or rod-like alumina-based structure and a fine granular corundum structure are uniformly dispersed in JP-A-6-157133. An alumina-based composite sintered body and a method for producing the same are described. At this time, in order to grow crystals, CaO, TiO 2 , B 2 O 3 , ZnO, MnO 2 , LiF, Y 2 O 3 , La 2 O 3 It is described that at least one kind is added and one kind of ZrO 2 and MgO is added to suppress crystal growth. Moreover, it is described that the preferable size of the fine corundum structure at this time is 1 to 10 μm, and the preferable size of the plate-like or rod-like alumina-based compound structure is 10 to 100 μm.
[0003]
[Problems to be solved by the invention]
In the case of the powder sintering method, in order to obtain a certain degree of hardness of the sintered body, it is necessary to increase the sintering temperature. As a result, the crystal size of the sintered body becomes considerably large, which causes problems in strength and toughness values. It is difficult to obtain an excellent abrasive grain. Therefore, for the purpose of obtaining abrasive grains with a submicron structure, the production method of alumina-based abrasive grains by the sol-gel method has been mainly studied recently, but improvement is still desired to increase both the hardness and toughness of the abrasive grains. It is rare.
Accordingly, it is an object of the present invention to provide an abrasive having not only a uniform fine structure by the sol-gel method, but also controlling the crystal structure to increase hardness and toughness.
[0004]
[Means for Solving the Problems]
The inventor made efforts to achieve the above-mentioned object, and as a result of various studies, found the present invention. That is, an alumina material characterized in that it has plate-like crystal grains having a major axis of 1 μm or more containing calcium, the portion that is not a plate-like crystal grain has a crystal structure having an average grain size of 0.23 μm or less , and does not contain lithium Sintered abrasive grains and a method for producing the same, comprising adding alpha alumina fine particles to alumina sol containing calcium ions, gelling and then sintering, and a method for producing sintered alumina abrasive grains and containing alpha alumina fine particles The present inventors have found a method for producing an alumina sintered abrasive grain characterized in that an alumina sol to be gelled is dried, calcined, impregnated with calcium ions and sintered.
[0005]
First, the manufacturing method of the present invention will be described.
(Pseudo) boehmite (for example, commercially available from Condea under the trade name SB Pure Alumina) is mixed with nitric acid and other acids to first sol.
When calcium ions are added to the alumina sol, a water-soluble calcium salt (for example, nitrate, halide, acetate, etc.) is added in a solution state. Although it is preferable in terms of cost to add this solution as an aqueous solution, a solution of a lower alcohol is also possible, but the above calcium acetate is insoluble in alcohol.
In the present invention, there is a method in which calcium is added in a sol state, in an impregnation treatment, or both.
[0006]
The preferable addition amount of calcium is 0.5 to 3 wt% in terms of CaO as an alumina sintered abrasive grain, and if it is less than 0.5 wt%, the precipitation of plate crystal grains is small and the effect of increasing toughness is small, and 3 wt% is added. When it exceeds, the number of plate-like crystal grains becomes too large, and the density of the abrasive grains is low, which is not preferable.
When calcium is added in a sol state or only in an impregnation treatment, the amount added is a value that makes the preferred content in the above-mentioned alumina-based sintered abrasive, and when added in both stages, the total amount The addition amount in each stage is adjusted so that the content in the alumina sintered abrasive grains is in the above-mentioned preferable range.
[0007]
In the present invention, α-alumina fine particles are always added to the alumina sol. Α-alumina fine particles may be mixed with (pseudo) boehmite and sol-formed with an acid.
The α-alumina fine particles to be added are fine particles having a BET value of 40 m 2 / g or more, more preferably 60 m 2 / g or more, and the addition amount is 0.3 to 3 wt% with respect to the weight of alumina in the alumina sol. preferable. If the amount is less than 0.3 wt%, the alumina crystal size of the abrasive grains does not become fine, and if it exceeds 3 wt%, it is not preferable since the further refinement of the crystal is hardly recognized.
[0008]
Further, a compound such as Mg, Ni, Co, Zr or the like may be added to the alumina sol as a growth inhibitor of the alumina crystal size of the abrasive grains.
When a calcium salt is added to the alumina sol, or when a crystal growth inhibitor such as the above Mg compound is added without adding a calcium salt, gelation occurs.
Next, the alumina sol is dried, or the gelled as described above is dried. Both of them are dried slowly at 80 to 120 ° C. for 10 to 72 hours so as not to be included in the dried gel.
[0009]
The dried gel is pulverized and sized so as to have a predetermined abrasive grain size. Thereafter, calcining is performed to remove the acid and water of crystallization used for the sol formation, and γ-alumina is formed.
As the calcining conditions, it is preferable to remove 95 wt% or more of the total water content at 550 to 900 ° C., and the calcining time is preferably about 2 hours.
When the calcining temperature exceeds 900 ° C., sufficient pores are not formed in the calcined gel, and the calcium salt solution is hardly impregnated into the particles in a predetermined amount, and it is particularly difficult to impregnate the abrasive grains. Further, the residual moisture in the calcined gel increases, and the same difficulty occurs even with a removal rate of less than 95 wt% of the total moisture content of the dried gel. If the calcining temperature is less than 550 ° C., the moisture removal rate is low, which is not preferable.
[0010]
Next, when the calcined gel prepared as described above is not added in the sol state, the above-mentioned total amount is partially added. Impregnate the solution. As the solvent of the solution, water, ethanol, acetone or the like can be used, but a solvent having a small surface tension has a larger impregnation effect inside the abrasive grains, and therefore ethanol is preferable, and water is preferable in terms of production cost. It is desirable to increase the concentration of the solution as much as possible. Therefore, it is desirable to use the solvent for dissolving the salt in a state in which the solubility is increased by raising the temperature. Since the solution in which the salt is dissolved is high in concentration, the above-mentioned calcined gel can be impregnated with the solution by mixing the solution and the calcined gel. There is a method of lifting the calcined gel together with the mesh after soaking in the impregnation solution, and there is no particular limitation. The atmosphere during the impregnation may be pressurized or degassed, but the preferred method is to inject a predetermined amount of the impregnating solution so as to spread almost all over, and then to stir and homogenize this wet material. preferable. As a more preferable method, the solution is preferably sprayed and brought into contact with the calcined gel.
The impregnation is followed by drying, but the impregnation operation may be repeated to impregnate the predetermined amount of calcium salt solution and dry.
After the calcined gel is impregnated with calcium salt, dried, or when the calcined gel is not impregnated, the calcined gel is sintered as follows.
[0011]
The calcined gel containing calcium is heated and sintered in a furnace such as a rotary kiln. Sintering is performed at a maximum temperature of 1100 to 1400 ° C. At this time, it is preferable to perform rapid heat treatment in a temperature range of 900 to 1100 ° C. within 90 seconds. By rapid heating, phase transformation from γ-alumina to α-alumina occurs rapidly, densification of the structure is promoted, and hardness is improved.
The holding time at the sintering temperature is shorter as the temperature is higher, and is about 2 minutes at 1400 ° C., 2 to 10 minutes in the range of 1200 to 1400 ° C., 10 to 10 hours in the temperature range of 1100 to 1200 ° C. Retention time is required.
Further, after being held at a temperature range of 1100 to 1300 ° C. for 2 to 10 minutes, a two-stage sintering treatment may be performed such that the temperature is further maintained at 1000 to 1200 ° C. for 1 to 100 hours.
[0012]
Next, the alumina sintered abrasive grain of the present invention will be described. The added calcium ions mainly react with alumina to form calcium aluminate CaO · 6Al 2 O 3 . Whether or not CaO or CaO.6Al 2 O 3 is present at the grain boundary of alumina having a fine crystal structure with an average grain size of 0.23 μm or less is unknown by an EPMA analysis of about 1000 times. CaO · 6Al 2 O 3 present in the alumina-based sintered abrasive grains of the present invention has a major axis of 1 μm or more, often 10 μm or less, and a major axis / minor axis ratio of 1 to 3 in many cases. Also, the major axis / thickness ratio is often 2 or more, mainly 3 to 10. Although the major axis of the plate-like crystal grains made of CaO.6Al 2 O 3 is 1 μm or more, the portion of the alumina-based sintered abrasive grains that are not plate-like crystal grains has an average grain size of 0.23 μm or less. Crystal structure.
[0013]
The alumina sintered abrasive grains of the present invention have very high toughness and hardness due to the crystal structure as described above, and exhibit excellent grinding performance. In general, the toughness value (toughness; measurement method will be described later in Example 1) is C coefficient 0.7 or less, hardness (Knoop, 100 g load, holding time 10 seconds) is 15.5 GPa or more, density is theoretical 90% or more of the value.
[0014]
【Example】
Hereinafter, examples and comparative examples will be described.
Example 1
500 g of pseudoboehmite (SB Pural Alumina) manufactured by Condea was dispersed in 1.9 liters of water. Next, 16.84 g of calcium nitrate tetrahydrate (1.1 wt% in terms of CaO with respect to alumina) was dissolved in 200 g of water, and this aqueous solution was added to the pseudo boehmite dispersion. Furthermore, after adding 30.1 g of an aqueous dispersion containing 5.0 g of α-alumina fine particles (BET = 64.7 m 2 / g) (corresponding to 1.33 wt% with respect to the alumina weight in the alumina sol), 67.5% HNO 3 A mixture of 21.4 ml of aqueous solution and 21.4 ml of water was added to make an alumina sol. This sol was dried by standing at 100 ° C. for 24 hours with a SUS bat to obtain a dried gel. It was pulverized and granulated into 350-500 μm grains so as to correspond to # 60 of JIS R 6001-1987 after firing. The particles were calcined at 650 ° C. for 2 hours. This was rapidly heated from room temperature in a rotary kiln in 60 seconds, held at 1350 ° C. for 2 minutes, and sintered.
When the structure of the obtained abrasive grains was observed with a scanning electron microscope, it was composed of plate-like crystal grains having an average major axis of 3.25 μm and fine crystal grains having an average of 0.23 μm.
As shown in Table 1, the density of the obtained abrasive grains was 3.88 g / cm 3 as measured by the water-based Archimedes method, and Knoop hardness (100 g load, holding time 10 seconds) was 20.1 GPa.
[0015]
The toughness value of the obtained # 60 abrasive was determined by the C coefficient according to JIS R 6128-1987 (Testing method for toughness of artificial abrasive).
A method for measuring the C coefficient will be described.
About 250 g of # 60 abrasive grains to be measured are prepared with a low-tap tester having a standard sieve knitting equivalent to # 60 measured according to JIS R 6128-1987. Next, 100 g of this test sample is put in a ball mill pot having an inner diameter of 114 mmφ × 120 mm and a capacity of about 1.2 liters, and further 180 iron balls of 1/2 inch φ are put and pulverized at a rotation of 95 rpm. Thereafter, according to the procedure specified in JIS R 6128-1987, procedures 4 to 7, the weight of the sample remaining on the 212 μm sieve is determined, and this is defined as R (X).
Next, the same operation as described above was performed for # 60 of the black silicon carbide abrasive as the standard sample, and after pulverization, the sample weight remaining on the 212 μm sieve was obtained, and this was defined as R (S). Calculate the C coefficient.
C coefficient = log (100 / R (X)) ÷ log (100 / R (S))
[0016]
The smaller this value, the higher the toughness, but the C coefficient of the # 60 abrasive grain obtained in Example 1 was 0.63.
As a result of EPMA analysis of the obtained abrasive grains 1000 times, Ca is mainly present in the plate-like crystal grains made of calcium aluminate, and is present in the grain boundary of alumina made of a fine crystal structure of submicron. I wasn't sure if it was.
[0017]
Example 2
Same as Example 1, except that 5.7 g of magnesium nitrate hexahydrate (0.25 wt% in terms of MgO based on the weight of alumina in the alumina sol) was further added when calcium nitrate was added in Example 1. Conditions and the same treatment were performed to obtain abrasive grains. As a result, the obtained abrasive grain characteristics were as shown in Table 1. The grain size was a plate-like crystal grain having an average major axis of 3.02 μm and fine crystal grains having an average of 0.21 μm. The density was 3.89 g / cm 3 , the Knoop hardness was 20.6 GPa, and the C coefficient was 0.65.
[0018]
Example 3
400 g of pseudo-boehmite (SB Pural Alumina) manufactured by Condea was dispersed in 1.6 liters of water, and 4.0 g of α-alumina fine particles (BET = 64.7 m 2 / g) (1.33 wt. Based on the weight of alumina in the alumina sol). 24.1 g of a dispersed aqueous solution containing 17.5 ml of a 67.5% HNO 3 aqueous solution and 16.8 ml of water was added to prepare an alumina sol. This sol was dried by standing at 100 ° C. for 24 hours with a SUS bat to obtain a dried gel. The pulverized and dried gel was granulated into 350-500 μm grains in order to pulverize them and to obtain a # 60 abrasive grain size according to JIS R 6001-1987 after firing. The particles were calcined at 650 ° C. for 2 hours to remove NO x and crystal water accompanying nitric acid. Next, 14.27 g of calcium nitrate tetrahydrate (2.2 wt% in terms of CaO relative to alumina) and 4.90 g of magnesium nitrate hexahydrate (0.5 wt% in terms of MgO relative to alumina) of 70 g of water 150 g of the calcined gel was impregnated with this aqueous solution. After drying, it was calcined again. This was rapidly heated from room temperature to 1350 ° C. in a rotary kiln in 60 seconds and held at that temperature for 2 minutes.
As shown in Table 1, the obtained abrasive grain characteristics were as follows: the grain size was a plate-like crystal grain having an average major axis of 2.67 μm and fine crystal grains having an average of 0.19 μm. The density was 3.60 g / cm 3 , the Knoop hardness was 15.8 GPa, and the C coefficient was 0.63.
[0019]
Example 4
When impregnating the calcined gel, 7.04 g of calcium nitrate tetrahydrate (1.1 wt% in terms of CaO with respect to alumina) and 2.42 g of magnesium nitrate hexahydrate (in terms of MgO content of 0.2% with respect to alumina). 25 wt%) The same conditions and the same treatment as in Example 3 were performed except that the amount was 25 wt%. As a result, as shown in Table 1, the resulting abrasive grain characteristics were a plate-like crystal grain having an average major axis of 3.14 μm and fine crystal grains having an average of 0.19 μm. The density was 3.90 g / cm 3 , the Knoop hardness was 21.1 GPa, and the C coefficient was 0.60.
A scanning electron micrograph (magnification 10,000 times) of the fracture surface of the abrasive grain obtained here is shown in FIG. It can be seen that plate crystal grains and fine crystal grains are mixed.
[0020]
Comparative Example 1
Calcium (2.2 wt% in terms of CaO with respect to alumina) and magnesium (0.5 wt% in terms of MgO with respect to alumina) for comparison with abrasive grains containing calcium but not containing alpha alumina fine particles at the sol stage Alumina sintered grains containing That is, the same treatment and the same conditions as in Example 3 were performed except that the α alumina fine particles were not added. As shown in Table 1, the obtained abrasive grain characteristics were only plate-like crystal grains having an average major axis of 2.20 μm. The density was 3.61 g / cm 3 , the Knoop hardness was 15.9 GPa, and the C coefficient was 0.88.
[0021]
Comparative Example 2
For comparison with the abrasive grains not containing calcium, alumina sintered abrasive grains containing α-alumina fine particles at the sol stage were prepared. That is, a calcined alumina gel containing α-alumina fine particles before impregnation was prepared by the method of Example 3, and sintered by holding at 1280 ° C. for 2 minutes in a rotary kiln without impregnation. As shown in Table 1, the obtained abrasive grain characteristics were such that the structure was substantially all fine crystal grains having a crystal grain size of 1 μm or less and an average of 0.15 μm, and there were no plate-like crystal grains. The density was 3.91 g / cm 3 , the Knoop hardness was 22.4 GPa, and the C coefficient was 0.75.
[0022]
[Table 1]
Figure 0003609144
[0023]
Examples 5-8
10 parts by weight of resorcinol (1,3-dioxybenzene) was dissolved in 10 parts by weight of ethanol, and this was mixed with 100 parts by weight of the four types of abrasive grains obtained in Examples 1 to 4, respectively. The mixture was dried at 100 ° C. for 1 hour to evaporate ethanol, and four types of abrasives whose surfaces were coated with resorcinol were obtained.
Polishing coated with the above-mentioned coating treatment after uniformly applying phenol resin adhesive BRL-2867 (solid content: about 70%, manufactured by Showa Polymer Co., Ltd.) at a rate of 100 g / m 2 on a compressed nonwoven fabric substrate The material was sprayed to remove excess abrasive. In addition, the adhesion amount to the base material of the abrasive | polishing material at this time was 250 g / m < 2 > in all four types. Each was dried at 80 ° C. for 4 hours, and then the adhesive was evenly applied thereon at a rate of 200 g / m 2 , dried at 80 ° C. for 4 hours, and then from 80 ° C. to 135 in 2 hours. The temperature was raised to ° C. and held at 135 ° C. for 30 minutes to obtain four types of polishing cloth.
Each abrasive cloth was punched out, a disc-shaped abrasive cloth of 180 mmφ was made, and dry grinding was performed under the following conditions.
[0024]
Figure 0003609144
Tables 2 and 3 show the grinding amount values.
[0025]
Comparative Examples 3-4
For each of the two types of abrasive grains obtained in Comparative Examples 1 and 2, a disk-shaped nonwoven fabric substrate polishing cloth was made under the same conditions and operations as in Example 5, and a grinding test was performed. Tables 2 and 3 show the grinding amount values.
[0026]
[Table 2]
Figure 0003609144
[0027]
[Table 3]
Figure 0003609144
[0028]
【The invention's effect】
The present invention has a plate-like crystal grain having a long diameter of 1 μm or more containing calcium without containing lithium, and the non-plate-like crystal grain portion is an alumina sintered abrasive grain having a submicron crystal structure. As a result, alumina sintered grains having higher toughness than conventional ones can be obtained, and excellent grinding performance can be achieved.
[Brief description of the drawings]
1 is a scanning electron micrograph showing the crystal structure or shape of a fracture surface of an abrasive grain obtained in Example 4. FIG. (Magnification 10,000 times)

Claims (3)

カルシウムを含有する長径1μm以上の板状結晶粒を有し、板状結晶粒でない部分は平均粒径が0.23μm以下の結晶組織であり、リチウムを含有しないことを特徴とするアルミナ質焼結砥粒。Alumina sintered characterized in that it has plate-like crystal grains containing calcium with a major axis of 1 μm or more, the non-plate crystal grains have a crystal structure with an average grain size of 0.23 μm or less , and do not contain lithium Abrasive grain. カルシウムイオンを含有するアルミナゾルにαアルミナ微粒子を添加し、ゲル化した後焼結することを特徴とするアルミナ質焼結砥粒の製造方法。A method for producing an alumina sintered abrasive, characterized in that α-alumina fine particles are added to an alumina sol containing calcium ions, gelled and then sintered. αアルミナ微粒子を含有するアルミナゾルをゲル化し、乾燥、仮焼後、カルシウムイオンを含浸し焼結することを特徴とする請求項1に記載のアルミナ質焼結砥粒の製造方法。The method for producing an alumina-based sintered abrasive grain according to claim 1, wherein the alumina sol containing α-alumina fine particles is gelled, dried and calcined, and then impregnated and sintered with calcium ions.
JP09018695A 1995-03-22 1995-03-22 Alumina sintered abrasive grains and manufacturing method thereof Expired - Lifetime JP3609144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09018695A JP3609144B2 (en) 1995-03-22 1995-03-22 Alumina sintered abrasive grains and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09018695A JP3609144B2 (en) 1995-03-22 1995-03-22 Alumina sintered abrasive grains and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08259926A JPH08259926A (en) 1996-10-08
JP3609144B2 true JP3609144B2 (en) 2005-01-12

Family

ID=13991466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09018695A Expired - Lifetime JP3609144B2 (en) 1995-03-22 1995-03-22 Alumina sintered abrasive grains and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3609144B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9517546B2 (en) 2011-09-26 2016-12-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005205542A (en) * 2004-01-22 2005-08-04 Noritake Co Ltd Sapphire polishing grinding wheel and sapphire polishing method
JP6604687B2 (en) * 2017-12-25 2019-11-13 昭和電工株式会社 Method for producing alumina sintered body
JP6725115B2 (en) * 2017-12-25 2020-07-15 昭和電工株式会社 Alumina sintered body, abrasive grains, and grindstone
JP7224103B2 (en) * 2018-01-05 2023-02-17 スリーエム イノベイティブ プロパティズ カンパニー Abrasive material and method for producing abrasive material
CN115155591B (en) * 2022-07-04 2023-08-18 中国石油大学(北京) Co-based catalyst for propane dehydrogenation and preparation method thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2850064B1 (en) * 1978-11-18 1980-05-08 Giulini Chemie Hexagonal tabular alpha alumina single crystals and process for their manufacture
JPS5617980A (en) * 1979-07-20 1981-02-20 Ngk Spark Plug Co Manufacture of alumina sintered body
ZA823417B (en) * 1981-05-27 1983-03-30 Kennecott Corp Superior high sodium and calcium sol gel abrasive and process for its production
MX204007A (en) * 1984-01-19 1994-03-31 Norton Co CERAMIC BODIES AND THEIR PREPARATION
JPH06104816B2 (en) * 1990-02-09 1994-12-21 日本研磨材工業株式会社 Sintered alumina abrasive grains and method for producing the same
JP2945221B2 (en) * 1992-11-19 1999-09-06 ワイケイケイ株式会社 Method for producing high toughness alumina-based composite sintered body
WO1995018192A1 (en) * 1993-12-28 1995-07-06 Minnesota Mining And Manufacturing Company Alpha alumina-based abrasive grain having an as sintered outer surface
AU685205B2 (en) * 1993-12-28 1998-01-15 Minnesota Mining And Manufacturing Company Alpha alumina-based abrasive grain

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9517546B2 (en) 2011-09-26 2016-12-13 Saint-Gobain Ceramics & Plastics, Inc. Abrasive articles including abrasive particulate materials, coated abrasives using the abrasive particulate materials and methods of forming

Also Published As

Publication number Publication date
JPH08259926A (en) 1996-10-08

Similar Documents

Publication Publication Date Title
JP3560341B2 (en) Abrasives containing alumina and zirconia
JP4410850B2 (en) Abrasives based on alpha alumina containing silica and iron oxide
EP0603715B1 (en) Abrasive grain comprising calcium oxide and/or strontium oxide
EP0408771B1 (en) Alumina ceramic, abrasive material, and production thereof
EP0728123B1 (en) Abrasive grain and method for making the same
US5282875A (en) High density sol-gel alumina-based abrasive vitreous bonded grinding wheel
JPH08502305A (en) Method for producing abrasive grains containing alumina and ceria
US5690707A (en) Abrasive grain comprising manganese oxide
EP0662110A1 (en) Abrasive grain including rare earth oxide therein
EP0675860B1 (en) Abrasive grain containing manganese oxide
JP2000512970A (en) Method of producing ceramic material from boehmite
JP3609144B2 (en) Alumina sintered abrasive grains and manufacturing method thereof
US5387268A (en) Sintered alumina abrasive grain and abrasive products
JPH05117636A (en) Polycrystalline sintered abrasive particle based on alpha-aluminum trioxide, abrasive comprising the abrasive particle, preparation of the abrasive particle and preparation of fire-resistant ceramic product
WO1990002160A1 (en) Abrasive grain and method of producing same
JPH0297457A (en) Production of abrasive grain of abrasive material
JPH06321534A (en) Production of crystallite alumina abrasive powder
KR101238666B1 (en) High hardness abrasive grains and manufacturing method of the same
JPH07173455A (en) Production of sintered abrasive alumina grain containing sialon phase
JPH05163060A (en) Alumina sintered whetstone granule and its production
JPH07173457A (en) Sintered abrasive alumina grain and its production
CA3010325A1 (en) Abrasive particles and methods of forming same
AU670667C (en) Abrasive grain containing manganese oxide
JP2000501135A (en) Method for producing alumina abrasive grains having metal carbide coating or metal nitride coating thereon

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101022

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 9

EXPY Cancellation because of completion of term