JP3607394B2 - Micro hardness measurement method - Google Patents

Micro hardness measurement method Download PDF

Info

Publication number
JP3607394B2
JP3607394B2 JP01602596A JP1602596A JP3607394B2 JP 3607394 B2 JP3607394 B2 JP 3607394B2 JP 01602596 A JP01602596 A JP 01602596A JP 1602596 A JP1602596 A JP 1602596A JP 3607394 B2 JP3607394 B2 JP 3607394B2
Authority
JP
Japan
Prior art keywords
indentation
depth
hardness
indenter
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01602596A
Other languages
Japanese (ja)
Other versions
JPH09210892A (en
Inventor
憲一 金沢
泰生 三輪
武史 伊藤
良平 粉川
修 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP01602596A priority Critical patent/JP3607394B2/en
Publication of JPH09210892A publication Critical patent/JPH09210892A/en
Application granted granted Critical
Publication of JP3607394B2 publication Critical patent/JP3607394B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、試料の微小領域や極表面の硬度測定に用いる微小硬度測定法に関する。
【0002】
【従来の技術】
従来から硬度測定方法では、四角錐形状の圧子を試料(金属、セラミックス、プラスチックス、ガラス等)に所定の荷重で押圧して圧痕の対角寸法d、あるいは窪み深さhから圧痕の表面積を算出し、その表面積と荷重Pとに基づいて次式(1)から試料の硬度を算出する。
【数1】
硬度=(荷重P)/(窪みの表面積) …(1)
【0003】
ところが、微小領域や極表面の硬度を測定する微小硬度計では荷重Pが非常に小さいため、試料に形成される圧痕の寸法は対角寸法dが0.1〜1μm、窪み深さhが0.013〜0.13μm程度となり、圧痕の対角寸法dの光学的計測が非常に困難になる。そこで、一般的には圧子の形状が試料に転写されると仮定し、測定された窪み深さhから圧痕の表面積を計算し、その表面積と荷重Pとから硬度を算出する。
【0004】
【発明が解決しようとする課題】
しかしながら、一般的に試料の表面粗さ,表面硬度等は不均一であるため、例えば圧子の形状が四角錐であっても、試料に形成される圧痕形状は表面積算出時に仮定した理想的な四角錐形状とならず、大きく歪んだ形状となることも多い。そのため、上述したように圧痕を四角錐形状と仮定して算出した硬度と実際の硬度との間に大きなずれが生じるおそれがあった。
【0005】
また、上述した表面積の算出では、圧子の先端形状が尖っていて丸みのないものと仮定し、その形状が試料に転写されると仮定して表面積が計算されている。しかし、圧子の先端部分を例えばSEM(走査型電子顕微鏡)で観察すると、その形状が丸みを帯びていることが分かる。そのため圧痕が微小な場合には、先端形状が尖っていると仮定して算出した表面積と実際の表面積との差が顕著になり、算出硬度と実際の硬度との間に誤差が生じるとともに、測定に用いる圧子によって得られる硬度にばらつきが生じるという問題があった。
【0006】
本発明の目的は、試料の微小領域や極表面の硬度を正確に測定することができる微小硬度測定法を提供することにある。
【0007】
【課題を解決するための手段】
発明の実施の形態を示す図1,2および5に対応付けて説明する。
図1および図2に対応付けて説明すると、請求項1の発明による微小硬度測定法は、圧子101で試料11に形成された圧痕12の形状の三次元計測値から圧痕の等高線を求め、圧痕表面の等高線に沿った微少面の面積の総和を算出することにより圧痕12の実表面積を算出し、この実表面積と圧痕形成時の圧子101の押圧荷重Pとに基づいて試料11の硬度を算出する演算手段3を備えて上述の目的を達成する。
図5に対応付けて説明すると、請求項2の発明による微小硬度測定法は、試料に形成された圧痕の窪み深さに基づいて硬度を算出する微小硬度測定法において、計測された窪み深さhと圧子によって形成された窪みの形状の三次元計測値とから理想圧子形状の場合の補正窪み深さh2を算出し、補正窪み深さh2に基づいて硬度を算出することを特徴とする
請求項3の発明による微小硬度測定法試料に形成された圧痕の窪み深さから理想圧子形状に基づく圧痕表面積を推定し、推定された圧痕表面積に基づいて硬度を算出する微小硬度測定法であって、計測された窪み深さhと圧子によって形成された窪みの形状の三次元計測値とから理想圧子形状の場合の補正窪み深さh2を算出し、補正窪み深さh2から圧痕表面積を推定し、その推定した圧痕表面積と圧痕形成時の圧子の押圧荷重とに基づいて試料11の硬度を算出することを特徴とする
【0008】
請求項1の発明による微小硬度測定法では、圧痕の形状の三次元計測値から圧痕の等高線を求め、圧痕表面の等高線に沿った微少面の面積の総和を算出することにより圧痕12の実表面積を算出し、その実表面積と押圧荷重Pとに基づいて硬度を算出する。
【0009】
なお、本発明の構成を説明する上記課題を解決するための手段の項では、本発明を分かり易くするために発明の実施の形態の図を用いたが、これにより本発明が発明の実施の形態に限定されるものではない。
【0010】
【発明の実施の形態】
以下、図1〜図8を参照して本発明の実施の形態を説明する。
−第1の実施の形態−
図1および図2は本発明による微小硬度測定法の第1の実施の形態を説明する図であり、図1は硬度計の概略構成を説明するブロック図、図2(a)は硬度計の圧子と試料との関係を示し、図2(b)および図2(c)は圧痕と等高線(詳細は後述する)との関係を示す図である。図1において1は硬度測定部であり、圧子101と、その昇降部102と、押圧荷重を検出する荷重計103と、圧子101の昇降位置を検出する位置検出センサ104と、試料を2次元的に移動するステージ105とを有する。そして、図2(a)に示すように圧子101により試料11に圧痕12を形成し、そのときの荷重Pや圧子101の昇降位置を測定する。2は原子間力顕微鏡であり、試料11に形成された圧痕12を試料11の表面で二次元的に走査して圧痕12の深さを測定し、それにより圧痕12の三次元形状を計測する。硬度測定部1からの荷重Pおよび原子間力顕微鏡2からの圧痕形状情報(深さ情報)は、それぞれCPU3へ送られる。CPU3は圧痕形状情報から圧痕12の等高線を所定の深さピッチで算出するとともに、その等高線の形状と深さピッチを含む等高線情報に基づいて圧痕12の実表面積を算出し、さらに圧痕12の表面積と荷重Pとから硬度を算出する。4はメモリであり、荷重P,圧痕形状情報,等高線情報,表面積および硬度が記憶される。5は圧痕23の等高線や硬度等を表示するための表示装置であり、CRTや液晶表示装置等で構成される。
【0011】
次に、図3に示すフローチャートを用いて動作を説明する。図3のフローチャートは硬度計の操作開始スイッチ(不図示)をオンすることによってスタートし、ステップS1へ進む。ステップS1では硬度測定部1の圧子101を昇降部102により降下し、荷重計103が予め定めた荷重を検出するまで試料11を押圧して圧痕12を形成する。検出された荷重PはCPU3へ送られた後、メモリ4に記憶される。ステップS2では、試料11に形成された圧痕12の三次元形状、すなわち深さが原子間力顕微鏡2により計測され、計測された深さ情報がCPU3を介してメモリ4に記憶されステップS3へ進む。ステップS3では、メモリ4に記憶された深さ情報から圧痕12の等高線が所定の深さピッチで算出されステップS4へ進む。ステップS4では、ステップS3で算出された等高線情報に基づいて圧痕12の実表面積が算出され、さらにステップS5において実表面積とメモリ4に記憶された荷重Pとから硬度が算出され一連の処理を終了する。図1に示す表示装置5には、図2(b),(c)に示すような等高線が描かれた圧痕形状,荷重Pおよび硬度等が表示される。
【0012】
図2(b)および図2(c)は圧痕12に等高線を重ねて描いた図であり、(b)は四角錐の圧子形状がそのまま試料11に転写形成された圧痕12の場合を示し、(c)は試料表面の粒界が不均一なために形状が歪んでいる圧痕12bの場合を示している。等高線は深さピッチΔh毎に算出され、隣り合う等高線同士の間隔とピッチΔhとに基づいて圧痕12の実表面積が算出される。なお、得られる等高線の間隔は実表面積が所定の精度で算出できる程度に十分小さくする必要があり、ピッチΔhは窪み深さhに対してを十分小さくなるように設定される。例えば、圧痕12の窪み深さhは前述したように0.013〜0.13μm程度なので、ピッチΔhはhの1/10程度にすれば良い。
【0013】
ピッチΔhと等高線同士の間隔とにより圧痕12の実表面積の算出方法の一例を、図4を用いて説明する。図4は図2(b)の一点鎖線Aで示す部分を拡大した斜視図であり、121aおよび121bはともに深さΔhの等高線であるが、121aは圧子101側から見た場合の等高線であって、破線121bは等高線を窪み表面に描いた場合を示す。等高線に沿って微小間隔Δmに分割したとき、窪み表面の寸法ΔLは
【数2】
ΔL=(Δh+Δd1/2 …(2)
であり、窪み表面の微小面積ΔSは
【数3】

Figure 0003607394
となる。式(3)においてΔhおよびΔdは計測情報によって得られ、窪み表面全体にわたってΔSを算出してそれらの和を取ることにより窪み表面の実面積を算出することができる。
【0014】
図2(c)に示すように圧痕形状が理想的な四角錐から大きく歪んでいる場合には、算出される圧痕12の実表面積は圧痕形状が四角錐であると仮定して算出した推定表面積と大きく異なり、硬度のずれも大きくなる。
【0015】
本実施の形態では、試料11に形成された圧痕12の三次元形状に基づいて圧痕12の実表面積を算出して硬度を算出するため、従来のように試料表面付近の不均一さに影響されることなく、より正確な硬度を得ることができる。また、表示装置5によって圧痕形状を等高線と共に表示しているため、試料表面付近の不均一さを画像情報という形で知ることができる。
【0016】
−第2の実施の形態−
図5は本発明による微小硬度測定法の第2の実施の形態を説明する図であり、圧痕の断面図である。図2(a)に示した圧子101は実際には先端部分がR形状であるため、試料11に形成される圧痕12は窪みの中央部分121がR形状となっている。しかし、上述したように、従来は測定された窪み深さhに基づいて13で示すような圧痕(圧子101と相似な四角錐形状である)を仮定し、その表面積と荷重Pを用いて上述した式(1)から硬度を算出していた。本実施の形態では、圧痕12から圧子101の先端形状を算出し、その先端形状も加味して硬度を算出する。以下、図を参照して詳細を説明する。
【0017】
図5に示す硬度計の概略構成は図1に示した硬度計と同様であり、図1および図2を参照しながら説明すると、原子間力顕微鏡2によって圧痕12の深さを測定することによって三次元形状が計測され、その圧痕深さ情報に基づいて窪みの等高線がCPU3により所定の深さピッチで算出される。図6は圧痕12と等高線を重ねて描いた図であり、圧痕12は四角錐形状であるため等高線122aは正方形であるが、中央部分121(図5)の形状はR形状であるため等高線122bは略円形となっている。略円形の等高線の内で一番外側の等高線122cの径から圧子先端形状を算出し、その先端形状に基づいて補正された窪み深さhを求める。そして、窪み深さhに対応する圧痕14(圧子101と相似な四角錐形状である)を仮定して、その表面積と荷重Pとから硬度を算出する。
【0018】
図7は硬度算出の手順を示すフローチャートであるが、ステップS1〜S3およびステップS5は図3のフローチャートの対応するステップと同一であるので、ここでは内容の異なるステップS101〜S107について説明する。ステップS3において等高線が算出されたならばステップS101に進み、等高線を画像処理して略円形等高線の一番外側の等高線(最外略円形等高線)を決定する。ステップS102では、ステップS3の等高線算出の場合より小さな深さピッチで再び等高線を算出し、ステップS103へ進んで再度最外略円形等高線を決定する。なお、ステップS102における等高線算出の範囲は、ステップS101で決定した最外略円形等高線の外側に隣接する等高線の内側である。ステップS104はステップS102における深さピッチが所定の値Δh以下か否かを判断するステップであり、Δh以下であればステップS105へ進み、それ以外の場合にはステップS101へ戻りステップS102およびS103を実行する。
【0019】
ステップS105では最外略円形等高線122cの径および深さピッチから圧子先端のR寸法を算出し、ステップS106に進んで窪み深さを実測値であるhからhに補正する。ステップS107では、補正された窪み深さhに対応する圧痕14の表面積を算出し、ステップS5で算出した表面積と荷重Pとから硬度を求める。
【0020】
上述したように、本実施の形態では圧痕の深さ情報に基づいて圧子先端のR寸法を算出し、そのR寸法から窪み深さを補正してその窪み深さに対応する圧痕の表面積と荷重Pとから硬度を算出しているため、従来に比べより正確な硬度を得ることができる。さらに、先端形状の異なる数種類の圧子を使用する場合でも、それぞれの圧子先端形状を加味して硬度を算出するので、異なる圧子を用いたときの硬度のばらつきを低減することができる。
【0021】
なお、上述した実施の形態では、一番外側にある略円形等高線122cの径から圧子先端を一つのR寸法で近似して補正された窪み深さhを算出しているが、等高線122cの内側の等高線全体から圧子先端形状をより詳細に算出して窪み深さhを求めるようにしてもよい。また、圧子先端形状の算出は、圧子を交換した場合にのみ行うようにしてもよく、上述した場合に比べて測定時間の短縮を図ることができる。
【0022】
−第3の実施の形態−
図8は本発明による微小硬度測定法の第3の実施の形態を説明する図である。上述した第1および第2の実施の形態では、圧痕の表面積を算出するにあたり、計測により得られた深さ情報から求められた等高線を利用したが、本実施の形態では深さ情報から直接に表面積を求めるようにした。圧痕の表面積の計算方法以外については第1および第2の実施の形態と同様であるので、以下では計算方法についてのみ説明する。
【0023】
計測された深さ情報は2次元的な離散データから成り、図8(a)はその深さ情報を視覚的に示した図である。図8(a)では、水平面の座標を(i,j)に関して間隔Δa毎にデータを示した。ij面に描かれた格子はそれぞれの間隔がi軸方向およびj軸方向ともΔaであり、各格子点に描かれた棒Bの高さが圧痕の深さdを表している。
【0024】
次いで、圧痕の表面で図8(a)の斜線を施した正方形領域の表面積の計算方法を説明する。図8(b)は図8(a)の斜線部分を拡大した図であり、各格子点(i,j),(i,j+1),(i+1,j)および(i+1,j+1)における深さはそれぞれd(i,j),d(j,j+1),d(i+1,j)およびd(i+1,j+1)である。なお、格子点(i,j)の棒Bの先端を点d(i,j)と呼ぶことにする。先ず、点d(i,j),d(i,j+1)およびd(i+1,j)を頂点とする三角形の面積ΔS1と、点d(i,j+1),d(i+1,j)およびd(i+1,j+1)を頂点とする三角形の面積ΔS2とをそれぞれ計算する。そして、ΔS1+ΔS2をこの正方形領域の表面積とする。このようにして計算された各正方形領域の表面積の和をとることによって、深さに関する離散データから圧痕の表面積を直接求めることができる。なお、本実施の形態ではサンプリングデータから正方形領域に分割したが、最初から三角形領域に分割して計算してもよい。
【0025】
また、圧痕の表面積を計算するにあたって、得られた画像データから圧痕範囲を特定する必要があるが、それには手動で範囲を指定する方法と、自動的に指定する方法とがある。手動で指定する方法としては、例えば、CRT等の画像表示装置に映し出された画像データ上でマウスなどのポインティングデバイスで直接指定する方法がある。あるいは、画像データ全体の傾斜補正を行った後に所定の閾値を与え、その閾値に関して画像データを2値化するなどして圧痕の領域を特定する。一方、自動的に指定する方法としては、画像データ全体の傾斜補正を行った後に、その平均的(データ数が最多のもの)な値よりも低い値を持つ範囲を圧痕の領域として判定する方法等がある。
【0026】
本実施の形態においても、第1および第2の実施の形態と同様の効果を得ることができるとともに、上述したようにサンプリングした離散データから表面積を直接求めているため以下のような利点がある。
(1)離散データから直接計算するので、測定における分解能で計算でき、等高線を用いる場合に比べて計算誤差を小さくすることができる。
(2)等高線を用いる方法のように、途中で等高線データに変換するような中間処理がないので、一意的に結果が求まるとともに、計算時間を短縮できる。
【0027】
なお、上述した実施の形態では、原子間力顕微鏡を用いなければ圧痕の深さ計測ができない程度の微小な圧痕について説明したが、例えば、レーザ光で三次元計測できる程度の大きさの圧痕であっても本発明を適用することができる。
【0028】
上述した実施の形態と特許請求の範囲との対応において、原子間力顕微鏡2は三次元計測装置を、荷重Pは押圧荷重を、CPU3は演算手段をそれぞれ構成する。
【0029】
【発明の効果】
以上説明したように、請求項1の発明では、試料に形成された圧痕の形状の三次元計測値から算出した実表面積と押圧荷重とに基づいて硬度を算出しているため、測定の度に硬度がばらつくこともなく従来より正確な硬度を得ることができる。
請求項2の発明では、算出された理想圧子形状の場合の補正窪み深さにより硬度を算出し、さらに、請求項3の発明では、その算出された補正窪み深さから推定される圧痕表面積と押圧加重とにより硬度を算出しているため、従来より正確な硬度を得ることができる。
【図面の簡単な説明】
【図1】本発明による微小硬度測定法の第1の実施の形態を説明する図であって、硬度計の概略構成のブロック図である。
【図2】図1に示す硬度計を説明する図であり、(a)は硬度計の圧子と試料との関係を示し、(b)および(c)は圧痕と等高線との関係を示す図である。
【図3】硬度計の動作を説明するフローチャート。
【図4】実表面積の算出方法を説明する図。
【図5】本発明による微小硬度測定法の第2の実施の形態を説明する図であり、圧痕の断面図。
【図6】等高線を示す図。
【図7】硬度計の動作を説明するフローチャート。
【図8】本発明による微小硬度測定法の第3の実施の形態を説明する図であり、(a)は深さ情報を視覚的に示した図、(b)は(a)の斜線部分の拡大図。
【符号の説明】
1 硬度測定部
2 原子間力顕微鏡
3 CPU
4 メモリ
5 表示装置
12,12a,12b,13 圧痕
11 試料
101 圧子
102 昇降部
103 荷重計
104 位置検出センサ
105 ステージ
121a,121b,122a〜122c 等高線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a microhardness measurement method used for measuring the hardness of a microscopic area or a surface of a sample.
[0002]
[Prior art]
Conventionally, in the hardness measurement method, a square pyramid-shaped indenter is pressed against a sample (metal, ceramics, plastics, glass, etc.) with a predetermined load to obtain the surface area of the indentation from the diagonal dimension d of the indentation or the depth h of the depression. Based on the surface area and the load P, the hardness of the sample is calculated from the following equation (1).
[Expression 1]
Hardness = (Load P) / (Surface area of hollow) (1)
[0003]
However, since the load P is very small in the micro hardness tester that measures the hardness of the micro area or the extreme surface, the dimensions of the indentation formed on the sample are 0.1 to 1 μm in the diagonal dimension d and 0 in the recess depth h. .013 to 0.13 μm, and the optical measurement of the diagonal dimension d of the indentation becomes very difficult. Therefore, generally, it is assumed that the shape of the indenter is transferred to the sample, the surface area of the indentation is calculated from the measured depression depth h, and the hardness is calculated from the surface area and the load P.
[0004]
[Problems to be solved by the invention]
However, since the surface roughness, surface hardness, etc. of the sample are generally non-uniform, for example, even if the shape of the indenter is a quadrangular pyramid, the indentation shape formed on the sample is the ideal four assumed when calculating the surface area. In many cases, it is not a pyramid shape, but a greatly distorted shape. Therefore, as described above, there is a possibility that a large deviation may occur between the hardness calculated on the assumption that the indentation is a quadrangular pyramid shape and the actual hardness.
[0005]
In the calculation of the surface area described above, the surface area is calculated on the assumption that the tip shape of the indenter is sharp and not rounded, and that the shape is transferred to the sample. However, when the tip portion of the indenter is observed with, for example, an SEM (scanning electron microscope), it can be seen that the shape is rounded. Therefore, when the indentation is very small, the difference between the surface area calculated assuming that the tip shape is sharp and the actual surface area becomes significant, and an error occurs between the calculated hardness and the actual hardness. There was a problem in that the hardness obtained by the indenter used in the process varied.
[0006]
An object of the present invention is to provide a microhardness measuring method capable of accurately measuring the hardness of a microscopic area and the extreme surface of a sample.
[0007]
[Means for Solving the Problems]
A description will be given in association with FIGS. 1, 2 and 5 showing an embodiment of the invention.
1 and 2, the microhardness measurement method according to the first aspect of the present invention obtains the contour lines of the indentation from the three-dimensional measurement value of the shape of the indentation 12 formed on the sample 11 with the indenter 101, and the indentation The actual surface area of the indentation 12 is calculated by calculating the sum of the areas of the minute surfaces along the contour lines of the surface, and the hardness of the sample 11 is calculated based on the actual surface area and the pressing load P of the indenter 101 when forming the indentation. The calculation means 3 is provided to achieve the above object.
Referring to FIG. 5 , the microhardness measurement method according to the second aspect of the present invention is the microhardness measurement method in which the hardness is calculated based on the recess depth of the indentation formed on the sample. The correction dent depth h2 in the case of an ideal indenter shape is calculated from h and the three-dimensional measurement value of the shape of the dent formed by the indenter, and the hardness is calculated based on the correction dent depth h2 .
Microhardness measuring method according to the third aspect of the present invention estimates the indentation surface area based on the ideal shape of the indenter from the depression depth of the indentation formed in the sample, microhardness measurement method of calculating the hardness based on the estimated indentation surface area Then, the corrected indentation depth h2 in the case of the ideal indenter shape is calculated from the measured indentation depth h and the three-dimensional measurement value of the indentation shape formed by the indenter, and the indentation surface area is calculated from the corrected indentation depth h2. And the hardness of the sample 11 is calculated based on the estimated indentation surface area and the pressing load of the indenter at the time of indentation formation .
[0008]
In the microhardness measuring method according to the first aspect of the present invention , the contour surface of the indentation is obtained from the three-dimensional measurement value of the shape of the indentation, and the total surface area of the minute surface along the contour line of the indentation surface is calculated to calculate the actual surface area of the indentation 12. and calculates the hardness on the basis of its actual surface area and the pushing load P.
[0009]
In the section of the means for solving the above-described problems for explaining the configuration of the present invention, the drawings of the embodiments of the invention are used for easy understanding of the present invention. The form is not limited.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
-First embodiment-
1 and 2 are diagrams for explaining a first embodiment of the microhardness measuring method according to the present invention. FIG. 1 is a block diagram for explaining a schematic configuration of the hardness meter, and FIG. 2 (a) is a diagram of the hardness meter. FIG. 2 (b) and FIG. 2 (c) are diagrams showing the relationship between indentations and contour lines (details will be described later). In FIG. 1, reference numeral 1 denotes a hardness measuring unit, which is an indenter 101, its elevating unit 102, a load meter 103 for detecting a pressing load, a position detecting sensor 104 for detecting the elevating position of the indenter 101, and a sample in two dimensions. And a stage 105 that moves to the center. Then, as shown in FIG. 2A, the indentation 12 is formed on the sample 11 by the indenter 101, and the load P and the elevation position of the indenter 101 at that time are measured. Reference numeral 2 denotes an atomic force microscope. The indentation 12 formed on the sample 11 is two-dimensionally scanned on the surface of the sample 11 to measure the depth of the indentation 12, thereby measuring the three-dimensional shape of the indentation 12. . The load P from the hardness measurement unit 1 and the indentation shape information (depth information) from the atomic force microscope 2 are respectively sent to the CPU 3. The CPU 3 calculates the contour line of the indentation 12 from the indentation shape information at a predetermined depth pitch, calculates the actual surface area of the indentation 12 based on the contour line information including the shape and depth pitch of the contour line, and further calculates the surface area of the indentation 12. The hardness is calculated from the load P. A memory 4 stores a load P, indentation shape information, contour information, surface area, and hardness. Reference numeral 5 denotes a display device for displaying the contour lines, hardness, and the like of the indentation 23, and is composed of a CRT, a liquid crystal display device or the like.
[0011]
Next, the operation will be described with reference to the flowchart shown in FIG. The flowchart of FIG. 3 starts by turning on an operation start switch (not shown) of the hardness meter, and proceeds to step S1. In step S1, the indenter 101 of the hardness measuring unit 1 is lowered by the elevating unit 102, and the sample 11 is pressed until the load meter 103 detects a predetermined load to form the indentation 12. The detected load P is sent to the CPU 3 and stored in the memory 4. In step S2, the three-dimensional shape of the indentation 12 formed on the sample 11, that is, the depth is measured by the atomic force microscope 2, and the measured depth information is stored in the memory 4 via the CPU 3, and the process proceeds to step S3. . In step S3, contour lines of the indentation 12 are calculated at a predetermined depth pitch from the depth information stored in the memory 4, and the process proceeds to step S4. In step S4, the actual surface area of the indentation 12 is calculated based on the contour line information calculated in step S3. Further, in step S5, the hardness is calculated from the actual surface area and the load P stored in the memory 4, and the series of processes is completed. To do. The display device 5 shown in FIG. 1 displays an indentation shape, a load P, hardness, and the like in which contour lines as shown in FIGS. 2B and 2C are drawn.
[0012]
2 (b) and FIG. 2 (c) are drawings in which contour lines are superimposed on the indentation 12, and FIG. 2 (b) shows a case of the indentation 12 in which the shape of a quadrangular pyramid is transferred and formed on the sample 11 as it is. (C) shows the case of the indentation 12b whose shape is distorted due to non-uniform grain boundaries on the sample surface. The contour lines are calculated for each depth pitch Δh, and the actual surface area of the indentation 12 is calculated based on the interval between adjacent contour lines and the pitch Δh. Note that the interval between the contour lines to be obtained needs to be sufficiently small so that the actual surface area can be calculated with a predetermined accuracy, and the pitch Δh is set to be sufficiently small with respect to the recess depth h. For example, since the depth h of the depression 12 is about 0.013 to 0.13 μm as described above, the pitch Δh may be about 1/10 of h.
[0013]
An example of a method for calculating the actual surface area of the indentation 12 based on the pitch Δh and the interval between the contour lines will be described with reference to FIG. 4 is an enlarged perspective view of the portion indicated by the alternate long and short dash line A in FIG. 2B. Both 121a and 121b are contour lines having a depth Δh, while 121a is a contour line when viewed from the indenter 101 side. A broken line 121b shows a case where contour lines are drawn on the surface of the depression. When divided into minute intervals Δm along the contour line, the dimension ΔL of the depression surface is
ΔL = (Δh 2 + Δd 2 ) 1/2 (2)
And the small area ΔS of the depression surface is
Figure 0003607394
It becomes. In Expression (3), Δh and Δd are obtained from the measurement information, and the actual area of the depression surface can be calculated by calculating ΔS over the entire depression surface and taking the sum thereof.
[0014]
When the indentation shape is greatly distorted from an ideal quadrangular pyramid as shown in FIG. 2C, the calculated actual surface area of the indentation 12 is an estimated surface area calculated on the assumption that the indentation shape is a quadrangular pyramid. Unlike the above, the deviation in hardness also increases.
[0015]
In the present embodiment, since the actual surface area of the indentation 12 is calculated based on the three-dimensional shape of the indentation 12 formed on the sample 11 and the hardness is calculated, it is affected by nonuniformity in the vicinity of the sample surface as in the past. More accurate hardness can be obtained. Further, since the indentation shape is displayed together with the contour lines by the display device 5, the non-uniformity near the sample surface can be known in the form of image information.
[0016]
-Second Embodiment-
FIG. 5 is a view for explaining a second embodiment of the microhardness measuring method according to the present invention, and is a sectional view of an indentation. Since the tip portion of the indenter 101 shown in FIG. 2A is actually R-shaped, the indentation 12 formed on the sample 11 has a concave central portion 121 of R shape. However, as described above, conventionally, an indentation as shown at 13 (a quadrangular pyramid shape similar to the indenter 101) is assumed based on the measured depression depth h, and the surface area and the load P are used to describe the above. The hardness was calculated from the formula (1). In the present embodiment, the tip shape of the indenter 101 is calculated from the indentation 12, and the hardness is calculated in consideration of the tip shape. Details will be described below with reference to the drawings.
[0017]
The schematic configuration of the hardness meter shown in FIG. 5 is the same as that of the hardness meter shown in FIG. 1 and will be described with reference to FIGS. 1 and 2 by measuring the depth of the indentation 12 with the atomic force microscope 2. The three-dimensional shape is measured, and the contour lines of the depression are calculated at a predetermined depth pitch by the CPU 3 based on the indentation depth information. FIG. 6 is a diagram in which the indentation 12 and the contour line are overlapped, and since the indentation 12 has a quadrangular pyramid shape, the contour line 122a is a square, but since the shape of the central portion 121 (FIG. 5) is an R shape, the contour line 122b. Is substantially circular. Substantially calculates the circular indenter tip shape from the diameter of the outermost contour line 122c within the contour to obtain the corrected indentation depth h 2 based on the tip shape. Then, assuming the indentation 14 corresponding to the recess depth h 2 (a similar four-pyramid shape indenter 101), calculates a hardness and a surface area and the load P.
[0018]
FIG. 7 is a flowchart showing the procedure for calculating the hardness. Since steps S1 to S3 and step S5 are the same as the corresponding steps in the flowchart of FIG. 3, steps S101 to S107 having different contents will be described here. If the contour line is calculated in step S3, the process proceeds to step S101, and the contour line is image-processed to determine the outermost contour line (outermost substantially circular contour line) of the substantially circular contour line. In step S102, contour lines are calculated again with a smaller depth pitch than in the case of contour line calculation in step S3, and the process proceeds to step S103 to determine the outermost substantially circular contour line again. The contour calculation range in step S102 is the inside of the contour line adjacent to the outside of the outermost substantially circular contour line determined in step S101. Step S104 is a step of determining whether or not the depth pitch in step S102 is equal to or smaller than a predetermined value Δh s. If it is equal to or smaller than Δh s , the process proceeds to step S105. Otherwise, the process returns to step S101 and steps S102 and S102 are performed. S103 is executed.
[0019]
Step S105 calculates the R dimensions of the indenter tip in the radial and depth pitch of the outermost substantially circular contour 122c, corrected from h are in actual depressions depth proceeds to step S106 to h 2. In step S107, it calculates a corrected indentation depth the surface area of the indentation 14 corresponding to h 2, determine the hardness of the surface area and the load P calculated in step S5.
[0020]
As described above, in the present embodiment, the R dimension of the tip of the indenter is calculated based on the depth information of the indentation, the depression depth is corrected from the R dimension, and the surface area and load of the indentation corresponding to the depression depth. Since the hardness is calculated from P, it is possible to obtain a more accurate hardness than in the past. Furthermore, even when several types of indenters having different tip shapes are used, the hardness is calculated taking into account the respective indenter tip shapes, so that variations in hardness when different indenters are used can be reduced.
[0021]
In the embodiment described above, the indentation depth h 2 corrected by approximating the tip of the indenter by one R dimension is calculated from the diameter of the outermost substantially circular contour line 122c. it may be obtained a recess depth h 2 from the whole inside of the contour by calculating the indenter tip shape more detail. The indenter tip shape may be calculated only when the indenter is replaced, and the measurement time can be shortened as compared with the case described above.
[0022]
-Third embodiment-
FIG. 8 is a diagram for explaining a third embodiment of the microhardness measuring method according to the present invention. In the first and second embodiments described above, in calculating the surface area of the indentation, the contour line obtained from the depth information obtained by the measurement is used, but in the present embodiment, it is directly from the depth information. The surface area was calculated. Since the method other than the method for calculating the surface area of the indentation is the same as in the first and second embodiments, only the calculation method will be described below.
[0023]
The measured depth information is composed of two-dimensional discrete data, and FIG. 8A is a diagram visually showing the depth information. In FIG. 8 (a), the data of the horizontal plane coordinate (i, j) is shown for each interval Δa. The lattices drawn on the ij plane are spaced apart by Δa in both the i-axis direction and the j-axis direction, and the height of the bar B drawn at each lattice point represents the depth d of the indentation.
[0024]
Next, a method for calculating the surface area of the square area shown by the oblique lines in FIG. 8A on the surface of the indentation will be described. FIG. 8B is an enlarged view of the hatched portion of FIG. 8A, and the depth at each of the lattice points (i, j), (i, j + 1), (i + 1, j) and (i + 1, j + 1). Are d (i, j), d (j, j + 1), d (i + 1, j) and d (i + 1, j + 1), respectively. The tip of the bar B at the lattice point (i, j) will be referred to as a point d (i, j). First, an area ΔS1 of a triangle having vertices at points d (i, j), d (i, j + 1) and d (i + 1, j), and points d (i, j + 1), d (i + 1, j) and d ( The area ΔS2 of the triangle having the vertex at i + 1, j + 1) is calculated. And let ΔS1 + ΔS2 be the surface area of this square region. By taking the sum of the surface area of each square area calculated in this way, the surface area of the indentation can be directly obtained from the discrete data regarding the depth. In this embodiment, the sampling data is divided into square areas, but may be divided into triangular areas from the beginning and calculated.
[0025]
In calculating the surface area of the indentation, it is necessary to specify the indentation range from the obtained image data. There are a method of manually specifying the range and a method of automatically specifying the range. As a manual designation method, for example, there is a method of direct designation with a pointing device such as a mouse on image data displayed on an image display device such as a CRT. Alternatively, after the inclination correction of the entire image data is performed, a predetermined threshold value is given, and the area of the impression is specified by binarizing the image data with respect to the threshold value. On the other hand, as a method of automatically specifying, after performing inclination correction of the entire image data, a range having a lower value than the average value (the data having the largest number of data) is determined as an indentation region. Etc.
[0026]
Also in this embodiment, the same effects as those of the first and second embodiments can be obtained, and the surface area is directly obtained from the discrete data sampled as described above, and thus there are the following advantages. .
(1) Since the calculation is performed directly from the discrete data, the calculation can be performed with the resolution in measurement, and the calculation error can be reduced as compared with the case of using contour lines.
(2) Unlike the method using contour lines, there is no intermediate processing for converting to contour line data in the middle, so that a result can be obtained uniquely and the calculation time can be shortened.
[0027]
In the above-described embodiment, the minute indentation is described such that the depth of the indentation cannot be measured unless an atomic force microscope is used. Even if it exists, this invention is applicable.
[0028]
In the correspondence between the embodiment described above and the claims, the atomic force microscope 2 constitutes a three-dimensional measuring device, the load P constitutes a pressing load, and the CPU 3 constitutes a calculation means.
[0029]
【The invention's effect】
As described above, in the invention of claim 1, the hardness is calculated based on the actual surface area and the pressing load calculated from the three-dimensional measurement value of the shape of the indentation formed on the sample. It is possible to obtain more accurate hardness than before without variation in hardness.
In the invention of claim 2, the hardness is calculated from the calculated corrected indentation depth in the case of the ideal indenter shape . Further, in the invention of claim 3, the indentation surface area estimated from the calculated corrected indentation depth and Since the hardness is calculated by the pressing load, it is possible to obtain a more accurate hardness than before.
[Brief description of the drawings]
FIG. 1 is a diagram for explaining a first embodiment of a microhardness measuring method according to the present invention, and is a block diagram of a schematic configuration of a hardness meter.
2 is a diagram for explaining the hardness meter shown in FIG. 1, wherein (a) shows the relationship between the indenter of the hardness meter and the sample, and (b) and (c) show the relationship between the indentation and the contour lines. It is.
FIG. 3 is a flowchart for explaining the operation of the hardness meter.
FIG. 4 is a diagram illustrating a method for calculating an actual surface area.
FIG. 5 is a diagram for explaining a second embodiment of the microhardness measuring method according to the present invention, and is a cross-sectional view of an indentation.
FIG. 6 is a diagram showing contour lines.
FIG. 7 is a flowchart for explaining the operation of the hardness meter.
FIG. 8 is a diagram for explaining a third embodiment of the microhardness measurement method according to the present invention, where (a) is a diagram visually showing depth information, and (b) is a hatched portion of (a). Enlarged view of.
[Explanation of symbols]
1 Hardness Measurement Unit 2 Atomic Force Microscope 3 CPU
4 Memory 5 Display device 12, 12a, 12b, 13 Indentation 11 Sample 101 Indenter 102 Lifting part 103 Load meter 104 Position detection sensor 105 Stage 121a, 121b, 122a-122c Contour lines

Claims (3)

圧子で試料に形成された圧痕の形状の三次元計測値から圧痕の等高線を求め、圧痕表面の前記等高線に沿った微少面の面積の総和を算出することにより前記圧痕の実表面積を算出し、この実表面積と圧痕形成時の圧子の押圧荷重とに基づいて前記試料の硬度を算出する演算手段を備えることを特徴とする微小硬度測定法。 Determine the contour line of the indentation from the three-dimensional measurement value of the shape of the indentation formed on the sample with the indenter, and calculate the actual surface area of the indentation by calculating the sum of the areas of the minute surfaces along the contour line of the indentation surface , A microhardness measuring method comprising a calculating means for calculating the hardness of the sample based on the actual surface area and the pressing load of the indenter at the time of forming the indentation. 試料に形成された圧痕の窪み深さに基づいて硬度を算出する微小硬度測定法において、
計測された窪み深さと圧子によって形成された窪みの形状の三次元計測値から理想圧子形状の場合の補正窪み深さを算出し、前記補正窪み深さに基づいて硬度を算出することを特徴とする微小硬度測定法。
In the microhardness measurement method that calculates the hardness based on the depth of the indentation formed in the sample,
Characterized in that calculates a correction indentation depth when the three-dimensional measurement of the shape of the recess formed by the measured depression depth and indenter of the ideal shape of the indenter, to calculate a hardness on the basis of the corrected indentation depth A microhardness measurement method.
試料に形成された圧痕の窪み深さから理想圧子形状に基づく圧痕表面積を推定し、推定された圧痕表面積に基づいて硬度を算出する微小硬度測定法であって、
計測された窪み深さと圧子によって形成された窪みの形状の三次元計測値とから理想圧子形状の場合の補正窪み深さを算出し、前記補正窪み深さから前記圧痕表面積を推定し、その推定した圧痕表面積と圧痕形成時の圧子の押圧荷重とに基づいて前記試料の硬度を算出することを特徴とする微小硬度測定法。
It is a microhardness measurement method that estimates the indentation surface area based on the ideal indenter shape from the depth of the indentation formed in the sample, and calculates the hardness based on the estimated indentation surface area,
The corrected indentation depth in the case of the ideal indenter shape is calculated from the measured indentation depth and the three-dimensional measurement value of the indentation shape formed by the indenter, the indentation surface area is estimated from the corrected indentation depth, and the estimation A microhardness measuring method, wherein the hardness of the sample is calculated based on the surface area of the indentation and the pressing load of the indenter when forming the indentation .
JP01602596A 1996-01-31 1996-01-31 Micro hardness measurement method Expired - Fee Related JP3607394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01602596A JP3607394B2 (en) 1996-01-31 1996-01-31 Micro hardness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01602596A JP3607394B2 (en) 1996-01-31 1996-01-31 Micro hardness measurement method

Publications (2)

Publication Number Publication Date
JPH09210892A JPH09210892A (en) 1997-08-15
JP3607394B2 true JP3607394B2 (en) 2005-01-05

Family

ID=11905034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01602596A Expired - Fee Related JP3607394B2 (en) 1996-01-31 1996-01-31 Micro hardness measurement method

Country Status (1)

Country Link
JP (1) JP3607394B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180671A (en) * 1986-04-16 1993-01-19 Sumitomo Chemical Company, Limited Method for producing optically active cyclopropane carboxylic acid
JP5411738B2 (en) * 2010-02-12 2014-02-12 株式会社ミツトヨ Hardness tester and program
EP2816342A1 (en) * 2013-06-17 2014-12-24 CSM Instruments SA Measuring head for nanoindentation instrument and measuring method
JP6305858B2 (en) * 2014-07-22 2018-04-04 株式会社ミツトヨ Hardness tester and hardness test method

Also Published As

Publication number Publication date
JPH09210892A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
Sedin et al. Influence of tip size on AFM roughness measurements
JP4262592B2 (en) Pattern measurement method
JP4220358B2 (en) Semiconductor pattern measurement method
Cumpson et al. Accurate force measurement in the atomic force microscope: a microfabricated array of reference springs for easy cantilever calibration
US20070113417A1 (en) Method of calibrating a scanning system
US20130180019A1 (en) Probe shape evaluation method for a scanning probe microscope
JP3607394B2 (en) Micro hardness measurement method
Marinello et al. Development and analysis of a software tool for stitching three-dimensional surface topography data sets
US6427345B1 (en) Method and apparatus for a line based, two-dimensional characterization of a three-dimensional surface
CN113804696B (en) Method for determining size and area of defect on surface of bar
JPH1194719A (en) Marking for optical extensometer
KR20020067433A (en) Method for determining distortion in a imaging and calibrating-object to this end
Haitjema et al. Surface texture metrological characteristics
Kitching et al. Quantifying surface topography and scanning probe image reconstruction
EP2657711A1 (en) Characterization structure for an atomic force microscope tip
Zecchino et al. Thin film stress measurement using dektak stylus profilers
JP2002031520A (en) Calibration member for three-dimensional shape analyzer and method for three-dimensional shape analysis
JP3510411B2 (en) Micro hardness measurement method
JP6515873B2 (en) Evaluation method of probe for atomic force microscope
JPH03206905A (en) Surface-roughness ans shape measuring apparatus
JP3539795B2 (en) Stylus type surface roughness measuring instrument and measuring method
JP4424065B2 (en) Measuring method using scanning probe microscope
JPH05322723A (en) Measuring method for value of elastoplastic fracture toughness
Ahn et al. Measurement Anomaly of Step Width in Calibration Grating using Atomic Force Microscopy
JPH0638063B2 (en) Indentation type hardness tester

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041007

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees