JP3605969B2 - Method of producing titanium oxide film for corrosion protection and titanium oxide film for corrosion protection - Google Patents

Method of producing titanium oxide film for corrosion protection and titanium oxide film for corrosion protection Download PDF

Info

Publication number
JP3605969B2
JP3605969B2 JP29088996A JP29088996A JP3605969B2 JP 3605969 B2 JP3605969 B2 JP 3605969B2 JP 29088996 A JP29088996 A JP 29088996A JP 29088996 A JP29088996 A JP 29088996A JP 3605969 B2 JP3605969 B2 JP 3605969B2
Authority
JP
Japan
Prior art keywords
particles
tio
titanium oxide
layer
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29088996A
Other languages
Japanese (ja)
Other versions
JPH10130810A (en
Inventor
伸彦 久保田
涼一 勝谷
統夫 綾部
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP29088996A priority Critical patent/JP3605969B2/en
Publication of JPH10130810A publication Critical patent/JPH10130810A/en
Application granted granted Critical
Publication of JP3605969B2 publication Critical patent/JP3605969B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Description

【0001】
【発明の属する技術分野】
本発明は、防食用チタン酸化膜の作製方法および防食用チタン酸化膜に係わり、特に、原子炉構造材に対して光電極反応を利用して防食を行う技術に関するものである。
【0002】
【従来の技術】
水を冷却材としている軽水炉では、炉心を囲んでいる原子炉圧力容器内の内部構造物の大部分が、高温状態の原子炉冷却水中に配され、炉心から放射される放射線の雰囲気で使用されるため、構成材料にあっては、原子炉冷却水に対する耐食性を有するとともに、放射線の水分解による影響等を考慮するなど品質管理において格別な配慮が払われている。
【0003】
防食用チタン酸化膜の作製方法および防食用チタン酸化膜に関連する技術として、例えば、特開平07−270592号公報「原子炉構造材およびその防食方法」に、原子炉圧力容器の内部構造物に採用されるチタン酸化膜の作製方法に関連する技術が提案されている。
この技術は、チタン酸化膜の光半導体特性を利用したもので、放射線またはチェレンコフ放射性光の照射時に、非消耗型のアノード反応を生じさせ、チタン酸化膜(光半導体膜)近傍の原子炉構造材の表面の腐食電位を下げて金属の耐食性を高めるようにしている。
【0004】
また、チタン酸化膜(TiO 膜)は、酸素の介在雰囲気においてTi粒子を溶射することにより、作製するようにしている。
【0005】
【発明が解決しようとする課題】
しかしながら、Ti粒子を溶射させながら酸化させることによりTiO 膜を作製する方法であると、良好な光半導体特性を効率的に得ることが困難である。
【0006】
一方、n型TiO は、光半導体特性を有するものとして期待されるが、n型TiO 粒子を例えば、プラズマ溶射する技術であると、プラズマ流が高温であるために溶融状態となって光半導体としての結晶構造が壊れ、光半導体特性が損なわれてしまうという課題が残されている。
【0007】
本発明は、このような課題に鑑みてなされたものであり、以下の目的を達成するものである。
▲1▼ TiO 膜の被防食材への密着性を高めること。
▲2▼ n型TiO 粒子の形状の残存性を高め、n型TiO 膜の作製を容易にすること。
▲3▼ TiO 膜の成膜時の作業性を向上させること。
【0008】
【課題を解決するための手段】
n型TiO 粒子をプラズマ流に乗せて被防食材の表面に溶射することにより光半導体特性を有するTiO 膜を作製する際に、TiO 粒子を溶融して被防食材に溶融凝固層を作製し、プラズマ溶射温度を高温から低温にしてn型TiO 粒子を溶着させることにより粒子層を作製する。この場合にあって、n型TiO 粒子のみを供給して溶融凝固層および粒子層の双方を形成してもよい。
また、被防食材の表面にあっては、プラズマ溶射温度を高温から低温にしてn型TiO 粒子を溶着させるため、n型TiO 粒子比率が連続的または段階的に設定されたTiO 膜が作製される。
【0009】
【発明の実施の形態】
本発明に係る防食用チタン酸化膜の作製方法および防食用チタン酸化膜の一実施形態について、図1ないし図2を参照して説明する。
【0010】
図1は、防食用チタン酸化膜の作製工程例を示すものである。
また、図2において、1は被防食材、2は溶融凝固層、3は半溶融層、4は粒子層(n型TiO 粒子層)、XはTiO 膜である。
【0011】
〔S1:n型TiO 粒子の製造〕
予め、粒径が数μmないし数10μmのn型TiO 粒子を製造しておく。
【0012】
〔S2:n型TiO 粒子の供給〕
S1で製造した n型TiO 粒子を、プラズマ溶射装置に供給する。
【0013】
〔S3:プラズマ溶射〕
プラズマガスとしてArガス、2次ガスとしてHeガス、H ガス等を使用してプラズマ化し、このときのプラズマ流にn型TiO 粒子を乗せて、鉄系合金やステンレス鋼等の防食材1(図2参照)に、例えば100%溶解させた状態にして溶射する。
【0014】
〔S4:被防食材へのTiO の溶着〕
被防食材1には、溶融状態のTiO が凝固することにより、溶融凝固層2が一体に形成される。
【0015】
〔S5:プラズマ温度の調整〕
プラズマ電流を減少させ、かつ、プラズマガス流量を多くして、プラズマ流の温度が低くなるように導く。
この際に、n型TiO 粒子の供給を継続すると温度が低めに誘導されるために、溶融状態のTiO に一部未溶解状態のTiO 粒子が混合した半溶融層3(図2参照)が形成される。
【0016】
〔S6:n型TiO 粒子の供給〕
以下、プラズマ流の温度を低く誘導した状態でn型TiO 粒子の供給を行う。
【0017】
〔S7:プラズマ溶射〕
プラズマ流の温度を低く導いたままn型TiO 粒子を供給すると、n型TiO 粒子は、全量が溶解されることなく、一部が粒子状態を保持したまま被防食材1に向けて溶射される。
【0018】
〔S8:被防食材への粒状n型TiO の溶着〕
粒状のn型TiO 粒子と溶融状態のTiO とが、混合状態で被防食材1の表面に送り込まれると、溶融状態のTiO の凝固にともないn型TiO 粒子の形状が残されたまま溶着され、半溶融層3の上に粒子層(n型TiO 粒子層)4が形成される。
【0019】
このように、プラズマ電流,プラズマガス流量を変えて、実質的にプラズマ流の温度を下げながらn型TiO 粒子を溶着させるようにすると、作製されるTiO 膜Xが図2に示すように傾斜構造を有するようになる。
つまり、溶射当初にあっては、TiO の溶融凝固によりn型TiO 粒子の比率が低くなるが、半溶融層3,粒子層(n型TiO 粒子層)4が形成されるにしたがって次第にn型TiO 粒子の占める割合が多くなり、最終的にはn型TiO 粒子層の比率が高められた粒子層(n型TiO 粒子層)4が作製される。
【0020】
〔他の実施の形態〕
本発明に係わる防食用チタン酸化膜の作製方法にあっては、S9に示すようにS2におけるn型TiO 粒子の供給に代えて、n型TiO 以外のTiO 粒子を供給し、溶融凝固層2を介在させるようにしてもよい。
【0021】
【実施例】
プラズマ流の条件を変えて形成されるTiO 膜Xの溶融強度について検討した。
〔サンプルA〕
プラズマ電流 400A,プラズマガス流量 60リットル/分
〔サンプルB〕
プラズマ電流 600A,プラズマガス流量 50リットル/分
および、
プラズマ電流 400A,プラズマガス流量 60リットル/分
(サンプルBにあっては、溶融凝固層形成後に粒子層を形成)
【0022】
上記サンプルA,Bにクロスカットを入れ、セロハンテープを貼り付けて剥離の有無について調べた。
サンプルAは、セロハンテープの貼付面積のおよそ20%に剥離が認められた。
サンプルBは、セロハンテープの貼付部分に剥離が認められなかった。
また、表面状況を観察したところサンプルA,Bとも粒状のTiO が多量に付着していることが認められた。
これらの結果から、サンプルBのようにプラズマ流量の条件を変えて溶射することにより、粒子比率を徐々に高くする方法が有効であると結論付けられる。
【0023】
【発明の効果】
本発明に係る防食用チタン酸化膜の作製方法および防食用チタン酸化膜によれば、以下の効果を奏する。
(1) TiO 膜の表面の粒子比率を高くすることにより光半導体としての機能を向上させて、防食性を高めることができる。
(2) 被防食材の表面にTiO の溶融凝固層を作製し、その後、粒子比率を高めた傾斜構造とすることにより、TiO 膜の密着性を高めることができる。
(3) n型TiO 粒子を連続的に使用して成膜条件を変えることにより、成膜時の作業性を高めることができる。
【図面の簡単な説明】
【図1】本発明に係わる防食用チタン酸化膜の作製方法の一実施形態を示すフローチャートである。
【図2】本発明に係わる防食用チタン酸化膜の一実施形態を示す正断面図である。
【符号の説明】
1 被防食材
2 溶融凝固層
3 半溶融層
4 粒子層(n型TiO 粒子層)
X TiO
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a titanium oxide film for corrosion protection and a titanium oxide film for corrosion protection, and more particularly to a technique for performing corrosion protection on a reactor structural material using a photoelectrode reaction.
[0002]
[Prior art]
In light water reactors that use water as a coolant, most of the internal structures inside the reactor pressure vessel surrounding the core are placed in high-temperature reactor cooling water and used in an atmosphere of radiation radiated from the core. Therefore, the constituent materials have corrosion resistance to reactor cooling water, and special attention has been paid to quality control, for example, by taking into account the effects of water decomposition of radiation.
[0003]
Examples of a method for producing a corrosion-resistant titanium oxide film and a technique related to the corrosion-resistant titanium oxide film include, for example, Japanese Patent Application Laid-Open No. 07-270592, entitled "Reactor Structural Materials and Corrosion Prevention Method", and Techniques related to a method of manufacturing a titanium oxide film to be employed have been proposed.
This technology utilizes the photo-semiconductor properties of the titanium oxide film, which causes a non-consumable anode reaction when irradiated with radiation or Cerenkov radiant light, and the reactor structural material near the titanium oxide film (photo-semiconductor film) The corrosion potential of the surface is lowered to increase the corrosion resistance of the metal.
[0004]
The titanium oxide film (TiO 2 film) is formed by spraying Ti particles in an atmosphere containing oxygen.
[0005]
[Problems to be solved by the invention]
However, it is difficult to efficiently obtain good optical semiconductor characteristics by a method of producing a TiO 2 film by oxidizing while spraying Ti particles.
[0006]
On the other hand, n-type TiO 2 is expected to have optical semiconductor properties. However, for example, in a technique of plasma spraying n-type TiO 2 particles, the plasma flow is at a high temperature, so that the plasma flow is in a molten state and becomes light. There remains a problem that the crystal structure of the semiconductor is broken and optical semiconductor characteristics are impaired.
[0007]
The present invention has been made in view of such problems, and achieves the following objects.
(1) To improve the adhesion of the TiO 2 film to the material to be protected.
{Circle around (2)} To improve the survivability of the shape of the n-type TiO 2 particles and facilitate the production of the n-type TiO 2 film.
{Circle around (3)} Improving the workability when forming the TiO 2 film.
[0008]
[Means for Solving the Problems]
When producing a TiO 2 film having optical semiconductor characteristics by spraying n-type TiO 2 particles on a plasma flow and spraying the surface of the material to be protected, the TiO 2 particles are melted to form a melt-solidified layer on the material to be protected. Then, the particle layer is formed by lowering the plasma spraying temperature from a high temperature to a low temperature and welding n-type TiO 2 particles. In this case, only the n-type TiO 2 particles may be supplied to form both the melt-solidified layer and the particle layer.
Further, in the surface of the sacrificial material, in order to weld the n-type TiO 2 particles plasma spraying temperature from a high temperature to a low temperature, TiO 2 film n-type TiO 2 particles ratio is continuously or stepwise setting Is produced.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a method for manufacturing a titanium oxide film for corrosion protection and an embodiment of a titanium oxide film for corrosion protection according to the present invention will be described with reference to FIGS.
[0010]
FIG. 1 shows an example of a manufacturing process of a titanium oxide film for corrosion protection.
In FIG. 2, reference numeral 1 denotes a material to be protected, 2 denotes a melt-solidified layer, 3 denotes a semi-molten layer, 4 denotes a particle layer (n-type TiO 2 particle layer), and X denotes a TiO 2 film.
[0011]
[S1: Production of n-type TiO 2 particles]
N-type TiO 2 particles having a particle size of several μm to several tens μm are manufactured in advance.
[0012]
[S2: Supply of n-type TiO 2 particles]
The n-type TiO 2 particles produced in S1 are supplied to a plasma spraying device.
[0013]
[S3: Plasma spraying]
Plasma is formed using Ar gas as a plasma gas, He gas, H 2 gas, or the like as a secondary gas, and n-type TiO 2 particles are placed on the plasma flow at this time, and an anticorrosive material 1 such as an iron-based alloy or stainless steel is placed. (See FIG. 2), for example, in a state where it is dissolved in 100%, and sprayed.
[0014]
[S4: Welding of TiO 2 to the material to be protected]
The molten and solidified layer 2 is formed integrally with the anticorrosion material 1 by solidifying the molten TiO 2 .
[0015]
[S5: Adjustment of plasma temperature]
The plasma current is reduced and the plasma gas flow rate is increased to guide the plasma flow to a lower temperature.
At this time, since the temperature is continued supply of n-type TiO 2 particles are induced to be lower, semi-molten layer 3 (see FIG. 2 TiO 2 particles of partially undissolved was mixed with TiO 2 in a molten state ) Is formed.
[0016]
[S6: Supply of n-type TiO 2 particles]
Hereinafter, n-type TiO 2 particles are supplied in a state where the temperature of the plasma flow is induced to be low.
[0017]
[S7: Plasma spraying]
When n-type TiO 2 particles are supplied while the temperature of the plasma flow is kept low, the entire amount of the n-type TiO 2 particles is sprayed toward the anticorrosion-protected material 1 while a part thereof is maintained without being dissolved. Is done.
[0018]
[S8: Welding of granular n-type TiO 2 to the material to be protected]
When the granular n-type TiO 2 particles and the molten TiO 2 were fed into the surface of the material to be protected 1 in a mixed state, the shape of the n-type TiO 2 particles was left due to the solidification of the molten TiO 2 . The particles are welded as they are, and a particle layer (n-type TiO 2 particle layer) 4 is formed on the semi-molten layer 3.
[0019]
As described above, when the n-type TiO 2 particles are welded while changing the plasma current and the flow rate of the plasma gas to substantially lower the temperature of the plasma flow, the TiO 2 film X to be produced becomes as shown in FIG. It has an inclined structure.
That, in the initial spraying, gradually according although the ratio of n-type TiO 2 particles by melting and solidification of TiO 2 is lower, semi-molten layer 3, the particle layer (n-type TiO 2 particle layer) 4 is formed The proportion of the n-type TiO 2 particles increases, and finally, a particle layer (n-type TiO 2 particle layer) 4 in which the proportion of the n-type TiO 2 particle layer is increased is produced.
[0020]
[Other embodiments]
In the manufacturing method of the sacrificial titanium oxide film according to the present invention, instead of the supply of n-type TiO 2 particles in S2, as shown in S9, supplies TiO 2 particles other than n-type TiO 2, the melt-solidified The layer 2 may be interposed.
[0021]
【Example】
The melting strength of the TiO 2 film X formed by changing the conditions of the plasma flow was examined.
[Sample A]
Plasma current 400A, plasma gas flow rate 60 l / min [Sample B]
Plasma current 600A, plasma gas flow rate 50 liter / min and
Plasma current 400A, plasma gas flow rate 60 liter / min (in sample B, a particle layer is formed after the formation of a molten and solidified layer)
[0022]
A cross cut was made in each of the samples A and B, and a cellophane tape was stuck thereon to examine the presence or absence of peeling.
In Sample A, peeling was observed in approximately 20% of the area where the cellophane tape was stuck.
In Sample B, no peeling was observed at the portion where the cellophane tape was attached.
When the surface condition was observed, it was confirmed that a large amount of granular TiO 2 was attached to both samples A and B.
From these results, it can be concluded that a method of gradually increasing the particle ratio by changing the condition of the plasma flow rate and performing thermal spraying as in Sample B is effective.
[0023]
【The invention's effect】
According to the method for producing a corrosion-resistant titanium oxide film and the corrosion-resistant titanium oxide film of the present invention, the following effects can be obtained.
(1) By increasing the particle ratio on the surface of the TiO 2 film, the function as an optical semiconductor can be improved, and the anticorrosion property can be improved.
(2) The adhesion of the TiO 2 film can be enhanced by forming a melt-solidified layer of TiO 2 on the surface of the material to be protected and then forming an inclined structure with an increased particle ratio.
(3) By continuously using the n-type TiO 2 particles and changing the film forming conditions, the workability at the time of film forming can be improved.
[Brief description of the drawings]
FIG. 1 is a flowchart showing one embodiment of a method for producing a titanium oxide film for corrosion protection according to the present invention.
FIG. 2 is a front sectional view showing an embodiment of a titanium oxide film for corrosion protection according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Corrosion-proof material 2 Melted solidified layer 3 Semi-molten layer 4 Particle layer (n-type TiO 2 particle layer)
X TiO 2 film

Claims (7)

n型TiO粒子をプラズマ流に乗せて被防食材(1)の表面に溶射することにより光半導体特性を有するTiO膜(X)を作成する方法であって、
第1のプラズマ溶射温度でTiO粒子を溶融して被防食材に溶融凝固層(2)を作製する工程と、
前記第1のプラズマ溶射温度よりも低い第2のプラズマ溶射温度でn型TiO粒子を溶着させることにより粒子層(4)を作製する工程と
を有することを特徴とする防食用チタン酸化膜の作製方法。
A method of forming a TiO 2 film (X) having optical semiconductor properties by spraying n-type TiO 2 particles on a surface of a material to be protected (1) by placing the particles in a plasma flow,
Melting the TiO 2 particles at a first plasma spraying temperature to produce a melt-solidified layer (2) on the material to be protected;
Producing a particle layer (4) by welding n-type TiO 2 particles at a second plasma spraying temperature lower than the first plasma spraying temperature . Production method.
前記溶融凝固層(2)を作製する工程では、第1の電流値でプラズマ電流を供給し、第1のガス流量でプラズマガスを供給し、In the step of producing the melt-solidified layer (2), a plasma current is supplied at a first current value, and a plasma gas is supplied at a first gas flow rate,
前記粒子層(4)を作製する工程では、前記第1の電流値よりも低い第2の電流値でプラズマ電流を供給し、前記第1のガス流量よりも多い第2のガス流量でプラズマガスを供給するIn the step of forming the particle layer (4), a plasma current is supplied at a second current value lower than the first current value, and the plasma gas is supplied at a second gas flow rate higher than the first gas flow rate. Supply
ことを特徴とする請求項1に記載の防食用チタン酸化膜の作製方法。The method for producing a titanium oxide film for corrosion protection according to claim 1, wherein:
n型TiO粒子のみを供給して溶融凝固層(2)及び粒子層(4)の双方を形成することを特徴とする請求項1又は請求項2記載の防食用チタン酸化膜の作製方法。method for producing according to claim 1 or claim 2 sacrificial titanium oxide film according to, characterized in that by supplying only the n-type TiO 2 particles to form both the melt-solidified layer (2) and the particle layer (4). 被防食材(1)の表面に一体に形成される光半導体特性を有するTiO膜(X)であって、
被防食材に一体に形成されTiO粒子を溶融凝固させてなる溶融凝固層(2)と、
該溶融凝固層(2)の上に一体に形成され、前記溶融凝固層(2)のn型TiO 粒子比率よりも高い比率でn型TiO 粒子が含まれた粒子層(4)と
を具備することを特徴とする防食用チタン酸化膜。
A TiO 2 film (X) having optical semiconductor properties integrally formed on the surface of the material to be protected (1),
A melt-solidified layer (2) formed integrally with the corrosion-resistant material and melt-solidified with the TiO 2 particles;
Is formed integrally on the said melt-solidified layer (2), the melt-solidified layer (2) n-type TiO 2 particles having a particle layer containing the n-type TiO 2 particles at a higher rate than the ratio of the (4) A titanium oxide film for anticorrosion, comprising:
溶融凝固層(2)と粒子層(4)との間に、これらの中間の粒子比率を有する半溶融層(3)が配されることを特徴とする請求項4記載の防食用チタン酸化膜。5. The anticorrosion titanium oxide film according to claim 4, wherein a semi-solid layer having an intermediate particle ratio between the molten and solidified layer and the particle layer is disposed between the molten and solidified layer. . 被防食材(1)の表面から粒子層(4)の表面にかけて徐々に粒子比率が高くなっていることを特徴とする請求項5記載の防食用チタン酸化膜。6. The titanium oxide film for corrosion protection according to claim 5, wherein the particle ratio gradually increases from the surface of the material to be protected to corrosion (1) to the surface of the particle layer (4) . 溶融凝固層(2)、半溶融層(3)、粒子層(4)の順に粒子比率が高くなっていることを特徴とする請求項5記載の防食用チタン酸化膜。 The anticorrosion titanium oxide film according to claim 5, wherein the particle ratio increases in the order of the melt-solidified layer (2), the semi-molten layer (3), and the particle layer (4) .
JP29088996A 1996-10-31 1996-10-31 Method of producing titanium oxide film for corrosion protection and titanium oxide film for corrosion protection Expired - Fee Related JP3605969B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29088996A JP3605969B2 (en) 1996-10-31 1996-10-31 Method of producing titanium oxide film for corrosion protection and titanium oxide film for corrosion protection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29088996A JP3605969B2 (en) 1996-10-31 1996-10-31 Method of producing titanium oxide film for corrosion protection and titanium oxide film for corrosion protection

Publications (2)

Publication Number Publication Date
JPH10130810A JPH10130810A (en) 1998-05-19
JP3605969B2 true JP3605969B2 (en) 2004-12-22

Family

ID=17761828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29088996A Expired - Fee Related JP3605969B2 (en) 1996-10-31 1996-10-31 Method of producing titanium oxide film for corrosion protection and titanium oxide film for corrosion protection

Country Status (1)

Country Link
JP (1) JP3605969B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4334106B2 (en) * 2000-03-31 2009-09-30 株式会社東芝 Photocatalyst deposition method for nuclear reactor structural materials
WO2005116650A2 (en) * 2004-04-19 2005-12-08 Sdc Materials, Llc High throughput discovery of materials through vapor phase synthesis
US8023609B2 (en) * 2004-12-30 2011-09-20 General Electric Company Dielectric coating for surfaces exposed to high temperature water
JP4604153B2 (en) * 2005-02-18 2010-12-22 国立大学法人東京海洋大学 Forming functional coatings with excellent anticorrosion properties
JP4623502B2 (en) * 2005-02-28 2011-02-02 財団法人電力中央研究所 Radiation resistant member and nuclear power generation system using the same
US20080277092A1 (en) 2005-04-19 2008-11-13 Layman Frederick P Water cooling system and heat transfer system
JP4623510B2 (en) * 2005-06-08 2011-02-02 財団法人電力中央研究所 Reactor structural material
JP2007232432A (en) * 2006-02-28 2007-09-13 Hitachi Ltd Chimney of natural circulation type boiling water reactor
US20090046825A1 (en) * 2007-08-16 2009-02-19 Ge-Hitachi Nuclear Energy Americas Llc Protective coating applied to metallic reactor components to reduce corrosion products into the nuclear reactor environment
US8575059B1 (en) 2007-10-15 2013-11-05 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US9039916B1 (en) 2009-12-15 2015-05-26 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for copper copper-oxide
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
MX2014001718A (en) 2011-08-19 2014-03-26 Sdcmaterials Inc Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions.
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
CN105592921A (en) 2013-07-25 2016-05-18 Sdc材料公司 Washcoats and coated substrates for catalytic converters and method for manufacturing and using same
MX2016004991A (en) 2013-10-22 2016-08-01 Sdcmaterials Inc Catalyst design for heavy-duty diesel combustion engines.
KR20160074574A (en) 2013-10-22 2016-06-28 에스디씨머티리얼스, 인코포레이티드 COMPOSITIONS OF LEAN NOx TRAP
WO2015143225A1 (en) 2014-03-21 2015-09-24 SDCmaterials, Inc. Compositions for passive nox adsorption (pna) systems

Also Published As

Publication number Publication date
JPH10130810A (en) 1998-05-19

Similar Documents

Publication Publication Date Title
JP3605969B2 (en) Method of producing titanium oxide film for corrosion protection and titanium oxide film for corrosion protection
Fu et al. Investigation on in-situ laser cladding coating of the 304 stainless steel in water environment
Ren et al. Liquation cracking in fiber laser welded joints of inconel 617
CN103785962B (en) A kind of titanium-steel composite board full impregnated welding method
CN102059476A (en) Hardfacing MIG-arc welding wire and hardfacing MIG-arc welding process
JP2011161459A (en) Method of welding material with high-corrosion resistance
EP2681002A1 (en) Gas tungsten arc welding using flux coated electrodes
Tuominen et al. Corrosion behavior of HVOF-sprayed and Nd-YAG laser-remelted high-chromium, nickel-chromium coatings
EP0570308A1 (en) Alloys of metals with high melting points, suitable for transformation into homogeneous and pure ingost, and preparation process of these alloys
Shao et al. Crystal growth control of Ni-based alloys by modulation of the melt pool morphology in DED
JP3582259B2 (en) Preparation method of anticorrosion titanium oxide film
Guo et al. Microstructure and properties of in-situ nickel-aluminum bronze coating by underwater wire-feed laser cladding
Li et al. Weld pool shape variations and electrode protection in double shielded TIG welding
TWI360453B (en) Welding flux for carbon steels
JP2000254776A (en) Stress corrosion crack prevention method for atomic reactor-inside piping welded part
JPH0332888B2 (en)
JPH06340986A (en) Exhaustible anode for corrosive protection of marine structure and preparation thereof
Haemers et al. Hardfacing of stainless steel with laser melted colmonoy
Prasad et al. Synthesis and characterization of Ag–CdS nanostructures
JPS62166074A (en) Manufacture of sleeve by overlay welding
Zhang et al. A novel approach of ultra-low diffusible hydrogen welding wire for underwater wet flux-cored arc welding: a spontaneous barrier of molten slag
US4816215A (en) Ultrapure zirconium-tin liner material
JPH01143791A (en) Aluminum alloy filler metal
JPS61115676A (en) Surface hardening build up welding
McCafferty et al. Electrochemical behavior of laser-processed metal surfaces

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees