JP3605315B2 - 立体視顕微鏡 - Google Patents

立体視顕微鏡 Download PDF

Info

Publication number
JP3605315B2
JP3605315B2 JP15263699A JP15263699A JP3605315B2 JP 3605315 B2 JP3605315 B2 JP 3605315B2 JP 15263699 A JP15263699 A JP 15263699A JP 15263699 A JP15263699 A JP 15263699A JP 3605315 B2 JP3605315 B2 JP 3605315B2
Authority
JP
Japan
Prior art keywords
optical system
image
subject
relay
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15263699A
Other languages
English (en)
Other versions
JP2000338416A (ja
Inventor
悟 立原
千成 田中
Original Assignee
ペンタックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ペンタックス株式会社 filed Critical ペンタックス株式会社
Priority to JP15263699A priority Critical patent/JP3605315B2/ja
Priority to DE10027166A priority patent/DE10027166B4/de
Priority to US09/584,943 priority patent/US6396627B1/en
Publication of JP2000338416A publication Critical patent/JP2000338416A/ja
Priority to US10/008,941 priority patent/US20020080481A1/en
Application granted granted Critical
Publication of JP3605315B2 publication Critical patent/JP3605315B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Microscoopes, Condenser (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、観察対象物を拡大観察する立体視顕微鏡に関し、特に、顕微鏡画像を撮像素子により電気的に撮影するタイプの立体視顕微鏡に関する。
【0002】
【従来の技術】
立体視顕微鏡は、例えば、脳神経外科手術のように微細な組織を処置する際に使用される。
即ち、脳のように微細な組織からなる器官は、その構造組織を肉眼で識別することが困難であるために、このような器官の処置は、顕微鏡下で行わざるを得ない。しかも、単眼の顕微鏡では組織の立体的構造を認識することが困難であるので、組織を立体的に拡大観察させて正確な処置を可能とするため、このような処置には双眼の立体視顕微鏡が用いられていた。
【0003】
ただし、従来の立体視顕微鏡は、顕微鏡の接眼レンズを直接肉眼で覗くように設計されているため、手術を担当する主術者(場合によってはその助手)は顕微鏡画像を見ることができるものの、それ以外の者(例えば、麻酔医,看護婦,研修医,遠隔地に居るアドバイザー)は、同じ顕微鏡画像を見ることができないので、迅速且つ的確な分担作業を行ったり遠隔地からの的確な助言を行うことができない。
【0004】
そこで、従来から、撮像素子を用いて顕微鏡画像を電気信号として出力させる手法が提案されている。これによれば、撮影された画像を複数のディスプレイに表示し、これらをそれぞれ立体視ビューアーを用いて観察することにより、複数の関係者が顕微鏡画像を同時に立体視することができる。例えば特開平7−104193号公報には、双眼顕微鏡の接眼レンズの後段に撮影系光学アダプターを取り付け、顕微鏡画像をハイビジョンカメラで撮影する構成が開示されている。撮影系光学アダプターには、接眼レンズからの被写体光をリレーして撮像素子上に結像させるリレー光学系と、撮像素子としてのハイビジョン用CCDとが含まれている。
【0005】
【発明が解決しようとする課題】
しかしながら、上記公報に開示される立体視顕微鏡は、肉眼観察用の双眼顕微鏡を流用してこれにアダプターを付加した構成であるため、観察光学系は肉眼観察時にも充分な拡大率を得られるよう設計されており、光学系が大型化し、双眼顕微鏡とアダプターとを含むシステム全体のサイズが大きくなるという問題がある。
【0006】
本発明は、上述した従来技術の問題点に鑑みてなされたものであり、その課題は、肉眼観察用の双眼顕微鏡を流用するのではなく、撮像素子を用いた立体視顕微鏡として特化することにより、システム全体の光学系を小型化することが可能な立体視顕微鏡を提供することにある。
【0007】
【課題を解決するための手段】
上記の課題を達成するため、本発明の立体視顕微鏡は、単一の光軸を有し、被写体に対向して配置されたクローズアップ光学系と、クローズアップ光学系の光軸に対してそれぞれ平行な光軸を有し、クローズアップ光学系における互いに異なる箇所を通過した被写体光により一定の位置に被写体の一次像を形成する変倍可能な一対のズーム光学系と、ズーム光学系により形成される一次像の位置にそれぞれ配置され、一次像のエッジを規定する一対の視野絞りと、一次像をリレーして被写体の二次像を形成する一対のリレー光学系と、一対の二次像を撮影する撮像素子とを備え、各リレー光学系の結像倍率Mが、以下の条件、
−3<M<−1
を満たすことを特徴とする。
【0008】
上記の構成によれば、被写体光は、クローズアップ光学系を介して入射し、一対のズーム光学系により所定の視差を持つ一対の一次像が視野絞りの位置に形成される。クローズアップ光学系は、被写体がその焦点位置に位置するよう調整され、被写体からの発散光をほぼ平行光に変換するコリメート機能を有する。一次像は、一対のリレー光学系によりリレーされ、撮像面上に一対の二次像が形成される。撮影された画像は、液晶ディスプレイやCRT等の表示装置に表示され、これを立体視ビュアーを用いて両目で観察することにより、被写体を拡大して立体視により観察することができる。
【0009】
カラー画像を撮影する場合、撮像素子としては、例えば1枚のカラーCCDを設けてもよいし、色分解光学系を介在させて各色成分毎にCCDを設けてもよい。
【0010】
リレー光学系と撮像素子との間に、リレー光学系からの被写体光を互いに近接させる光軸間距離縮小素子を備えた場合、撮像素子は、単一の撮像面の隣接した領域に形成される二次像を撮影することができる。
【0011】
また、リレー光学系は、視野絞り側から順に、いずれも正のパワーを持つ第1、第2、第3レンズ群を備え、第1,第2レンズ群により視野絞りを透過した発散光をほぼ平行光とし、第3レンズ群により収束させることが望ましい。
【0012】
【発明の実施の形態】
以下、図面を参照して、本発明の実施の形態を説明する。
【0013】
以下に説明する実施形態による立体視顕微鏡は、例えば脳神経外科手術の際に用いられる手術支援システムに組み込まれて使用される。この手術支援システムは、立体視顕微鏡によって患者の組織をビデオ撮影して得られた立体映像(ステレオ映像)を、予め得られていた患部のデータに基づいて作成したCG(コンピュータグラフィック)映像と合成して、主術者専用の立体視ビューアーや他のスタッフ用のモニタ等に表示し、また、録画装置に録画するシステムである。
【0014】
(手術支援システムの全体構成)
図1は、この手術支援システムの概略を示すシステム構成図である。この図1に示されるように、手術支援システムは、立体視顕微鏡101と、この立体視顕微鏡101の背面の上端近傍に取り付けられたハイビジョンCCDカメラ102と、同じく下端近傍に取り付けられた顕微鏡位置測定装置103と、立体視顕微鏡101の上面に取り付けられたカウンターウェイト104と、このカウンターウェイト104に開けられた貫通孔を貫通して立体視顕微鏡101の内部に導通されたライトガイドファイバ105と、このライトガイドファイバ105を通じて立体視顕微鏡101に照明光を導入する光源装置106と、ディスク装置107を有する手術計画用コンピュータ108と、顕微鏡位置測定装置103及び手術計画用コンピュータ108に接続されたリアルタイムCG作成装置109と、このリアルタイムCG作成装置109及びハイビジョンCCDカメラ102に接続された画像合成装置110と、この画像合成装置110に接続された分配器111と、この分配器111に接続された録画装置115,モニタ114及び立体視ビューア113等から、構成されている。
【0015】
上述したディスク装置107には、患者Pの患部を予め様々な撮影装置で撮影することによって得られた画像(CTスキャン画像,MRI画像,SPECT画像,血管造影画像,等)が格納されているとともに、これらの各種画像に基づいて予め作成された患部及び周辺組織の3次元データが格納されている。なお、この3次元データは、患者Pの外皮又は内部組織の特定部位に設定された基準点(マーキング等)を原点として定義された3次元ローカル座標上で、患部及び周辺組織の形状、大きさ及び位置を、ベクトル形式又はマップ形式で特定するデータとなっている。
【0016】
また、上述した立体視顕微鏡101は、その背面に取付られたマウントを介して、第1スタンド100のフリーアーム100aの先端に、着脱自在に固定されている。従って、この立体視顕微鏡101は、第1スタンド100のフリーアーム100aの先端が届く半径内で、移動自在であるとともに、任意の向きに向くことができる。但し、ここでは、便宜上、立体視顕微鏡101に対するその被写体の向きを「下」と定義し、逆向きを「上」と定義するものとする。
【0017】
この立体視顕微鏡101内の光学構成については後で詳しく説明するが、その概略構成を述べると、図2に示すように、撮影光学系200は、単一の光軸を持つ大径のクローズアップ光学系210,及びこのクローズアップ光学系210における互いに異なる箇所を透過した被写体光により被写体の一次像を形成する左右一対のズーム光学系220,230からなる対物光学系と、ズーム光学系220,230による被写体の一次像の位置に配置された左右一対の視野絞り270,271と、この一次像をリレーする左右一対のリレー光学系240,250とを備える。リレー光学系240,250によってリレーされた被写体光は、ハイビジョンCCDカメラ102内に導入され、ハイビジョンサイズ(縦横のアスペクト比=9:16)の撮像面を有するCCD116における左右の各撮像領域(縦横のアスペクト比=9:8)に夫々二次像として再結像される。この光学系においては、クローズアップ光学系210を共通の要素として、ズーム光学系220、リレー光学系240が右の撮影光学系を構成し、ズーム光学系230、リレー光学系250が左の撮影光学系を構成し、併せて所定の基線長を隔てて配置された一対の撮影光学系をなす。
【0018】
このような一対の撮影光学系によってCCD116の撮像面上における左右の各撮像領域に形成された像は、所定の基線長を隔てた二箇所から夫々撮影した画像を左右に並べたステレオ画像と等価である。そして、このCCD116の出力信号は、画像プロセッサ117によってハイビジョン信号として生成されて、ハイビジョンCCDカメラ102から画像合成装置110へ向けて出力される。なお、この立体視顕微鏡101内には、クローズアップ光学系210の焦点位置近傍に存在する被写体を照明する照明光学系300(図6参照)が内蔵されている。そして、この照明光学系300には、光源装置106からライトガイドファイババンドル105を介して照明光が導入される。
【0019】
図1に戻り、立体視顕微鏡101に取り付けられた顕微鏡位置測定装置103は、クローズアップ光学系210の光軸上に存在する被写体までの距離,クローズアップ光学系210の光軸の立体的な向き,上記基準点の位置を測定し、測定したこれら情報に基づいて上記ローカル座標における被写体の位置を算出する。そして、これら光軸の向き及び被写体の位置の情報を、リアルタイムCG作成装置109に通知する。
【0020】
このリアルタイムCG作成装置109は、顕微鏡位置測定装置103から通知された光軸の向き及び被写体の位置の情報,及び手術計画用コンピュータ108からダウンロードした3次元データに基づいて、この光軸の向きから患部(例えば腫瘍)を立体視したのと等価なCG画像(例えば、ワイヤフレーム画像)をリアルタイムに生成する。このCG画像は、立体視顕微鏡101内の光学系と同じ基線長,及び同じ被写体距離での立体画像(ステレオ画像)として生成される。そして、リアルタイムCG作成装置109は、このようにして生成したCG画像を示すCG画像信号を、随時、画像合成装置110に入力する。
【0021】
この画像合成装置110は、ハイビジョンCCDカメラ102から入力された実際の被写体のハイビジョン信号に、リアルタイムCG作成装置109から得られたCG画像信号を、縮尺を調整してスーパーインポーズする。このようなCG画像信号のスーパーインポーズがなされたハイビジョン信号が示す画像においては、実際に撮影して得られた画像中で、患部の形状,大きさ及び位置が、ワイヤフレーム等のCG画像として示されている。このスーパーインポーズのなされたハイビジョン信号は、分配器111によって、主術者D用の立体視ビューワ113,その他の手術スタッフ用又は遠隔地に居るアドバイザ用のモニタ114,及び、録画装置115へ、夫々供給される。
【0022】
立体視ビューワ113は、第2スタンド112のフリーアーム112aの先端から垂下して取り付けられている。従って、主術者Dが処置を施し易い姿勢に合わせて、立体視ビューワ113を配置することが可能になっている。この立体視ビューワ113の概略構成を図3に示す。この図3に示されるように、立体視ビューワ113は、ハイビジョンサイズのLCDパネル120を、モニタとして内蔵している。このLCDパネル120に分配器からのハイビジョン信号による映像が表示された場合には、図4の平面図に示すように、LCDパネル120の左半分120bには、CCD116における左側撮像領域にて撮影された映像が表示され、右半分120aには、CCD116における右側撮影領域にて撮影された映像が表示される。
【0023】
これら左右の映像の境界線120cは、後述する視野絞り270,271の位置調整如何により、ずれたり傾むいたりする。立体視ビューワ113内の光路は、視野絞り270,271が正確に調整された際における境界線120cに対して垂直に設置された隔壁121により、左右に区分けされている。この隔壁121の両側には、夫々、LCDパネル120側から順番に、楔プリズム119及び接眼レンズ118が配置されている。この接眼レンズ118は、LCDパネル120に表示された映像の虚像を、観察眼Iの前方約1m(−1ディオプトリ)の位置に拡大して形成するレンズである。また、楔プリズム119は、観察眼Iの輻輳角が1m先に存在する物体を観察するのと等しい角度になるように光の進行方向を補正し、自然な立体観察を可能としている。
【0024】
このような立体視ビューワ113によって立体視される映像、又は、モニタ114に表示される映像においては、上述したように、予め各種撮影装置によって撮影された画像に基づいて検出されていた腫瘍等の患部の形状,大きさ及び位置を示すワイヤフレーム等のCGがスーパーインポーズされている。従って、これらを観察している主術者D又はその他の手術スタッフは、実際の映像中では識別が困難である患部を、容易に識別することができる。これにより、正確且つ迅速な処置が可能となる。
【0025】
(立体観察装置の構成)
次に、上述した立体視顕微鏡101(ハイビジョンCCDカメラ102を含む)の具体的な構成を、詳細に説明する。この立体視顕微鏡101は、図5の斜視図に示すように、ハイビジョンCCDカメラ102が取り付けられた背面が扁平であり、且つ、表面(背面の反対側面)の両側縁が面取りされた略角柱形状を有する。そして、その上面の中央に、開口が円形の凹部101aが形成されている。この凹部101aの中心には、ライトガイドファイババンドル105の先端が挿通固定された円筒部材であるガイドパイプ122が挿入される挿入口(図示略)が形成されている。なお、この挿入口の開口に取り付けられた円環状の部材(ファイバガイド挿入部)123は、挿入口に挿入されたガイドパイプ122を固定するチャックである。
【0026】
<光学構成>
次に、立体視顕微鏡101内の光学構成を、図6乃至図9を参照して説明する。図6は顕微鏡光学系の全体構成を示す斜視図、図7は側面図、図8は正面図、図9は平面図である。
【0027】
顕微鏡光学系は、図6に示すように、被写体の像を電子的に撮影する撮影光学系200と、ライトガイドファイババンドル105により光源装置106から導かれた照明光により被写体を照明する照明用光学系300とから構成されている。
【0028】
撮影光学系200は、前記のようにクローズアップ光学系210、及び左右一対のズーム光学系220,230から構成される対物光学系と、この対物光学系により形成された被写体の一次像をリレーして被写体の二次像を形成する左右一対のリレー光学系240,250と、これらのリレー光学系240,250からの被写体光を互いに近接させる光軸間距離縮小素子としての輻輳寄せプリズム260とを備えている。
【0029】
また、ズーム光学系220,230による一次像の形成位置には、視野絞り270,271がそれぞれ配置されており、リレー光学系240,250には光路を直角に偏向する光路偏向素子としてのペンタプリズム272,273がそれぞれ配置されている。
【0030】
このような構成により、CCDカメラ102内に配置されたCCD116上の隣接した2つの領域に、所定の視差を持つ左右の被写体像を形成することができる。なお、光学系の説明においては、「左右」はCCD116上に投影された際にその撮像面の長手方向に一致する方向、「上下」はCCD116上で左右方向に直交する方向とする。以下、各光学系の構成を順に説明する。
【0031】
クローズアップ光学系210は、図6、図7、図8に示すように、物体側から順に負の第1レンズ群211と正の第2レンズ群212とが配列して構成される。第2レンズ群212は、光軸方向に移動可能であり、その移動調整により異なる距離の被写体に対して焦点を合わせることができる。すなわち、クローズアップ光学系210は、被写体がその焦点位置に位置するよう調整され、被写体からの発散光をほぼ平行光に変換するコリメート機能を有する。
【0032】
クローズアップ光学系210の第1,第2レンズ群211,212は、光軸方向から見た平面形状がいずれもDカットされたほぼ半円形状であり、このカットされた部分に照明光学系300が配置されている。
【0033】
一対のズーム光学系220,230は、クローズアップ光学系210からの無限遠結像の被写体光を視野絞り270,271の位置にそれぞれ結像させる。
一方のズーム光学系220は、図6〜図8に示すように、クローズアップ光学系210側から順に、正、負、負、正のパワーをそれぞれ有する第1〜第4レンズ群221,222,223,224により構成され、第1,第4レンズ群221,224を固定し、第2,第3レンズ群222,223を光軸方向に移動させてズーミングを行う。主に第2レンズ群222の移動により倍率を変化させ、第3レンズ群223の移動により焦点位置を一定に保つ。
【0034】
他方のズーム光学系230も、上記のズーム光学系220と同一構成であり、第1〜第4レンズ群231,232,233,234から構成される。これらのズーム光学系220,230は、図示せぬ駆動機構により連動し、左右の画像の撮影倍率を同時に変化させることができる。
ズーム光学系220,230の光軸Ax2,Ax3は、クローズアップ光学系210の光軸Ax1に対して平行であり、かつ、図7に示すように、ズーム光学系220,230の光軸Ax2,Ax3を含む平面が、この平面と平行なクローズアップ光学系210のメリディオナル面に対し、Dカット部の反対側にΔだけ離れている。
【0035】
なお、クローズアップ光学系210の直径は、ズーム光学系220,230の最大有効径と照明光学系300の最大有効径とを内包する円の直径より大きく設定されている。上記のようにズーム光学系220,230の光軸Ax2,Ax3をクローズアップ光学系210のメリジオナル面から離れた位置に設定することにより、一対のズーム光学系220,230が占める2つの円形のスペースと、照明光学系300が占める円形のスペースとをクローズアップ光学系210が占める円形のスペース内に効率よく配置することができる。したがって、ズーム光学系220,230の瞳を大きく保ちつつ、Dカット部をも大きくできるため、照明光学系300をもクローズアップ光学系210の占める径内に収めることができ、全体をコンパクトにまとめることができる。
【0036】
また、上記のように対物光学系をクローズアップ光学系210と一対のズーム光学系220,230とに分けて構成することにより、長い作動距離(被写体からクローズアップ光学系210の最も被写体側の面までの距離)と高い変倍比を確保しつつ、調整機構や光学設計を単純化することができる。すなわち、クローズアップ光学系210を左右の画像で共用することにより、単一のレンズの移動により左右の画像のピントを同時に合わせることができるため、焦点調節用の機構を単純化することができる。また、クローズアップ光学系210は、被写体光を平行光にする機能のみを、各ズーム光学系220,230は、入射する平行光により一次像を変倍可能に形成する機能のみを実現すればよいため、それぞれの光学系の光学設計を単純化することができる。なお、4群タイプのズームレンズは、変倍比を大きく確保することができ、かつ、全長の変化がないため、実施形態のように複数の光学系の中間に設けられる変倍光学系として用いるのに望ましい。
【0037】
視野絞り270,271は、ズーム光学系220,230により形成される一次像の位置に配置されている。視野絞り270,271は、図6に示すように、外形が円形状で左右方向のそれぞれ内側に半円形の開口を有している。各視野絞り270,271は、この開口の直線状のエッジがCCD116上での左右画像の境界線に相当する方向に一致し、それより内側の光束のみを透過させるように配置されている。
【0038】
前述のように、実施形態の顕微鏡は、左右の二次像を単一のCCD116上の隣接領域に形成させるため、CCD116上での左右の画像の境界を明確にして画像の重なりを防ぐ必要がある。このため、一次像の位置に視野絞り270,271が配置されている。半円開口の直線エッジをいわゆるナイフエッジとして機能させ、それより内側の光束のみを透過させることにより、CCD116上での左右の画像の境界を明確にすることができる。
【0039】
なお、視野絞り270,271上に形成される一次像は、リレー光学系240,250により再結像されて二次像となり、かつ、一次像と二次像との間の光路で左右、上下共に偶数回反射されるため、一次像と二次像とでは上下、左右が反転する。したがって、一次像の位置で左右方向の外側を規定するナイフエッジは、二次像の位置では左右方向の内側、すなわち左右の画像の境界を規定することとなる。
【0040】
リレー光学系240,250は、上述のようにズーム光学系220,230により形成された一次像を再結像させる作用を持ち、いずれも3枚の正レンズ群により構成される。
一方のリレー光学系240は、図6及び図7に示すように、単一の正メニスカスレンズから構成される第1レンズ群241と、負、正の貼合わせで構成され、全体として正のパワーを持つ第2レンズ群242と、単一の両凸レンズから構成される第3レンズ群243とから構成されている。第1レンズ群241と第2レンズ群242との間には、光路を直角に偏向する光路偏向素子としてのペンタプリズム272が配置され、第2レンズ群242と第3レンズ群243との間には光量調節用の明るさ絞り244が設けられている。
【0041】
他方のリレー光学系250も、上記のリレー光学系240と同一構成であり、第1、第2、第3レンズ群251,252,253から構成され、第1レンズ群251と第2レンズ群252との間には、光路偏向素子としてのペンタプリズム273が配置され、第2レンズ群252と第3レンズ群253との間には明るさ絞り254が設けられている。
【0042】
視野絞り270,271を通過した発散光は、リレー光学系の第1レンズ群241,251及び第2レンズ群242,252により再びほぼ平行光に変換され、明るさ絞り244,254を通過した後、第3レンズ群243,253により再度結像して二次像を形成する。すなわち、リレー光学系の第1レンズ群241,251及び第2レンズ群242,252は、視野絞り270,271からの被写体光をほぼ平行光にするコリメートレンズ群を構成し、第3レンズ群243,253は、コリメートレンズ群からの被写体光を収束させる収束レンズ群としての機能を備えている。
【0043】
リレー光学系240,250中にペンタプリズム272,273を配置することにより、クローズアップ光学系210の光軸方向に沿った撮影光学系200の全長を短くすることができる。また、光路偏向素子としてミラーを用いると、角度ズレにより反射光の方向が大きくずれるが、ペンタプリズム272,273を用いることにより、直角に偏向された両光軸を含む面に対して垂直な軸回りに角度がずれた場合にも、反射方向を一定に保つことができる。
【0044】
なお、リレー光学系240,250は、その第2レンズ群242,252と第3レンズ群243,253が光軸方向、及び光軸に垂直な方向に調整自在である。これらの第2,第3レンズ群242,252,243,253を光軸方向に移動させて第1レンズ群241,251及び第2レンズ群242,252の合成焦点距離を変化させることにより、リレー光学系240,250全体の倍率(二次像の像高)を調整することができる。また、第3レンズ群243,253のみを光軸方向に移動させることにより、リレー光学系のバックフォーカスを変化させ、CCD116に対する焦点調節が可能となる。さらに、第2レンズ群242,252及び第3レンズ群243,253を一体にして光軸と垂直な方向に調整することにより、二次像の光軸に直交する面内での位置を調整することができる。このような調整のため、第2レンズ群242,252と第3レンズ群243,253とは一体の外鏡筒に保持され、第3レンズ群243,253は更にこの外鏡筒に対して光軸方向に移動可能な内鏡筒に保持されている。
【0045】
このように第2レンズ群242,252と第3レンズ群243,253とは調整のために移動するため、これらのレンズ群の間にペンタプリズム272,273を設けると調整機構が複雑化する。そこで、ペンタプリズム272,273は、視野絞り270,271と第2レンズ群242,252との間に設けることが望ましい。さらに、第1レンズ群241,251により被写体光の発散度合いが弱められるため、ペンタプリズムの有効径を小さくするためには、実施形態のようにペンタプリズム272,273を第1レンズ群241,251と第2レンズ群242,252との間に設けることが望ましい。
【0046】
リレー光学系240,250とCCDカメラ102との間に配置された輻輳寄せプリズム260は、それぞれのリレー光学系240,250からの被写体光の左右の間隔を狭める機能を有する。立体視による立体感を得るためには左右のズーム光学系220,230、リレー光学系240,250の間には所定の基線長が必要である。他方、CCD116上の隣接した領域に二次像を形成するためには光軸間の距離を基線長より小さくする必要がある。そこで、輻輳寄せプリズム260により、リレー光学系の光軸をそれぞれ内側にシフトさせることにより、所定の基線長を確保しつつ同一CCD上への結像を可能としている。
【0047】
輻輳寄せプリズム260は、図6及び図9に示すように、五角柱の左右対称な光軸シフトプリズム261,262を、0.1mm程度の隙間をあけて対向配置することによって構成されている。
光軸シフトプリズム261,262は、図9に示すように、互いに平行な入射端面と射出端面とを備え、かつ、内側と外側とに互いに平行な第1,第2反射面を備えている。また、これらの光軸シフトプリズム261,262は、入射、射出端面や反射面に対して垂直な方向で平面的に見ると、平行四辺形の鋭角の頂角の一方を射出端面に直交する線で切り取って形成された五角形状である。光軸間距離縮小素子としては、互いに平行な2つの反射面が必要となるが、これを上記のようにプリズムとして構成することにより、2つの反射面の相互の位置関係が固定され、平面ミラー2枚を用いるより調整が容易となる。
【0048】
リレー光学系240,250からの被写体光は、各光軸シフトプリズム261,262の入射端面から入射し、外側の反射面で反射されて左右方向で内側に向けられ、内側の反射面で再び入射時と同じ光軸方向に反射され、射出端面から射出してCCDカメラ102に入射する。この結果、左右の被写体光はその進行方向を変えずに左右の間隔のみが狭められ、同一のCCD116上に二次像を形成する。
【0049】
照明光学系300は、被写体に照明光を投影する機能を有し、図6及び図7に示すように、ライトガイドファイバーバンドル105から射出する発散光の発散度合いを調整する照明レンズ310と、照明範囲と撮影範囲とを一致させるための楔プリズム320とから構成されている。照明レンズ310の光軸Ax4は、図7に示すようにクローズアップ光学系210の光軸Ax1と平行であり、かつ、所定量偏心しているため、このままでは照明範囲の中心と撮影範囲の中心とが一致せず、照明光量が無駄になる。楔プリズム310を設けることにより、上記の不一致を解消でき、照明光量を有効に利用することができる。
【0050】
上記の撮影光学系200は、撮像素子を用いた立体視顕微鏡に特化して設計されており、ズーム光学系220,230は肉眼観察用双眼顕微鏡の対物光学系よりも倍率が低く設定され、その分リレー光学系240,250の結像倍率Mが、以下の条件、
−3<M<−1
を満たすよう設定されている。
【0051】
一般に、ズームレンズは焦点距離が長くなるほど、レンズ全長、レンズ径、重量が増大する。特に、顕微鏡に利用されるような高解像度のズームレンズでは、構成レンズ枚数も多いため、長焦点距離化による全長、重量の増加が顕著である。したがって、上記のようにズーム光学系220,230の焦点距離を短く設定することにより、立体視顕微鏡全体のサイズ、重量を小さくすることができる。
【0052】
以下に具体的な数値を例示して比較説明する。従来の双眼顕微鏡と撮影系光学アダプターとを組み合わせたシステムでは、双眼顕微鏡単独での使用も考慮し、ズーム光学系の倍率を設定しなければならない。他方、双眼顕微鏡側の倍率が充分高いため、アダプター側のリレー光学系は等倍結像系を用いれば足りる。例えば、F6/18〜180ミリの変倍比10倍のズーム光学系と等倍のリレー光学系を用いて2mm×2mmの領域に二次像を形成する場合、ズーム光学系、リレー光学系のサイズは以下の通りとなる。
ズーム光学系: 全長230mm、レンズ最大有効径58mm
リレー光学系: 全長222mm、レンズ最大有効径18mm
【0053】
これに対し、実施形態のシステムでは、例えばF4/12−120ミリの変倍比10倍のズーム光学系と、1.5倍の結像倍率のリレー光学系とで上記と同一の領域に二次像を形成する場合、ズーム光学系220,230の焦点距離範囲が2/3となるため、全長、レンズ径は単純計算で約2/3、体積、重量は約8/27となる。また、リレー光学系240,250も倍率が等倍から1.5倍となることにより、第1レンズ群241,251の焦点距離を2/3にすることができる。そこで、ズーム光学系220,230、リレー光学系240,250のサイズは以下の通りとなる。
ズーム光学系: 全長120mm、レンズ最大有効径30mm
リレー光学系: 全長199mm、レンズ最大有効径14mm
【0054】
なお、リレー光学系の結像倍率Mが−1以上になると、上述したズーム光学系の小型化の効果が得られなくなる。また、結像倍率Mが−3以下になると、一定の変倍範囲をカバーするためにはズーム光学系の広角端での焦点距離が短くなりすぎ、画角が過大となって収差の補正が困難となる。また、CCD面上での照度を一定値以上に保つためには、リレー光学系の拡大倍率に比例してズーム光学系、リレー光学系の第1レンズ群のFナンバーを小さくする必要があり、収差の補正が困難となる。
【0055】
次に、上記の実施形態にかかる立体視顕微鏡の撮影光学系200の具体的な実施例を4例説明する。
【0056】
【実施例1】
図10は、実施例1にかかる撮影光学系を展開して示すレンズ図である。実施例1の顕微鏡光学系の具体的な数値構成は表1に示されている。面番号1〜6はクローズアップ光学系210であり、面番号1〜3が第1レンズ群211、面番号4〜6が第2レンズ群212を示す。面番号7〜23はズーム光学系220であり、面番号7〜11が第1レンズ群221、面番号12〜14が第2レンズ群222、面番号15,16が第3レンズ群223、面番号17〜23が第4レンズ群を示す。面番号24〜32はリレー光学系240であり、面番号24,25が第1レンズ群241、面番号26,27がペンタプリズム272、面番号28〜30が第2レンズ群242、面番号31,32が第3レンズ群243を示す。面番号33,34は光軸シフトプリズム261、面番号35,36はCCDカメラ102内に配置された色分解プリズム280を示している。実施例1におけるリレー光学系240,250の結像倍率Mは、−1.5倍である。
【0057】
表中、rはレンズ各面の曲率半径(単位:mm)、dはレンズ厚またはレンズ間隔(単位:mm)、nは波長588nmにおける各レンズの屈折率、νdは各レンズのアッベ数である。
【0058】
【表1】
Figure 0003605315
Figure 0003605315
【0059】
【実施例2】
図11は、実施例2にかかる顕微鏡光学系を展開して示すレンズ図である。実施例2の顕微鏡光学系の具体的な数値構成は表2に示されている。面番号と各光学素子との対応は実施例1におけるのと同様である。実施例2におけるリレー光学系240,250の結像倍率Mは、−1.5倍である。
【0060】
【表2】
Figure 0003605315
Figure 0003605315
【0061】
【実施例3】
図12は、実施例3にかかる顕微鏡光学系を展開して示すレンズ図である。実施例3の顕微鏡光学系の具体的な数値構成は表3に示されている。面番号と各光学素子との対応は実施例1におけるのと同様である。実施例3におけるリレー光学系240,250の結像倍率Mは、−1.875倍である。
【0062】
【表3】
Figure 0003605315
Figure 0003605315
【0063】
【実施例4】
図13は、実施例4にかかる顕微鏡光学系を展開して示すレンズ図である。実施例4の顕微鏡光学系の具体的な数値構成は表4に示されている。面番号と各光学素子との対応は実施例1におけるのと同様である。実施例4におけるリレー光学系240,250の結像倍率Mは、−2.0倍である。
【0064】
【表4】
Figure 0003605315
Figure 0003605315
【0065】
【発明の効果】
以上に説明したように、本発明の立体視顕微鏡によると、対物光学系により形成された一次像をリレーするリレー光学系の結像倍率Mを、−3<M<−1の範囲に設定することにより、対物光学系に含まれるズーム光学系の可変焦点距離の上限及び下限を短くすることができ、レンズ枚数が多いズーム光学系のサイズ、重量を軽減し、顕微鏡の小型、軽量化を図ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態による立体視顕微鏡を組み込んだ手術支援システムの全体構成を示す概略図。
【図2】立体視顕微鏡内の光学構成の概略を示す光学構成図。
【図3】立体視ビューワの光学構成の概略を示す光学構成図。
【図4】LCDパネルの平面図。
【図5】立体視顕微鏡の外観斜視図。
【図6】顕微鏡光学系の全体構成を示す斜視図。
【図7】図6に示す顕微鏡光学系の側面図。
【図8】図6に示す顕微鏡光学系の正面図。
【図9】図6に示す顕微鏡光学系の平面図。
【図10】実施例1の撮影光学系を展開して示すレンズ図。
【図11】実施例2の撮影光学系を展開して示すレンズ図。
【図12】実施例3の撮影光学系を展開して示すレンズ図。
【図13】実施例4の撮影光学系を展開して示すレンズ図。
【符号の説明】
102 CCDカメラ
200 撮影光学系
210 クローズアップ光学系
220,230 ズーム光学系
240,250 リレー光学系
260 輻輳寄せプリズム
270,271 視野絞り
272,273 ペンタプリズム
300 照明光学系
310 照明レンズ
320 楔プリズム

Claims (3)

  1. 単一の光軸を有し、被写体に対向して配置されたクローズアップ光学系と、
    前記クローズアップ光学系の光軸に対してそれぞれ平行な光軸を有し、前記クローズアップ光学系における互いに異なる箇所を通過した被写体光により一定の位置に被写体の一次像を形成する変倍可能な一対のズーム光学系と、
    前記ズーム光学系により形成される前記一次像の位置にそれぞれ配置され、該一次像のエッジを規定する一対の視野絞りと、
    前記一次像をリレーして被写体の二次像を形成する一対のリレー光学系と、
    一対の前記二次像を撮影する撮像素子とを備え、
    前記各リレー光学系の結像倍率Mが、以下の条件、
    −3<M<−1
    を満たすことを特徴とする立体視顕微鏡。
  2. 前記リレー光学系と前記撮像素子との間に、前記リレー光学系からの被写体光を互いに近接させる光軸間距離縮小素子を備え、前記撮像素子は、単一の撮像面の隣接した領域に形成される前記二次像を撮影することを特徴とする請求項1に記載の立体視顕微鏡。
  3. 前記リレー光学系は、前記視野絞り側から順に、いずれも正のパワーを持つ第1、第2、第3レンズ群を備え、該第1,第2レンズ群により前記視野絞りを透過した発散光をほぼ平行光とし、前記第3レンズ群により収束させることを特徴とする請求項1に記載の立体視顕微鏡。
JP15263699A 1999-05-31 1999-05-31 立体視顕微鏡 Expired - Fee Related JP3605315B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP15263699A JP3605315B2 (ja) 1999-05-31 1999-05-31 立体視顕微鏡
DE10027166A DE10027166B4 (de) 1999-05-31 2000-05-31 Stereoskopmikroskop
US09/584,943 US6396627B1 (en) 1999-05-31 2000-06-01 Stereoscopic microscope including zoom and relay optical systems
US10/008,941 US20020080481A1 (en) 1999-05-31 2001-11-08 Stereoscopic microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15263699A JP3605315B2 (ja) 1999-05-31 1999-05-31 立体視顕微鏡

Publications (2)

Publication Number Publication Date
JP2000338416A JP2000338416A (ja) 2000-12-08
JP3605315B2 true JP3605315B2 (ja) 2004-12-22

Family

ID=15544738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15263699A Expired - Fee Related JP3605315B2 (ja) 1999-05-31 1999-05-31 立体視顕微鏡

Country Status (1)

Country Link
JP (1) JP3605315B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101476820B1 (ko) * 2014-04-07 2014-12-29 주식회사 썸텍 3d 비디오 현미경 장치

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632745B2 (ja) * 2004-10-28 2011-02-16 オリンパス株式会社 電子画像顕微鏡装置
AU2011336647B2 (en) 2010-12-02 2015-02-12 Ultradent Products, Inc. System and method of viewing and tracking stereoscopic video images
WO2013180773A1 (en) * 2012-06-01 2013-12-05 Ultradent Products, Inc. Stereoscopic video imaging
JP2015220643A (ja) * 2014-05-19 2015-12-07 株式会社東芝 立体観察装置
CN110770637B (zh) * 2018-04-23 2022-11-22 索尼公司 视觉光学***、医用观察器和医用观察器***

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101476820B1 (ko) * 2014-04-07 2014-12-29 주식회사 썸텍 3d 비디오 현미경 장치

Also Published As

Publication number Publication date
JP2000338416A (ja) 2000-12-08

Similar Documents

Publication Publication Date Title
US6396627B1 (en) Stereoscopic microscope including zoom and relay optical systems
US6266182B1 (en) Operating microscope
US8284482B2 (en) Stereoscopic microscope
US6384968B1 (en) Microscope with illuminating optical system
JP3527659B2 (ja) 立体顕微鏡
JP4721981B2 (ja) 立体顕微鏡
JP3290467B2 (ja) 双眼実体顕微鏡
JP3605315B2 (ja) 立体視顕微鏡
JP2002090650A (ja) 防振顕微鏡
JP3619858B2 (ja) 立体視顕微鏡
US20010055150A1 (en) Video-type stereoscopic microscope
JP3980672B2 (ja) 屈曲した覗き方向を有する立体内視鏡
JP2001075011A (ja) 立体顕微鏡
JP4611490B2 (ja) ビデオ型立体顕微鏡
JP2001051204A (ja) 顕微鏡
JPS63167318A (ja) 実体顕微鏡
JP4611491B2 (ja) ビデオ型立体顕微鏡
JP3538365B2 (ja) ビデオ型立体顕微鏡
JP2001066511A (ja) 顕微鏡
JP4295868B2 (ja) ビデオ型立体顕微鏡
JP2000338413A (ja) 立体視顕微鏡
JP2004361962A (ja) 顕微鏡
JP3577107B2 (ja) 実体顕微鏡
JP4668389B2 (ja) 実体顕微鏡
JPH105244A (ja) 手術用顕微鏡

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041001

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees