JP3603464B2 - Measuring method of cross-sectional shape of running member and measuring device used therefor - Google Patents

Measuring method of cross-sectional shape of running member and measuring device used therefor Download PDF

Info

Publication number
JP3603464B2
JP3603464B2 JP08244596A JP8244596A JP3603464B2 JP 3603464 B2 JP3603464 B2 JP 3603464B2 JP 08244596 A JP08244596 A JP 08244596A JP 8244596 A JP8244596 A JP 8244596A JP 3603464 B2 JP3603464 B2 JP 3603464B2
Authority
JP
Japan
Prior art keywords
traveling member
cross
optical
sectional shape
measuring means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08244596A
Other languages
Japanese (ja)
Other versions
JPH09273917A (en
Inventor
崇生 藪見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP08244596A priority Critical patent/JP3603464B2/en
Publication of JPH09273917A publication Critical patent/JPH09273917A/en
Application granted granted Critical
Publication of JP3603464B2 publication Critical patent/JP3603464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、主に高速で走行される長尺な走行部材の断面形状を測定するための方法と、これに用いる装置に関する。特に、熱間で圧延された線材の断面形状や直径を精度良く、短時間に測定できるようにした方法と装置に関する。
【0002】
【従来の技術とその問題点】
一般に棒鋼やワイヤは、熱間圧延及び冷間圧延を経て得られる線材から製造される。係る線材の圧延は、線材の直径公差が約0.1mm以内という高精度の精密圧延によって行われている。そのため、線材の断面形状(真円度)、及び/又は、直径の測定を熱間圧延直後の高温で走行する状態から行う必要がある。
従来から行われている断面形状(直径)測定は、高速で軸方向に走行される線材を囲むようにその周囲に回転テーブルを配置し、この回転テーブルの一側面上に上記線材を挟んでハロゲンランプ等からなる発光源と、CCDイメージセンサからなる受光源と、これらの間の一対のレンズを対称的且つ直列に配設した装置が用いられている。これらの発光源と受光源を結ぶ光軸中を、被測定物たる線材が通過することによって受光源にて検知される遮光幅を基礎として、線材の断面形状を算出している。上記回転テーブルは、例えば毎分200回転され、線材の外周面を上記光軸が連続して走査することによって、線材の断面形状が測定される。因みに、断面形状が円形のように点対称の線材(ワイヤ)の場合、上記光軸の走査角度は断面の半分の180度が必要となる。
【0003】
近年、線材の精密圧延も生産効率向上のため一層の高速化が求められており、例えば直径5.5mmの線材の走行速度は約100メートル/秒のレベルに達している。このため、前記の毎分200回転する回転テーブル上の発・受光源間の光軸で線材の断面形状を測定すると、回転テーブルが1回転する間に線材は30メートル進むことになる。このことは、線材の外周面を15メートル毎に発・受光源間の光軸が走査していることになる。すると、実際には線材の外周面の長い螺旋状軌跡を測定して、断面形状としていることになる。線材の全長に渉る各断面形状を精度良く測定するには、走行中の線材における同一断面に近い状態で測定することが望ましい。係る要求に対して、回転テーブルを一層高速回転させるため、前記発光源のハロゲンランプを発光ダイオードや半導体レーザ等のフィラメントを有しないものにして、大きな遠心力にも耐え得るようにしたり、前記受光源と外部の演算処理手段を電気的に結合するスリップリングを、非接触式の対向するコイル同士からなる回転トランスにすることも行われている。
しかしながら、上記回転テーブルの高速回転化によっても走行線材における同一断面に近い状態には至らず、依然として断面形状を精度良く測定できかねている。しかも、回転テーブルを高速回転化すると、発・受光源の素子等やこれらの間の光軸が振れたり、回転支持機構にガタつき等を招くと共に、これらによっても断面形状測定の精度を上げることを阻害されていた。
【0004】
【発明が解決すべき課題】
本発明は、前記従来技術の問題点を解決し、線材等の走行部材の断面形状や直径を精度良く、短時間に測定でき、且つ、回転テーブルの回転速度を上げる必要を少なくし得ると共に、長期に渉り安定した測定を可能にした測定方法と、これに用いる装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
前記課題を解決するため、本発明は測定対象の走行部材に対し、発・受光源を含む光学式測定手段を複数個用い、同時に使用することに着目してなされた。
即ち、本発明は軸方向に走行される長尺な走行部材に対し、直交する光軸を有する光学式測定手段を上記走行部材の軸方向に沿って複数個用意し、これらの光軸の方向を互いにずらして、上記走行部材を中心にして上記光学式測定手段を回転させる走行部材の断面形状測定方法を内容とする。また、これに用いる装置であって、軸方向に走行される長尺な走行部材を中心部において通過させる回転可能な回転テーブルと、この回転テーブルの異なる側面上に配設され、上記走行部材に対し直交する光軸を有する光学式測定手段を上記走行部材の軸方向に沿って複数個設け、これらの光学式測定手段の光軸の方向を互いにずらして配設する走行部材の断面形状測定装置をも内容とする。
上記測定装置には、回転テーブルが上記走行部材の軸方向に沿って複数個設けられ、各回転テーブルの側面上にそれぞれ各光軸の方向を互いにずらして前記光学式測定手段を配設したものや、一つの同じ回転テーブルの両側面上にそれぞれ各光軸の方向を互いにずらして前記光学式測定手段を配設したものも含まれる。また、前記光学式測定手段は、前記走行部材を挟んで対称的に配置される発光源と受光源及びこれらの間に配置される一対のレンズからなるが、走行部材自体が高温で自ら発光する場合には受光源と結像用レンズのみとするものも含まれる。更に、前記回転テーブルの両側に回転筒を設け、これらの回転筒の両端部付近に軸受を配設した構造のものも含まれる。
【0006】
【発明の実施の形態】
以下に本発明の実施に好適な形態を図面に沿って説明する。
図1は本発明における第1の形態の測定装置1を示し、図1(A)の縦断面図に示すように、水平に走行する長尺な線材Wの軸方向に沿って円筒状の回転筒2を、線材Wがその中空部3の中心を通過するように配設する。上記回転筒2は左右両端部付近の軸受4,4を介し固定台5に対して回転自在に支持され、一端に設けたプーリ6と固定台5側のモータ7のプーリ8間に掛け渡されたベルト9を介して回転される。この回転筒2の外周には2枚の円盤状の回転テーブル10,10が線材Wの軸方向に沿って間隔を置いて併設されている。各回転テーブル10が対向し合う側面上に光軸Lを各々90度ずつ方向をずらして設定するため、各回転テーブル10の基部に隣接する回転筒2には、開口部11,11が線材Wと直交すると共に、互いの方向が90度ずれるよう開設されている(図1(B),(C))参照)。
【0007】
また、各回転テーブル10が対向し合う側面上には、光軸Lを得るため光学式測定手段12,12が設けられている。この光学式測定手段12は、図1(D)に示すように、線材Wに向け光線を照射する発光ダイオード等からなる発光源13と、照射された拡散光線を平行光線に変換する凸レンズ14と、線材Wに遮られずに通過した平行光線を収束して結像するための凸レンズ15と、収束光を結像させるCCDラインセンサからなる受光源16によって構成される。これらの発光源13、凸レンズ14,15、及び受光源16は、直列に整列して各回転テーブル10に配設される。上記受光源16のCCDラインセンサは、結像された部分から線材Wによって遮光された部分の数量を電気信号に変換し、固定台5側の演算手段(図示せず)に送信する。
【0008】
前記回転筒2の中央部には、図1(B)のように回転トランス20の一次側コイルをプリントした円盤21が複数個併設され、これらの一次側コイルに近接して対向する二次側コイルをその側壁にプリントしたリング状の細溝22を複数固定台5側に併設している。この回転トランス20は、一次側コイルに流れる電流により二次側コイルに生じる誘導電流によって、前記受光源16からの電気信号を非接触で固定台5側の演算手段に送信する。
前記測定装置1はその回転筒2を両端部付近で、軸受4,4を介して支持されるので、回転テーブル10を高速回転しても安定した回転が得られる利点がある。尚、高温の線材Wが自ら発光する状態で測定する場合、その自発光線を利用すると、前記光学式測定手段12のうち発光源13と凸レンズ14を省略して、結像用凸レンズ15と受光源16のみにすることもできる。また、線材Wが1000℃程度の高温状態で走行する場合には、測定装置1を保護するため、前記回転筒2の中空部3内の右方には断熱管(図示せず)が配設される。更に、前記回転筒2と固定台5との間には、光学式測定手段12の電気回路に給電するためのスリップリング(図示せず)も常法により配設されている。
【0009】
次に、以上の構成からなる測定装置1の作用について説明する。
熱間圧延された線材Wは、回転筒2の中空部3の中心を軸方向に走行し、貫通する。一方、回転筒2と共に回転する2枚の回転テーブル10,10の側面上の光学式測定手段12の各光軸Lは、上記線材Wが走行する軸方向と直角に交差する。二つの光軸L,Lは、図1(C)のように各々の方向が互いに90度ずらされているので、各光学式測定手段12が線材Wの外周面を90度ずつ走査することで、線材W外周の180度、即ち半分の断面形状が測定される。つまり、線材Wの軸方向に二つの光学式測定手段12を間隔を置き、且つ、互いの光軸Lの方向を90度ずらして設けることで、従来の単一の光学式測定手段を用いたものに比べ、回転テーブルの回転速度(時間)が同じならば2倍の速度で測定できるので、測定される線材Wの断面形状の精度を向上させることができる。
【0010】
図2は、前記測定装置1の変形例を示し、図2(A)の縦断面図に示すように、この測定装置1′には回転筒2に3枚の回転テーブル10が併設されている。これらの回転テーブル10の一側面上に設けられる各光学式測定手段12の三つの各光軸Lは、図2(B)に示すように各々の方向を60度ずつずらされている。このため、測定装置1′に線材Wを走行・貫通させ、回転筒2と共に3枚の回転テーブル10を回転させると、線材Wの外周を各光学式測定手段12の光軸Lが60度ずつ走査することで、線材W外周の180度、即ち半分の断面形状を測定することができる。この測定装置1′によれば従来の単一の光学式測定手段のものと同じ回転速度(時間)で、線材Wの外周を3倍も測定でき、測定精度を更に向上させることができる。勿論、回転筒2及び3枚の回転テーブル10の回転速度を上げることで、同一断面に一層近い状態で測定することもできる。
これらの測定装置1,1′を発展させ、4枚以上の回転テーブル10に4個以上の光学式測定手段12を設け、これらの各光軸Lの方向を45度以下(180°/N枚)にてずらすことで、同一断面に最も近似した理想的な測定が可能となる。
【0011】
図3は、本発明における第2の実施形態の測定装置31を示し、図3(A)の縦断面図に示すように、水平走行する線材Wの軸方向に沿って円筒状の回転筒32を、線材Wがその中空部33の中心を通過するように配設する。上記回転筒32も左右の軸受34,34を介して固定台35に対し回転自在に支持され、一端に設けたプーリ36と固定台35側のモータのプーリ(図示せず)との間に掛け渡されたベルト39を介して回転される。この回転筒32の外周中央部には一枚の円盤状の回転テーブル40が突設されている。この回転テーブル40の両側面にはそれぞれ前記と同じ光学式測定手段42,42が、図3(B)に示すように各光軸Lの方向を互いに90度ずらして配設されている。これらの各光軸Lが線材Wと直交するよう、回転テーブル40の両側面基部に隣接する回転筒32にも開口41,41が開設されている。その他の部分は前記図1,2と同様のため説明は省略する。
【0012】
これらの光学式測定手段42,42は、上記回転テーブル40の厚さ分だけ離れているので、線材Wの外周をそれぞれ90度ずつ走査することで、同一断面形状に近い状態で断面形状の測定が可能になる。但し、線材Wの外周面に遮られた一方の光軸Lからの反射光線が、隣接する他方の光軸Lに干渉する等の支障の生じないように、回転テーブル40の厚さを設定することが必要である。
この測定装置31は一つの回転テーブル40の表裏面に二つの光学式測定手段42,42を配設できるので、装置の構成が簡素化されると共に、全体も小型化にでき、設置スペースも少なくて済むという実用上の優れた利点も有する。勿論、前記回転テーブル40を回転筒32に複数枚併設し、それらの表裏面にそれぞれ二つの光学式測定手段42,42を4個以上前記と同様に配設することもでき、線材Wの同一断面に一層近似した状態で、断面形状の測定を高精度に行うことが可能となる。
【0013】
図4は前記測定装置31の変形例を示し、図4(A)の縦断面図と図4(B)の回転テーブルの正面図に示すように、この測定装置31′は回転テーブル40を回転筒32の一端に設け、その両側面にそれぞれ光学式測定手段42,42を各光軸Lの方向を90度ずつずらして配設したものである。係る測定装置31′では、図4(A)の左方の光学式測定手段42は、その光軸Lが回転筒32と交差しないので、このための開口41は不要となる。この回転テーブル40は、回転筒32を介し軸受34,34に対し片持ち状態で回転可能に支持されるが、回転筒32を一定の長さとし、軸受34,34同士の間隔を確保することで、安定した回転が得られ、前記測定装置31と同様の測定を行うことができる。
勿論、回転筒32の両端に回転テーブル40をそれぞれ設け、4個の光学式測定手段42を各光軸Lの方向を45度ずつずらして配設すると、一層精度良く線材Wの断面形状を測定できることは明らかである。
【0014】
以上の説明では、被測定対象の線材Wは円形断面を有するので、その外周に対する光学式測定手段の光軸による走査角度も180度で済み、円形断面のためその直径も自動的に測定することができる。このように180度の走査角度で、断面形状が測定できるのは、点対称の断面形状によるためである。従って、断面形状が正方形、六角形、八角形等の偶数辺の正多角形のほか、菱形、楕円形等の点対称で、且つ周面に凹部の無い断面を有する部材であれば、前記の各形態のいずれの装置によっても測定することができる。
【0015】
一方、被測定部材の断面形状が三角形、五角形等の奇数辺の正多角形や、縦横辺の長さが異なる平行四辺形である場合は、360度の走査角度が必要となる。
図5は、係る360度の走査が可能となるようにした本発明の実施の形態を説明する。図5(A)は、中心部に被測定部材が貫通走行する穴51(中空部)を有する一枚の回転テーブル50の両側面を示し、左方の側面には光学式測定手段52の光軸Lは下向きに、右方の測定手段52の光軸Lは上向きで、互いに180度ずらして配設されている。この回転テーブル50を、前記図3又は図4の測定装置31にセットして、三角形断面の走行部材の周りを180度回転させると、その断面形状の測定ができ、従来の単一の光学式測定手段のみの装置に比べ、同じ回転速度で2倍の走査が行え、精度の良い断面形状の測定を可能にすることができる。
勿論、図5(B)に示すように二枚の回転テーブル60,70の両側面に、それぞれ上記同様に互いの光軸Lを90度ずらした光学式測定手段62,62と72,72を、各テーブルの間でも方向を90度ずらして配設すれば、両テーブル60,70を走行部材の周りを90度回転するのみで、一層精度の良い断面形状の測定を行うことができる。
【0016】
本発明は、以上の各実施形態の測定装置を用いることで、従来の技術に比較して優れた測定精度を得ることができ、被測定対象の走行部材に対し、直交する光軸を有する光学式測定手段を走行部材の軸方向に沿って複数個用意し、これらの光軸の方向を互いにずらして上記走行部材を中心に各光学式測定手段を回転させる前記測定方法を使用することができる。
係る測定方法でも理解されるように、本発明は前述した各実施の形態に限定されるものではない。
例えば、前記回転テーブルは、光学式測定手段をその側面上に配設し、その光軸を走行部材に対し直角に設定できるものであれば、円盤形状に限らず、−形、+形、*形等をベース形状とするプレートを採用することもできる。
【0017】
前記光学式測定手段も、発光源と平行光変換用の凸レンズとの間に、発光源側のみ平坦なシリンドリカルレンズをその軸方向を走行部材に直角に配置して、発光源からの光線を長方形状に拡げ、且つ、走行部材の軸芯で集光させることもできる。これは、発光ダイオードのような小さな発光源に対し好適に用いられる。また、走行部材と結像用凸レンズの間に減光フィルタを介在させ、約1000度程度に加熱された線材等の走行部材自体が放つ光線を除去することで、発光源からの光線の散乱を防止することもできる。更に、加熱線材からの光線のうち、結像用凸レンズを通過する光線を除去するため、この光線が集まる結像用凸レンズの焦点付近であって、受光源との間に多数のスリットを平行に明けたスリット板を配置することもできる。加えて、このスリット板の後方にバンドパスフィルタを併設して、加熱線材等からの光線を選択的に除去することもできる。
更に、前記の測定装置によって、走行部材の一部の断面形状が寸法公差を逸脱していることが検知された場合、この走行部材の異常部分に測定直後に適宜マーキングを施し、次工程以降において除去、又は矯正用に供することもできる。
【0018】
【発明の効果】
以上において説明したように、本発明によれば軸方向に走行される線材等の長尺な部材の断面形状、及び/又は直径を、従来の技術に比べて格段に優れた精度により、且つ短時間に測定することができる。しかも、光学式測定手段を配設した回転テーブルの回転速度を積極的に上げることも必要としないので、測定装置の耐久性を維持でき、且つ、長期に渉り安定した測定を可能にし得る。
また、請求項4の発明によれば、同じ回転テーブルの両側面に光軸を設定できるので、測定装置を小型化でき、設置スペースを低減することも可能になる。
更に、請求項6の発明によれば、回転テーブルを含む回転筒をその両端部付近で軸受を介して支持するため、回転テーブル等の回転を滑らかで安定したものにできる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示し、(A)は縦断面図、(B)は回転筒等の斜視図、(C)は回転テーブルの正面図、(D)はその拡大図である。
【図2】第1の実施形態の変形例を示し、(A)は縦断面図、(B)は回転テーブルの正面図である。
【図3】本発明の第2の実施の形態を示し、(A)は縦断面図、(B)は回転テーブルの正面図である。
【図4】第2の実施形態の変形例を示し、(A)は縦断面図、(B)は回転テーブルの正面図である。
【図5】本発明の他の実施形態を示し、(A),(B)共に回転テーブルの斜視図である。
【符号の説明】
1,31…………………………………測定装置
2,32…………………………………回転筒
10,40………………………………回転テーブル
12,42………………………………光学式測定手段
13………………………………………発光源
14,15………………………………レンズ
16………………………………………受光源
L…………………………………………光軸
W…………………………………………走行部材(線材)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for measuring a cross-sectional shape of a long traveling member mainly traveling at high speed, and an apparatus used for the method. In particular, the present invention relates to a method and an apparatus capable of accurately and quickly measuring the cross-sectional shape and diameter of a hot-rolled wire.
[0002]
[Conventional technology and its problems]
Generally, steel bars and wires are manufactured from wires obtained through hot rolling and cold rolling. The rolling of such a wire is performed by high-precision precision rolling in which the diameter tolerance of the wire is within about 0.1 mm. Therefore, it is necessary to measure the cross-sectional shape (roundness) and / or diameter of the wire from a state where the wire runs at a high temperature immediately after hot rolling.
Conventionally, the cross-sectional shape (diameter) measurement is performed by disposing a rotary table around a wire rod running at a high speed in an axial direction, surrounding the wire rod, and placing a halogen on one side surface of the rotary table with the wire rod interposed therebetween. A device is used in which a light-emitting source such as a lamp, a light-receiving light source such as a CCD image sensor, and a pair of lenses therebetween are arranged symmetrically and in series. The cross-sectional shape of the wire is calculated based on the light-shielding width detected by the light source when the wire as an object passes through the optical axis connecting the light emitting source and the light receiving source. The rotary table is rotated, for example, at 200 revolutions per minute, and the optical axis continuously scans the outer peripheral surface of the wire to measure the cross-sectional shape of the wire. Incidentally, in the case of a wire having a point-symmetrical shape such as a circular cross section, the scanning angle of the optical axis needs to be 180 degrees, which is half of the cross section.
[0003]
In recent years, even higher precision rolling of wires has been required to further increase the speed in order to improve production efficiency. For example, the traveling speed of wires having a diameter of 5.5 mm has reached a level of about 100 meters / second. Therefore, when the cross-sectional shape of the wire is measured along the optical axis between the light source and the light source on the rotary table rotating at 200 rpm, the wire travels 30 meters during one rotation of the rotary table. This means that the optical axis between the emitting and receiving light sources scans the outer peripheral surface of the wire every 15 meters. Then, actually, a long helical trajectory of the outer peripheral surface of the wire is measured to obtain a cross-sectional shape. In order to accurately measure each cross-sectional shape over the entire length of the wire, it is desirable to measure in a state close to the same cross section of the running wire. In response to such demands, in order to rotate the turntable at a higher speed, the halogen lamp of the light-emitting source does not have a filament such as a light-emitting diode or a semiconductor laser so that it can withstand a large centrifugal force. In some cases, a slip ring that electrically couples a light source and an external processing unit is a non-contact type rotary transformer composed of opposed coils.
However, even when the rotary table is rotated at a high speed, the running wire is not brought into a state close to the same cross section, and the cross-sectional shape cannot be measured with high accuracy. In addition, when the rotary table is rotated at a high speed, the elements of the light emitting and receiving light sources and the optical axis therebetween are shaken, and the rotation supporting mechanism is rattled, and these also increase the accuracy of the cross-sectional shape measurement. Had been inhibited.
[0004]
[Problems to be solved by the invention]
The present invention solves the problems of the prior art, and can accurately measure the cross-sectional shape and diameter of a traveling member such as a wire in a short time, and reduce the need to increase the rotation speed of the rotary table, It is an object of the present invention to provide a measurement method that enables stable measurement over a long period of time and an apparatus used for the method.
[0005]
[Means for Solving the Problems]
In order to solve the above problems, the present invention has been made by paying attention to using a plurality of optical measuring means including a light source and a receiving light source for a traveling member to be measured and using them at the same time.
That is, the present invention prepares a plurality of optical measuring means having an optical axis perpendicular to a long traveling member traveling in the axial direction along the axial direction of the traveling member, and the directions of these optical axes. Are shifted from each other to rotate the optical measuring means around the traveling member. Further, in the device used for this, a rotatable rotary table that allows a long traveling member that travels in the axial direction to pass at the center, and is disposed on a different side surface of the rotary table, A plurality of optical measuring means having optical axes orthogonal to each other are provided along the axial direction of the traveling member, and the cross-sectional shape measuring device of the traveling member is arranged such that the optical axes of these optical measuring means are displaced from each other. Is also included.
In the above-mentioned measuring device, a plurality of rotary tables are provided along the axial direction of the traveling member, and the optical measuring means is arranged on the side surface of each rotary table with the directions of the respective optical axes shifted from each other. Also, a case in which the optical measuring means is disposed on both side surfaces of one and the same rotary table with the directions of the respective optical axes shifted from each other is included. The optical measuring means includes a light emitting source and a receiving light source arranged symmetrically with the traveling member interposed therebetween, and a pair of lenses disposed therebetween. The traveling member itself emits light at a high temperature. In this case, a case where only the light receiving light source and the imaging lens are used is included. Further, a rotary cylinder is provided on both sides of the rotary table, and bearings are provided near both ends of these rotary cylinders.
[0006]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings.
FIG. 1 shows a measuring device 1 according to a first embodiment of the present invention, and as shown in a longitudinal sectional view of FIG. 1 (A), a cylindrical rotation along an axial direction of a long wire W traveling horizontally. The tube 2 is disposed so that the wire W passes through the center of the hollow portion 3. The rotary cylinder 2 is rotatably supported by a fixed base 5 via bearings 4 near the right and left ends, and is stretched between a pulley 6 provided at one end and a pulley 8 of a motor 7 on the fixed base 5 side. Is rotated through the belt 9. On the outer periphery of the rotary cylinder 2, two disk-shaped rotary tables 10, 10 are provided side by side at intervals along the axial direction of the wire W. Since the optical axis L is set to be shifted by 90 degrees on the side surface where each rotary table 10 faces each other, openings 11 and 11 are formed in the rotary cylinder 2 adjacent to the base of each rotary table 10 by the wire W. And the directions are shifted by 90 degrees (see FIGS. 1B and 1C).
[0007]
In addition, optical measuring means 12, 12 for obtaining the optical axis L are provided on the side surfaces of the rotary tables 10 facing each other. As shown in FIG. 1 (D), the optical measuring means 12 includes a light emitting source 13 composed of a light emitting diode or the like for irradiating a light beam toward the wire W, a convex lens 14 for converting the irradiated diffused light beam into a parallel light beam. A convex lens 15 for converging and forming an image of parallel rays that have passed without being blocked by the wire W, and a light receiving / receiving source 16 including a CCD line sensor for forming an image of the converged light. The light emitting source 13, the convex lenses 14, 15 and the light receiving and receiving light 16 are arranged on each turntable 10 in a serial arrangement. The CCD line sensor of the light receiving and receiving light source 16 converts the quantity of the image-formed portion, which is shielded by the wire W, into an electric signal and transmits it to the arithmetic means (not shown) on the fixed base 5 side.
[0008]
At the center of the rotary cylinder 2, a plurality of disks 21 on which the primary coil of the rotary transformer 20 is printed are provided in parallel, as shown in FIG. A plurality of ring-shaped narrow grooves 22 each having a coil printed on its side wall are provided on the side of the fixed base 5. The rotary transformer 20 transmits an electric signal from the light receiving and receiving light source 16 to the arithmetic means on the fixed base 5 in a non-contact manner by an induced current generated in the secondary coil by a current flowing in the primary coil.
Since the measuring device 1 supports the rotary cylinder 2 near both ends via the bearings 4 and 4, there is an advantage that stable rotation can be obtained even when the rotary table 10 is rotated at high speed. When the measurement is performed in a state in which the high-temperature wire W emits light by itself, the light emitting source 13 and the convex lens 14 of the optical measuring means 12 are omitted, and the imaging convex lens 15 and the light receiving It is also possible to use only 16. When the wire W travels at a high temperature of about 1000 ° C., an insulating tube (not shown) is provided on the right side of the hollow portion 3 of the rotary cylinder 2 to protect the measuring device 1. Is done. Further, a slip ring (not shown) for supplying power to the electric circuit of the optical measuring means 12 is provided between the rotary cylinder 2 and the fixed base 5 by a conventional method.
[0009]
Next, the operation of the measuring device 1 having the above configuration will be described.
The hot-rolled wire W travels axially through the center of the hollow portion 3 of the rotary cylinder 2 and penetrates. On the other hand, the respective optical axes L of the optical measuring means 12 on the side surfaces of the two turntables 10 and 10 which rotate together with the rotary cylinder 2 intersect at right angles with the axial direction in which the wire W travels. Since the two optical axes L and L are shifted from each other by 90 degrees as shown in FIG. 1C, each optical measuring means 12 scans the outer peripheral surface of the wire W by 90 degrees at a time. , 180 degrees, that is, a half cross-sectional shape of the outer periphery of the wire W is measured. That is, by providing two optical measuring means 12 at an interval in the axial direction of the wire W and displacing the directions of the optical axes L by 90 degrees, a conventional single optical measuring means is used. If the rotation speed (time) of the rotary table is the same, the measurement can be performed at twice the speed, so that the accuracy of the cross-sectional shape of the measured wire W can be improved.
[0010]
FIG. 2 shows a modification of the measuring device 1. As shown in a vertical sectional view of FIG. 2A, a rotating cylinder 2 is provided with three rotating tables 10 in the measuring device 1 ′. . As shown in FIG. 2B, the three optical axes L of the optical measuring means 12 provided on one side surface of the turntable 10 are shifted by 60 degrees in each direction. For this reason, when the wire W is caused to travel and penetrate the measuring device 1 ′ and the three rotary tables 10 are rotated together with the rotary cylinder 2, the outer circumference of the wire W is shifted by 60 degrees with respect to the optical axis L of each optical measuring means 12. By scanning, it is possible to measure 180 degrees of the outer circumference of the wire W, that is, a half cross-sectional shape. According to the measuring device 1 ', the outer circumference of the wire W can be measured three times at the same rotation speed (time) as that of the conventional single optical measuring means, and the measuring accuracy can be further improved. Of course, by increasing the rotation speed of the rotary cylinder 2 and the three rotary tables 10, the measurement can be performed in a state closer to the same cross section.
By developing these measuring devices 1 and 1 ', four or more optical tables 12 are provided on four or more rotary tables 10, and the direction of each optical axis L is set to 45 degrees or less (180 ° / N sheets). ), Ideal measurement closest to the same cross section can be performed.
[0011]
FIG. 3 shows a measuring device 31 according to a second embodiment of the present invention, and as shown in a vertical sectional view of FIG. 3A, a cylindrical rotating cylinder 32 along the axial direction of a wire W traveling horizontally. Is disposed such that the wire W passes through the center of the hollow portion 33. The rotary cylinder 32 is also rotatably supported by a fixed base 35 via left and right bearings 34, 34, and is hung between a pulley 36 provided at one end and a pulley (not shown) of a motor on the fixed base 35 side. It is rotated via the passed belt 39. A single disk-shaped rotary table 40 is protruded from the center of the outer periphery of the rotary cylinder 32. On both sides of the turntable 40, the same optical measuring means 42, 42 as those described above are provided with the directions of the optical axes L shifted from each other by 90 degrees as shown in FIG. 3B. Openings 41 and 41 are also formed in the rotary cylinder 32 adjacent to the bases on both sides of the rotary table 40 so that each of these optical axes L is orthogonal to the wire W. Other parts are the same as those in FIGS.
[0012]
Since these optical measuring means 42, 42 are separated by the thickness of the rotary table 40, by scanning the outer periphery of the wire W by 90 degrees each, the cross-sectional shape is measured in a state close to the same cross-sectional shape. Becomes possible. However, the thickness of the rotary table 40 is set so that the reflected light from one optical axis L blocked by the outer peripheral surface of the wire W does not interfere with the other adjacent optical axis L. It is necessary.
In this measuring device 31, two optical measuring means 42, 42 can be disposed on the front and back surfaces of one rotary table 40, so that the configuration of the device can be simplified, the entire device can be downsized, and the installation space is small. It also has an excellent practical advantage. Needless to say, a plurality of the rotary tables 40 may be provided on the rotary cylinder 32, and two or more optical measuring means 42, 42 may be provided on each of the front and back surfaces in the same manner as described above. The cross-sectional shape can be measured with high accuracy in a state closer to the cross section.
[0013]
FIG. 4 shows a modification of the measuring device 31. As shown in the vertical sectional view of FIG. 4A and the front view of the rotary table of FIG. 4B, the measuring device 31 'rotates the rotary table 40. The optical measuring means 42 is provided at one end of the tube 32 and the optical axes L are respectively shifted by 90 degrees on both side surfaces thereof. In such a measuring device 31 ′, since the optical axis L of the left optical measuring means 42 in FIG. 4A does not intersect with the rotating cylinder 32, the opening 41 for this is unnecessary. The rotary table 40 is rotatably supported in a cantilever state with respect to the bearings 34, 34 via the rotary cylinder 32. However, by making the rotary cylinder 32 a fixed length and securing an interval between the bearings 34, 34. Thus, a stable rotation can be obtained, and the same measurement as the measurement device 31 can be performed.
Of course, when the rotary tables 40 are provided at both ends of the rotary cylinder 32 and the four optical measuring means 42 are arranged with the directions of the optical axes L shifted by 45 degrees, the cross-sectional shape of the wire W can be measured with higher accuracy. Clearly what you can do.
[0014]
In the above description, since the wire W to be measured has a circular cross section, the scanning angle of the optical measuring means with respect to the outer periphery by the optical axis may be 180 degrees, and the diameter is automatically measured because of the circular cross section. Can be. The reason why the cross-sectional shape can be measured at a scanning angle of 180 degrees is that the cross-sectional shape is point-symmetric. Therefore, in addition to regular polygons having even-numbered sides such as square, hexagonal, and octagonal cross-sectional shapes, diamonds, elliptical shapes, and other point-symmetric members having a cross-section without a concave portion on the peripheral surface, the above-described members can be used. It can be measured by any device of each form.
[0015]
On the other hand, when the cross-sectional shape of the member to be measured is a regular polygon having an odd number of sides such as a triangle or a pentagon, or a parallelogram having different vertical and horizontal lengths, a scanning angle of 360 degrees is required.
FIG. 5 illustrates an embodiment of the present invention that enables such a 360-degree scan. FIG. 5 (A) shows both side surfaces of a single turntable 50 having a hole 51 (hollow portion) through which a member to be measured runs in the center, and the left side surface has light from an optical measuring means 52. The axis L is directed downward, and the optical axis L of the measuring means 52 on the right is directed upward, displaced from each other by 180 degrees. When the rotary table 50 is set on the measuring device 31 shown in FIG. 3 or FIG. 4 and is rotated by 180 degrees around a running member having a triangular cross section, its cross-sectional shape can be measured. Double scanning can be performed at the same rotation speed as compared with an apparatus having only a measuring means, and accurate measurement of a cross-sectional shape can be performed.
Of course, as shown in FIG. 5B, optical measuring means 62, 62 and 72, 72 whose optical axes L are shifted from each other by 90 degrees are respectively provided on both side surfaces of the two turntables 60, 70 as described above. If the directions are shifted by 90 degrees between the tables, more accurate measurement of the cross-sectional shape can be performed only by rotating both tables 60 and 70 around the traveling member by 90 degrees.
[0016]
The present invention, by using the measuring device of each of the above embodiments, can obtain excellent measurement accuracy compared to the conventional technology, the optical member having an optical axis orthogonal to the traveling member to be measured. It is possible to use the above-mentioned measuring method in which a plurality of type measuring means are prepared along the axial direction of the traveling member, the directions of these optical axes are shifted from each other, and each optical measuring means is rotated around the traveling member. .
As will be understood from such a measuring method, the present invention is not limited to the above embodiments.
For example, the rotary table is not limited to a disk shape but may be a − shape, a + shape, or a * shape as long as an optical measuring means is disposed on a side surface thereof and its optical axis can be set at a right angle to a traveling member. A plate having a base shape based on the shape or the like may be employed.
[0017]
The optical measuring means also arranges a cylindrical lens flat only on the light emitting source side between the light emitting source and the convex lens for parallel light conversion so that the axial direction thereof is perpendicular to the traveling member, and the light beam from the light emitting source is rectangular. It is also possible to spread the light into a shape and collect the light at the axis of the traveling member. This is preferably used for small light emitting sources such as light emitting diodes. In addition, a light-reducing filter is interposed between the traveling member and the convex lens for imaging to remove light rays emitted by the traveling member itself such as a wire heated to about 1000 degrees, thereby scattering light rays from the light emitting source. It can also be prevented. Furthermore, among the rays from the heating wire, in order to remove rays that pass through the imaging convex lens, a number of slits are formed in parallel near the focal point of the imaging convex lens where the rays converge and between the light receiving and receiving light sources. Opening slit plates can also be arranged. In addition, a bandpass filter can be provided behind the slit plate to selectively remove light rays from the heating wire or the like.
Further, when the measuring device detects that the cross-sectional shape of a part of the traveling member deviates from the dimensional tolerance, it appropriately marks the abnormal part of the traveling member immediately after the measurement, and performs the following steps. It can also be used for removal or correction.
[0018]
【The invention's effect】
As described above, according to the present invention, the cross-sectional shape and / or the diameter of a long member such as a wire rod that is axially run can be reduced with much higher precision than the conventional technique and with a shorter length. Can be measured on time. In addition, since it is not necessary to positively increase the rotation speed of the rotary table provided with the optical measuring means, the durability of the measuring device can be maintained, and stable measurement can be performed for a long time.
Further, according to the invention of claim 4, since the optical axes can be set on both side surfaces of the same rotary table, the measuring device can be downsized and the installation space can be reduced.
Further, according to the invention of claim 6, since the rotary cylinder including the rotary table is supported via bearings near both ends thereof, the rotation of the rotary table and the like can be made smooth and stable.
[Brief description of the drawings]
1A and 1B show a first embodiment of the present invention, in which FIG. 1A is a longitudinal sectional view, FIG. 1B is a perspective view of a rotary cylinder or the like, FIG. 1C is a front view of a rotary table, and FIG. It is an enlarged view.
FIGS. 2A and 2B show a modification of the first embodiment, in which FIG. 2A is a longitudinal sectional view and FIG. 2B is a front view of a rotary table.
3A and 3B show a second embodiment of the present invention, wherein FIG. 3A is a longitudinal sectional view, and FIG. 3B is a front view of a rotary table.
FIGS. 4A and 4B show a modification of the second embodiment, in which FIG. 4A is a longitudinal sectional view and FIG. 4B is a front view of a rotary table.
FIG. 5 shows another embodiment of the present invention, and (A) and (B) are perspective views of a turntable.
[Explanation of symbols]
1, 31 .................. Measuring device 2, 32 ...... Rotating cylinders 10, 40 ........................ … Rotating tables 12 and 42 ……………………………………………………………………………………………………………… Light emitting sources 14, 15 ……………… ………… Lens 16 ……………………………………………………………………………………………………………………………………………………………………………………………………………………… ……………………… Running members (wires)

Claims (6)

軸方向に走行される長尺な走行部材に対し、直交する光軸を有する光学式測定手段を上記走行部材の軸方向に沿って複数個用意し、これらの光軸の方向を互いにずらして、上記走行部材を中心にして上記光学式測定手段を回転させることを特徴とする走行部材の断面形状測定方法。For a long traveling member traveling in the axial direction, a plurality of optical measuring means having an optical axis orthogonal to each other are prepared along the axial direction of the traveling member, and the directions of these optical axes are shifted from each other, A method for measuring a cross-sectional shape of a traveling member, comprising rotating the optical measuring means around the traveling member. 軸方向に走行される長尺な走行部材を中心部において通過させる回転可能な回転テーブルと、この回転テーブルの異なる側面上に配設され、上記走行部材に対し直交する光軸を有する光学式測定手段を上記走行部材の軸方向に沿って複数個設け、これらの光学式測定手段の光軸の方向を互いにずらして配設することを特徴とする走行部材の断面形状測定装置。A rotatable rotary table that allows a long traveling member that travels in the axial direction to pass at the center, and an optical measurement device that is disposed on a different side surface of the rotary table and has an optical axis orthogonal to the traveling member. A cross-sectional shape measuring device for a traveling member, wherein a plurality of means are provided along the axial direction of the traveling member, and the optical axes of the optical measuring means are arranged to be shifted from each other. 前記回転テーブルが前記走行部材の軸方向に沿って複数個設けられ、各回転テーブルの側面上にそれぞれ各光軸の方向を互いにずらして前記光学式測定手段を配設した請求項2に記載の走行部材の断面形状測定装置。3. The rotating table according to claim 2, wherein a plurality of the rotating tables are provided along the axial direction of the traveling member, and the optical measuring means is disposed on a side surface of each rotating table with the directions of the respective optical axes shifted from each other. Cross section shape measuring device for running members. 一つの回転テーブルの両側面上にそれぞれ各光軸の方向を互いにずらして前記光学式測定手段を配設した請求項2に記載の走行部材の断面形状測定装置。3. The apparatus for measuring the cross-sectional shape of a traveling member according to claim 2, wherein the optical measuring means is disposed on both side surfaces of one rotary table with the directions of the respective optical axes shifted from each other. 前記光学式測定手段が、前記走行部材を挟んで対称的に配置される発光源と受光源及びこれらの間に配置される一対のレンズ、又は少なくとも受光源と結像用レンズのみからなる請求項2乃至4のいずれかに記載の走行部材の断面形状測定装置。The optical measuring means comprises a light-emitting source and a light-receiving light source symmetrically arranged with the traveling member interposed therebetween, and a pair of lenses disposed therebetween, or at least only a light-receiving light source and an imaging lens. 5. The cross-sectional shape measuring device for a traveling member according to any one of 2 to 4. 前記回転テーブルの両側に回転筒を設け、これらの回転筒の両端部付近に軸受を配設した請求項2乃至5のいずれかに記載の走行部材の断面形状測定装置。The cross-sectional shape measuring device for a traveling member according to any one of claims 2 to 5, wherein rotary cylinders are provided on both sides of the rotary table, and bearings are provided near both ends of the rotary cylinders.
JP08244596A 1996-04-04 1996-04-04 Measuring method of cross-sectional shape of running member and measuring device used therefor Expired - Fee Related JP3603464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08244596A JP3603464B2 (en) 1996-04-04 1996-04-04 Measuring method of cross-sectional shape of running member and measuring device used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08244596A JP3603464B2 (en) 1996-04-04 1996-04-04 Measuring method of cross-sectional shape of running member and measuring device used therefor

Publications (2)

Publication Number Publication Date
JPH09273917A JPH09273917A (en) 1997-10-21
JP3603464B2 true JP3603464B2 (en) 2004-12-22

Family

ID=13774734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08244596A Expired - Fee Related JP3603464B2 (en) 1996-04-04 1996-04-04 Measuring method of cross-sectional shape of running member and measuring device used therefor

Country Status (1)

Country Link
JP (1) JP3603464B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5973532B2 (en) * 2014-11-12 2016-08-23 中国電力株式会社 Outside diameter measuring device

Also Published As

Publication number Publication date
JPH09273917A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
US6785007B2 (en) Profiling of a component having reduced sensitivity to anomalous off-axis reflections
US4291990A (en) Apparatus for measuring the distribution of irregularities on a mirror surface
US4766323A (en) Method and apparatus for determining the distance of an object
WO1998007369A1 (en) Improved detector arrangement for x-ray tomography system
US20050006608A1 (en) Scanning apparatus
JP2009303053A (en) Omnidirectional imaging apparatus
US4465374A (en) Method and apparatus for determining dimensional information concerning an object
JP3603464B2 (en) Measuring method of cross-sectional shape of running member and measuring device used therefor
JP3509088B2 (en) Optical device for three-dimensional shape measurement
JP2008122349A (en) Measuring instrument
JPH0641882B2 (en) Device for detecting radial intensity distribution of laser beam
JPH0364816B2 (en)
JPS6358137A (en) Pipe inner surface shape measuring apparatus
JP3341854B2 (en) Traveling wire diameter measuring device
JPH1114320A (en) Dimension measuring device
JPH11183133A (en) Method for measuring dimension of wire rod
JP3470354B2 (en) Dimension measuring device for heating traveling members
JPS6358135A (en) Pipe inner surface measuring apparatus
JPS62167401A (en) Instrument for measuring outer diameter of bar-shaped body
JPH01163602A (en) External diameter measuring instrument for rod-shaped body
JPH0510718A (en) Concentricity degree measuring apparatus
JPH04254726A (en) Surface temperature distribution measuring device of curved object
JPH085548A (en) Light scanning apparatus
JPS6021432A (en) Apparatus for evaluating composite optical system
JPH01219604A (en) Apparatus for measuring outer diameter of rod-shaped body

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees