JP3602529B1 - Lead-free solder for manual soldering or flow soldering and electronic components using it - Google Patents

Lead-free solder for manual soldering or flow soldering and electronic components using it Download PDF

Info

Publication number
JP3602529B1
JP3602529B1 JP2004012905A JP2004012905A JP3602529B1 JP 3602529 B1 JP3602529 B1 JP 3602529B1 JP 2004012905 A JP2004012905 A JP 2004012905A JP 2004012905 A JP2004012905 A JP 2004012905A JP 3602529 B1 JP3602529 B1 JP 3602529B1
Authority
JP
Japan
Prior art keywords
mass
erosion
solder
lead
soldering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004012905A
Other languages
Japanese (ja)
Other versions
JP2005153007A (en
Inventor
正 竹本
隆 長瀬
孝司 上谷
守男 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hakko Corp
Original Assignee
Hakko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hakko Corp filed Critical Hakko Corp
Priority to JP2004012905A priority Critical patent/JP3602529B1/en
Application granted granted Critical
Publication of JP3602529B1 publication Critical patent/JP3602529B1/en
Publication of JP2005153007A publication Critical patent/JP2005153007A/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

【課題】 ハンダゴテのコテ先の侵食や浸漬はんだ槽の侵食などを効果的に抑制して寿命を延ばすことができる鉛フリーはんだ及びそれを用いて地球環境悪化を防止しつつ、コストを低減することができる電子部品を提供する。
【解決手段】 Snを主成分とし、Fe0.01〜1質量%、Ni0.01〜1質量%、Co0.01〜0.6質量%のうち、少なくともCoを含み、かつFe、Ni、Coの合計が1質量%以下であことにより、ステンレス鋼、鉄、及び鉄系合金への侵食を抑制するマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだとする。そして、この鉛フリーはんだを用いて電子部材をプリント基板に接合した電子部品とする。
【選択図】 図4
PROBLEM TO BE SOLVED: To provide a lead-free solder capable of effectively suppressing erosion of a soldering iron tip of a soldering iron and erosion of an immersion solder bath and extending a life thereof, and to reduce cost while using the same to prevent deterioration of the global environment. Provide electronic components that can
SOLUTION: Sn is a main component, contains at least Co among 0.01 to 1% by mass of Fe, 0.01 to 1% by mass of Ni, and 0.01 to 0.6% by mass of Co, and contains Fe, Ni, and Co. When the total is 1% by mass or less, lead-free solder for manual soldering or flow soldering that suppresses erosion of stainless steel, iron, and iron-based alloys is used. Then, an electronic component in which an electronic member is joined to a printed circuit board using the lead-free solder is obtained.
[Selection diagram] Fig. 4

Description

本発明は、電子部品の接合等に用いられるはんだ、詳しくは錫(Sn)を主成分とし、鉛(Pb)を含まない鉛フリーはんだに関し、更に詳しくはマニュアルソルダリング用またはフローソルダリング用の鉛フリーはんだに関するものである。   The present invention relates to a solder used for joining electronic components, and more particularly to a lead-free solder containing tin (Sn) as a main component and not containing lead (Pb), and more particularly to a solder for manual soldering or flow soldering. This is related to lead-free solder.

電子工業における接続、接合にははんだ付け法によって行われるのが一般的である。そのはんだ付けには、Sn−Pb共晶はんだに代表されるSn−Pb系はんだが従来より広く用いられている。これは錫(Sn)と鉛(Pb)を主成分とするはんだであって、たとえばSn−Pb共晶はんだには37質量%の鉛が含有されている。   Connection and joining in the electronics industry are generally performed by a soldering method. For the soldering, Sn-Pb-based solder represented by Sn-Pb eutectic solder has been widely used conventionally. This is a solder containing tin (Sn) and lead (Pb) as main components. For example, Sn-Pb eutectic solder contains 37% by mass of lead.

ところが昨今、酸性雨によって溶解した鉛が地球環境を悪化させることから、Sn−Pb系はんだに代えて、鉛を含まない(又はその含有率が非常に小さい)鉛フリーはんだが注目され、多用されてきている。鉛フリーはんだとして、Sn−Cu系はんだ、Sn−Ag系はんだ、Sn−Ag−Cu系はんだ等、各種のものが提案されている(例えば、特許文献1参照。)。
特開平8−132277号公報
However, recently, since lead dissolved by acid rain deteriorates the global environment, lead-free solder that does not contain lead (or has a very small content thereof) has attracted attention instead of Sn-Pb-based solder, and has been widely used. Is coming. Various lead-free solders such as Sn-Cu-based solder, Sn-Ag-based solder, and Sn-Ag-Cu-based solder have been proposed (for example, see Patent Document 1).
JP-A-8-132277

しかしながら、上記のような鉛フリーはんだを用いてマニュアルソルダリング(糸状はんだとハンダゴテを用いて手作業で行うはんだ付け)を行うと、ハンダゴテのコテ先の寿命が短くなるという問題があった。   However, when the manual soldering (soldering manually using a thread-like solder and a soldering iron) is performed using the above-described lead-free solder, there is a problem that the life of the iron tip of the soldering iron is shortened.

その主な原因は、コテ先の侵食速度の増大である。通常、コテ先は銅又は銅合金からなり、表面にははんだによる侵食を防止するために鉄めっきが施されている。しかし完全に侵食を防止することは困難で、徐々に侵食は進行する。そしてその侵食速度は、コテ先の温度が高いほど増大する。一方、マニュアルソルダリングに用いられる鉛フリーはんだは、一般的にSn−Pb系はんだに比べて融点(液相線温度)が高く、必然的にコテ先の設定温度も高くする必要がある。このため、鉛フリーはんだを用いるとコテ先の侵食速度が増大し易い。   The main cause is an increase in the erosion rate of the iron tip. Usually, the iron tip is made of copper or a copper alloy, and its surface is plated with iron to prevent erosion by solder. However, it is difficult to completely prevent erosion, and erosion progresses gradually. The erosion rate increases as the temperature of the iron tip increases. On the other hand, lead-free solder used for manual soldering generally has a higher melting point (liquidus temperature) than Sn-Pb-based solder, and necessarily requires a higher setting temperature of the iron tip. Therefore, when a lead-free solder is used, the erosion speed of the iron tip tends to increase.

また、錫は比較的コテ先表面の鉄と反応し易く、鉛フリー化によって錫の含有率が高くなっていることや、マニュアルソルダリングに用いられるはんだに通常含まれているヤニ(フラックス)の影響などによっても侵食速度が増大する。   In addition, tin is relatively easy to react with iron on the iron tip surface, and the lead content is increased due to lead-free, and tin (flux) that is usually contained in solder used for manual soldering The erosion rate also increases due to the influence.

更に上記の問題に加え、鉛フリーはんだを用いてフローソルダリング(素子などの電子部材をプリント基板に搭載した後、棒状又はインゴット状のはんだを溶融した溶融はんだ中に浸漬する)を行うと、浸漬はんだ槽(槽壁、送りプロペラ、加熱部を含む)がエロージョン(erosion)による著しい損傷を受けるという問題もあった。エロージョンとは、溶融金属に固体金属が接触していると、拡散や反応層形成の過程で固体金属が溶融金属に溶出し、侵食される現象である。当明細書でいう侵食には、このエロージョンを含むものとする。   In addition to the above-mentioned problems, when performing flow soldering using lead-free solder (after mounting electronic components such as elements on a printed circuit board, then immersing the rod-shaped or ingot-shaped solder in the molten solder), Another problem is that the immersion solder bath (including the bath wall, the feed propeller, and the heating unit) is significantly damaged by erosion. Erosion is a phenomenon in which when a solid metal is in contact with a molten metal, the solid metal is eluted into the molten metal in the process of diffusion and formation of a reaction layer, and is eroded. The erosion referred to in this specification includes this erosion.

浸漬はんだ槽に用いられているステンレス材は、はんだにぬれることは通常ないが、機械的磨耗をきっかけにぬれが発生し、侵食が進行するようになる。特に鉛フリーはんだは、従来の鉛入りものに比べ、酸化物やスラッジ等の粒子状の物質が大量に発生する上、ステンレスの主な成分である鉄を侵食する錫の含有率が高い。また作業温度も高くなり、更に侵食速度を増大させ易くなっている。これらの要因によって浸漬はんだ槽の侵食が非常に激しくなり、寿命が短くなっている。   The stainless steel material used in the immersion solder bath does not usually wet the solder, but the mechanical wear causes the wetting to occur and the erosion proceeds. In particular, lead-free solder generates a large amount of particulate matter such as oxides and sludge, and has a higher content of tin that erodes iron, which is a main component of stainless steel, as compared with conventional lead-containing solder. Further, the working temperature is increased, and the erosion rate is easily increased. Due to these factors, the erosion of the immersion solder bath becomes very severe and the life is shortened.

従って、コテ先や浸漬はんだ槽の寿命を延ばすため、融点(液相線温度)の上昇を抑制しつつ、ステンレス鋼、鉄、及び鉄系合金への侵食作用を抑制することが強く望まれていた。しかし鉛フリーはんだとして、その課題を解決できる最適成分範囲は従来見出されていなかった。   Therefore, in order to extend the life of the iron tip and the immersion solder bath, it is strongly desired to suppress the erosion of stainless steel, iron, and iron-based alloys while suppressing an increase in the melting point (liquidus temperature). Was. However, the optimum component range that can solve the problem as a lead-free solder has not been found conventionally.

本発明は、かかる事情に鑑み、融点(液相線温度)の上昇を抑制しつつ、ステンレス鋼、鉄、及び鉄系合金への侵食作用を抑制することにより、マニュアルソルダリングにおけるハンダゴテのコテ先やフローソルダリングにおける浸漬はんだ槽の寿命を効果的に延ばすことができる鉛フリーはんだを提供するとともに、その鉛フリーはんだを用いることによって地球環境を悪化させる鉛の溶出を防止しつつ、コストを低減することができる電子部品を提供することを目的とする。   In view of such circumstances, the present invention suppresses an increase in melting point (liquidus temperature) and suppresses erosion of stainless steel, iron, and iron-based alloys. Lead-free solder that can effectively extend the life of immersion solder baths for soldering and flow soldering, and using the lead-free solder reduces the cost while preventing the elution of lead, which degrades the global environment It is an object of the present invention to provide an electronic component capable of performing the above.

請求項1の発明はSn−Ag系のマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだであって、Ag0.2〜5質量%と、Ni0.01〜1質量%と、Co0.05〜0.6質量%と、残部Sn及び不可避不純物とからなり、かつNiとCoとの合計が1質量%以下であることを特徴とする。また請求項2の発明は、請求項1記載のマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだにおいて、Fe0.01〜1質量%を含み、かつFe、Ni及びCoの合計が1質量%以下となるようにしたものである。The invention according to claim 1 is an Sn-Ag lead-free solder for manual soldering or flow soldering, wherein 0.2 to 5% by mass of Ag, 0.01 to 1% by mass of Ni, and 0.05 to 0% of Co. .6 mass%, the balance being Sn and unavoidable impurities, and the total of Ni and Co is 1 mass% or less. According to a second aspect of the present invention, in the lead-free solder for manual soldering or flow soldering according to the first aspect, the solder contains 0.01 to 1% by mass of Fe, and the total of Fe, Ni, and Co is 1% by mass or less. It is made to become.

これらの構成によると、鉛フリーはんだに含まれるCo(コバルト)やFe(鉄)の成分が、同じく鉛フリーはんだに含まれるSn(錫)による相手Feの侵食を抑制するので、マニュアルソルダリングにおけるハンダゴテのコテ先の侵食や、フローソルダリングにおける浸漬はんだ槽の侵食が効果的に防止される。また、Ni(ニッケル)の成分により、ぬれ性を向上させることができる。CoやFeの添加によってはんだのぬれ性が低下することがあるが、Niを添加することにより、ぬれ性低下を効果的に抑制することができる。 According to these configurations, the components of Co (cobalt) and Fe (iron) contained in the lead-free solder suppress the erosion of the counterpart Fe by Sn (tin) also contained in the lead-free solder. Erosion of the soldering iron tip and erosion of the immersion solder bath during flow soldering are effectively prevented. In addition, the wettability can be improved by the component of Ni (nickel). The addition of Co or Fe may decrease the wettability of the solder, but the addition of Ni can effectively suppress the decrease in the wettability.

Coの含有率は、0.05質量%未満では侵食抑制の効果が少なく、0.6質量%を超えるとはんだ合金内にCoの偏析が生じたり、はんだ槽の槽壁にCoが付着したりする上、融点(液相線温度)が上昇してはんだ付け温度が上昇し、侵食の増大を招き易くなる。従って、侵食抑制効果を充分得つつ融点(液相線温度)の上昇をできるだけ抑制するため、0.05〜0.6質量%とするのが望ましい。また0.4質量%を超えると、それ以上の侵食抑制効果があまり期待できなくなるので、偏析の発生や融点上昇に対する余裕度とのバランスを考慮すると0.4質量%以下とするのが更に好ましい。   If the Co content is less than 0.05% by mass, the effect of suppressing erosion is small, and if it exceeds 0.6% by mass, Co segregation occurs in the solder alloy or Co adheres to the bath wall of the solder bath. In addition, the melting point (liquidus temperature) rises and the soldering temperature rises, which tends to cause an increase in erosion. Therefore, in order to suppress the rise of the melting point (liquidus temperature) as much as possible while sufficiently obtaining the erosion control effect, the content is desirably 0.05 to 0.6% by mass. If the content exceeds 0.4% by mass, a further erosion suppressing effect cannot be expected much. Therefore, the content is more preferably 0.4% by mass or less in consideration of the balance between the occurrence of segregation and the allowance for the melting point rise. .

Feの含有率は、0.01質量%未満では侵食抑制の効果が少なく、1質量%を超えるとはんだ合金に酸化色の変色が生じる上、融点が上昇してはんだ付け温度が上昇し、侵食の増大を招き易くなるので、0.01〜1質量%とするのが好ましい。更に侵食抑制の効果を充分得つつ融点上昇をできるだけ抑制するために、より好ましくは、0.015〜0.05質量%とするのが望ましい。   When the content of Fe is less than 0.01% by mass, the effect of suppressing erosion is small, and when it exceeds 1% by mass, the discoloration of the oxidizing color occurs in the solder alloy, and the melting point increases, the soldering temperature increases, and erosion occurs Therefore, the content is preferably set to 0.01 to 1% by mass. In order to further suppress the rise in melting point while sufficiently obtaining the effect of suppressing erosion, the content is more preferably 0.015 to 0.05% by mass.

Niの含有率は、0.01質量%未満ではぬれ性向上の効果が少なく、1質量%を超えるとはんだ合金に酸化色の変色が生じる上、融点(液相線温度)が上昇してはんだ付け温度が上昇し、侵食の増大を招き易くなるので、0.01〜1質量%、より好ましくは、0.02〜0.5質量%とするのが望ましい。   If the content of Ni is less than 0.01% by mass, the effect of improving the wettability is small, and if it exceeds 1% by mass, the discoloration of the oxidizing color occurs in the solder alloy, and the melting point (liquidus temperature) rises. Since the attachment temperature rises and erosion tends to increase, the content is preferably 0.01 to 1% by mass, more preferably 0.02 to 0.5% by mass.

Fe,Ni及びCoの合計含有率が1質量%を超えると融点(液相線温度)が上昇し、侵食の増大を招き易くなるので、1質量%以下、より好ましくは、0.7質量%以下とするのが望ましい。   If the total content of Fe, Ni and Co exceeds 1% by mass, the melting point (liquidus temperature) rises, which tends to cause an increase in erosion. Therefore, 1% by mass or less, more preferably 0.7% by mass. It is desirable to do the following.

請求項3の発明はSn−Cu系のマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだであって、Cu0.1〜2.5質量%と、Fe0.01〜1質量%と、Ni0.01〜1質量%と、Co0.05〜0.6質量%と、残部Sn及び不可避不純物とからなり、かつFe、Ni及びCoの合計が1質量%以下であることを特徴とする。この場合も上記Sn−Ag系の鉛フリーはんだと同様に、CoやFeの作用によってハンダゴテのコテ先の侵食や、浸漬はんだ槽の侵食が効果的に防止される。また、Niの成分により、ぬれ性を向上させることができる。The invention according to claim 3 is a Sn-Cu-based lead-free solder for manual soldering or flow soldering, wherein Cu is 0.1 to 2.5% by mass, Fe is 0.01 to 1% by mass, and Ni is 0.01% by mass. -1% by mass, Co 0.05-0.6% by mass, the balance Sn and unavoidable impurities, and the total of Fe, Ni and Co is 1% by mass or less. In this case, similarly to the Sn-Ag-based lead-free solder, the erosion of the iron tip of the soldering iron and the erosion of the immersion solder bath are effectively prevented by the action of Co and Fe. In addition, the wettability can be improved by the Ni component.

請求項4の発明はSn−Ag−Cu系のマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだであって、Ag2〜5質量%と、Cu0.1〜2.5質量%と、Co0.1〜0.6質量%と、残部Sn及び不可避不純物とからなることを特徴とする。同様に請求項5の発明は、Ag0.2〜5質量%と、Cu0.1〜2.5質量%と、Fe0.01〜1質量%と、Co0.1〜0.6質量%と、残部Sn及び不可避不純物とからなり、かつFeとCoとの合計が1質量%以下であることを特徴とする。そして請求項6の発明は、請求項4または5記載のマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだにおいて、Ni0.01〜1質量%を含み、かつFe、Ni及びCoの合計が1質量%以下となるようにしたものである。これらの場合も上記Sn−Ag系の鉛フリーはんだと同様に、CoやFeの作用によってハンダゴテのコテ先の侵食や、浸漬はんだ槽の侵食が効果的に防止される。また、Niの成分により、ぬれ性を向上させることができる。The invention according to claim 4 is a Sn-Ag-Cu-based lead-free solder for manual soldering or flow soldering, wherein Ag is 2 to 5% by mass, Cu is 0.1 to 2.5% by mass, and Co is 0.1%. ~ 0.6% by mass, the balance being Sn and unavoidable impurities. Similarly, the invention according to claim 5 is characterized in that 0.2 to 5% by mass of Ag, 0.1 to 2.5% by mass of Cu, 0.01 to 1% by mass of Fe, 0.1 to 0.6% by mass of Co, and the balance It is characterized by comprising Sn and unavoidable impurities, and wherein the total of Fe and Co is 1% by mass or less. According to a sixth aspect of the present invention, in the lead-free solder for manual soldering or flow soldering according to the fourth or fifth aspect, the content of Ni is 0.01 to 1% by mass, and the total of Fe, Ni and Co is 1% by mass. % Or less. In these cases, similarly to the Sn-Ag-based lead-free solder, erosion of the soldering iron tip and erosion of the immersion solder bath are effectively prevented by the action of Co and Fe. In addition, the wettability can be improved by the Ni component.

請求項7の発明はSn−Ag−Cu−Bi系のマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだであって、Ag0.2〜5質量%と、Cu0.1〜2.5質量%と、Bi0.1〜5質量%と、Co0.05〜0.6質量%と、残部Sn及び不可避不純物とからなることを特徴とする。また請求項8の発明は、請求項7記載のマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだにおいて、Fe0.01〜1質量%と、Ni0.01〜1質量%とを含み、かつFe、Ni及びCoの合計が1質量%以下となるようにしたものである。また同様に請求項9の発明は、Ag2〜5質量%と、Cu0.1〜2.5質量%と、Bi0.1〜5質量%と、Ni0.01〜1質量%と、Co0.05〜0.6質量%と、残部Sn及び不可避不純物とからなり、かつNiとCoとの合計が1質量%以下であることを特徴とする。これらの場合も上記Sn−Ag系の鉛フリーはんだと同様に、CoやFeの作用によってハンダゴテのコテ先の侵食や、浸漬はんだ槽の侵食が効果的に防止される。また、Niの成分により、ぬれ性を向上させることができる。 The invention of claim 7 is a Sn-Ag-Cu-Bi-based lead-free solder for manual soldering or flow soldering, wherein Ag is 0.2 to 5% by mass and Cu is 0.1 to 2.5% by mass. , Bi 0.1 to 5% by mass, Co 0.05 to 0.6% by mass, the balance Sn and unavoidable impurities. The invention according to claim 8 is the lead-free solder for manual soldering or flow soldering according to claim 7, wherein the solder contains 0.01 to 1% by mass of Fe and 0.01 to 1% by mass of Ni; The total of Ni and Co is set to 1% by mass or less. Similarly, the invention of claim 9 is characterized in that Ag 2 to 5% by mass, Cu 0.1 to 2.5% by mass, Bi 0.1 to 5% by mass, Ni 0.01 to 1% by mass, and Co 0.05 to 5% by mass. It is characterized by comprising 0.6% by mass, the balance Sn and unavoidable impurities, and the total of Ni and Co is 1% by mass or less. In these cases, similarly to the above-mentioned Sn-Ag lead-free solder, the erosion of the soldering iron tip and the erosion of the immersion solder bath are effectively prevented by the action of Co and Fe. Further, the wettability can be improved by the Ni component.

上記各請求項に係るSn−Ag系、Sn−Ag−Cu系及びSn−Ag−Cu−Bi系の鉛フリーはんだでは、Ag(銀)により機械的強度やぬれ性を向上させることができる。Agの含有率は、0.2質量%未満では機械的強度向上やぬれ性向上の効果が少なく、5質量%を超えるとコストの増大を招き易くなるので、0.2〜5質量%、より好ましくは、2.0〜4質量%とするのが望ましい。また、よりAgの含有率の低いものとして、3質量%未満(例えば0.3質量%)であっても良い。 In the Sn-Ag-based, Sn-Ag-Cu-based, and Sn-Ag-Cu-Bi-based lead-free solders according to the above claims, mechanical strength and wettability can be improved by Ag (silver). If the content of Ag is less than 0.2% by mass, the effect of improving mechanical strength and wettability is small, and if it exceeds 5% by mass, the cost is likely to increase. Preferably, it is 2.0 to 4% by mass. Further, as a material having a lower Ag content, it may be less than 3% by mass (for example, 0.3% by mass).

また、上記各請求項に係るSn−Cu系、Sn−Ag−Cu系及びSn−Ag−Cu−Bi系の鉛フリーはんだでは、Cu(銅)により更にぬれ性を向上させることができ、また融点を低下させることができる。Cuの含有率は、0.1質量%未満ではぬれ性向上や融点低下の効果が少なく、2.5質量%を超えるとはんだの切れが悪化し、はんだ付け不良を招き易くなるので、0.1〜2.5質量%、より好ましくは、0.2〜1質量%とするのが望ましい。 In the Sn-Cu-based, Sn-Ag-Cu-based and Sn-Ag-Cu-Bi-based lead-free solders according to the above claims, the wettability can be further improved by Cu (copper). The melting point can be lowered. When the content of Cu is less than 0.1% by mass, the effect of improving the wettability and lowering the melting point is small, and when it exceeds 2.5% by mass, the cut of the solder is deteriorated, and the soldering failure is easily caused. It is desirable that the content be 1 to 2.5% by mass, more preferably 0.2 to 1% by mass.

更に、上記各請求項に係るSn−Ag−Cu−Bi系の鉛フリーはんだでは、Bi(ビスマス)により更に機械的強度を向上させ、融点を低下させることができる。Biの含有率は、0.1質量%未満では機械的強度向上や融点低下の効果が少なく、5質量%を超えるとはんだ合金内でBi粒子の粗大化が発生し易くなるので、0.1〜5質量%、より好ましくは、0.2〜3質量%とするのが望ましい。 Further, in the Sn-Ag-Cu-Bi-based lead-free solder according to each of the above claims, Bi (bismuth) can further improve the mechanical strength and lower the melting point. If the content of Bi is less than 0.1% by mass, the effect of improving mechanical strength and lowering the melting point is small, and if it exceeds 5% by mass, coarsening of Bi particles is likely to occur in the solder alloy. -5 mass%, more preferably 0.2-3 mass%.

なお、はんだの成分中に、上記Fe、Ni、Co、Ag、Cu及びBiの作用を害しない範囲で、Zn(亜鉛)、Sb(アンチモン)、In(インジウム)、Mn(マンガン)、Cr(クロム)、Pd(パラジウム)など、他の成分を含有させるようにしても良い。   In addition, Zn (zinc), Sb (antimony), In (indium), Mn (manganese), and Cr (as far as the components of the solder do not impair the effects of Fe, Ni, Co, Ag, Cu, and Bi). Other components such as chromium) and Pd (palladium) may be contained.

そして、この鉛フリーはんだを、フラックス成分を内蔵した糸状に形成すれば、マニュアルソルダリングに好適なはんだ材料とすることができ、棒状又はインゴット状に成形すれば、フローソルダリング用に好適なはんだ材料とすることができる。   If this lead-free solder is formed into a thread shape containing a flux component, it can be a solder material suitable for manual soldering, and if formed into a rod shape or ingot shape, a solder material suitable for flow soldering can be obtained. It can be a material.

また、この鉛フリーはんだを用いて電子部材をプリント基板に接合した電子部品は、たとえそれが廃棄されて酸性雨にさらされたとしても、地球環境を悪化させる鉛の溶出を防止しつつ、ハンダゴテのコテ先や浸漬はんだ槽の寿命延長によるコストの低減化が図られる。   In addition, even if the electronic components are bonded to the printed circuit board using this lead-free solder, even if they are discarded and exposed to acid rain, they prevent the elution of lead that deteriorates the global environment, The cost can be reduced by extending the life of the iron tip and the immersion solder bath.

本発明のマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだは、Snを主成分とし、Fe0.01〜1質量%、Ni0.01〜1質量%、Co0.05〜0.6質量%のうち、少なくともCoを含み、かつFe、Ni、Coの合計が1質量%以下であるので、融点(液相線温度)の上昇を抑制しつつ、ステンレス鋼、鉄、及び鉄系合金への侵食作用を抑制し、マニュアルソルダリングにおけるハンダゴテのコテ先やフローソルダリングにおける浸漬はんだ槽の寿命を効果的に延ばすことができる。   The lead-free solder for manual soldering or flow soldering of the present invention contains Sn as a main component and includes 0.01 to 1% by mass of Fe, 0.01 to 1% by mass of Ni, and 0.05 to 0.6% by mass of Co. , Contains at least Co, and the total of Fe, Ni, and Co is 1% by mass or less, so that corrosion of stainless steel, iron, and iron-based alloys is suppressed while suppressing an increase in melting point (liquidus temperature). And the life of the soldering iron tip in manual soldering and the immersion solder bath in flow soldering can be effectively extended.

また、Snを主成分とし、Fe0.01〜1質量%、Ni0.01〜1質量%、Co0.05〜0.6質量%のうち、少なくともNiとCoとを含み、かつFe、Ni、Coの合計が1質量%以下であるようにした場合や、Snを主成分とし、Fe0.01〜1質量%、Ni0.01〜1質量%及びCo0.05〜0.6質量%を含み、かつFe、Ni、Coの合計が1質量%以下であるようにした場合も同様の効果を得ることができる。   In addition, it contains Sn as a main component, contains at least Ni and Co among 0.01 to 1% by mass of Fe, 0.01 to 1% by mass of Ni, and 0.05 to 0.6% by mass of Co, and contains Fe, Ni, and Co. Is not more than 1% by mass, or Sn is a main component and contains 0.01 to 1% by mass of Fe, 0.01 to 1% by mass of Ni, and 0.05 to 0.6% by mass of Co, and The same effect can be obtained when the total of Fe, Ni, and Co is 1% by mass or less.

そして、このマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだを用いて電子部材をプリント基板に接合した電子部品は、地球環境を悪化させる鉛の溶出を防止しつつ、コストを低減することができる。   An electronic component in which an electronic component is joined to a printed circuit board using the lead-free solder for manual soldering or flow soldering can reduce the cost while preventing the elution of lead that deteriorates the global environment. .

本発明のマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだは、フラックス成分を内蔵して糸状に形成し、マニュアルソルダリング用として使用して良い。また棒状又はインゴット状のものを溶融して浸漬はんだ槽内に貯溜し、フローソルダリング用として使用して良い。   The lead-free solder for manual soldering or flow soldering of the present invention may be formed into a thread shape with a built-in flux component and used for manual soldering. Further, a rod-shaped or ingot-shaped material may be melted and stored in an immersion solder bath and used for flow soldering.

この鉛フリーはんだ(以下、「鉛フリーはんだ」は、本発明に係るマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだを指す。)をフラックス成分を内蔵した糸状に形成し、マニュアルソルダリング用とした場合は、ハンダゴテのコテ先の鉄めっき層の侵食を抑制し、コテ先の寿命を大幅に延ばすとともに、ぬれ性を高め、はんだ付け性を向上させることができる。   This lead-free solder (hereinafter, “lead-free solder” refers to a lead-free solder for manual soldering or flow soldering according to the present invention) is formed in a thread shape with a built-in flux component. In this case, the erosion of the iron plating layer of the iron tip of the soldering iron can be suppressed, the life of the iron tip can be significantly extended, the wettability can be improved, and the solderability can be improved.

棒状又はインゴット状のものを溶融して浸漬はんだ槽内に貯溜し、フローソルダリング用とした場合は、浸漬はんだ槽の槽壁、送りプロペラ、加熱部の侵食を抑制し、これらの寿命を大幅に延ばすとともに、ぬれ性を高め、はんだ付け性を向上させることができる。   When a rod or ingot is melted and stored in an immersion solder bath and used for flow soldering, erosion of the bath wall, feed propeller, and heating section of the immersion solder bath is suppressed, and the life of these components is greatly reduced. , The wettability can be increased, and the solderability can be improved.

この鉛フリーはんだを用いて電子部材をプリント基板に接合した電子部品を製造しても良い。その場合、たとえこの電子部品を組み込んだ電気製品が廃棄されて酸性雨にさらされたとしても、電子部品のはんだからは鉛が殆ど溶出しないので、地球環境の悪化を防止することができる。しかもこの鉛フリーはんだはハンダゴテのコテ先や浸漬はんだ槽の寿命を延ばし、その交換周期を拡大することができるので、生産性を高め、電子部品のコストを低減することができる。   An electronic component in which an electronic member is joined to a printed circuit board using the lead-free solder may be manufactured. In this case, even if the electric product incorporating the electronic component is discarded and exposed to acid rain, lead hardly elutes from the solder of the electronic component, so that deterioration of the global environment can be prevented. In addition, the lead-free solder can extend the life of the soldering iron tip and the immersion solder bath and extend the replacement cycle, so that the productivity can be increased and the cost of electronic components can be reduced.

図1は、代表的な鉛フリーはんだにおける、Co、Fe及びNiの各含有%に対する侵食量及び融点(液相線温度)の変化比率を示すグラフである。横軸に各成分の含有率(質量%)、縦軸に変化比率を示す。変化比率はそれぞれ次式で求めたものである。   FIG. 1 is a graph showing a change ratio of the erosion amount and the melting point (liquidus temperature) with respect to each content% of Co, Fe and Ni in a typical lead-free solder. The horizontal axis shows the content (% by mass) of each component, and the vertical axis shows the change ratio. Each change ratio is obtained by the following equation.

・侵食量の変化比率=(当該%含有時の侵食量)/(0%含有時の侵食量)
・融点(液相線温度)の変化比率=(当該%含有時の液相線温度)/(0%含有時の液相線温度)
各点の記号は、△印がSn−3.5Ag−0.75Cuに各成分を添加したもの、×印がSn−3.5Agに各成分を添加したもの、●印がSn−0.7Cuに各成分を添加したものをそれぞれ示す。
-Change ratio of erosion amount = (erosion amount when containing%) / (erosion amount when containing 0%)
Change ratio of melting point (liquidus temperature) = (liquidus temperature when containing%) / (liquidus temperature when containing 0%)
The symbol of each point is as follows: △: Sn-3.5Ag-0.75Cu with each component added; X: Sn-3.5Ag with each component added; ●: Sn-0.7Cu Shows what each component was added to.

特性21はFeによる侵食量の変化比率、特性22はNiによる侵食量の変化比率、特性23はCoによる侵食量の変化比率をそれぞれ示す。また特性31はFeによる融点(液相線温度)の変化比率、特性32はNiによる融点(液相線温度)の変化比率、特性33はCoによる融点(液相線温度)の変化比率をそれぞれ示す。   Characteristic 21 indicates the change ratio of the erosion amount due to Fe, characteristic 22 indicates the change ratio of the erosion amount due to Ni, and characteristic 23 indicates the change ratio of the erosion amount due to Co. The characteristic 31 indicates the change ratio of the melting point (liquidus temperature) due to Fe, the characteristic 32 indicates the change ratio of the melting point (liquidus temperature) due to Ni, and the characteristic 33 indicates the change ratio of the melting point (liquidus temperature) due to Co. Show.

Coの添加は、侵食の抑制に効果的である(特性23)。特に0.4質量%以下では、含有量の増大に伴って侵食抑制効果も大きく増大する。また、0.6%程度以下では殆ど融点(液相線温度)の上昇が見られない(特性33)。従って、Coは融点(液相線温度)の上昇を抑制しつつ侵食を抑制するには格段に効果的な成分である。特性23及び特性33に示されるように、Coの含有率は0.05%(実験により侵食抑制効果が確認できた最低含有率)以上、0.6%以下とするのが好ましく、偏析の発生や融点上昇に対する余裕度と侵食抑制効果とのバランスを考慮すると0.4質量%以下とするのが更に好ましい。   The addition of Co is effective in suppressing erosion (Characteristic 23). In particular, when the content is 0.4% by mass or less, the erosion suppressing effect is greatly increased with an increase in the content. At about 0.6% or less, almost no increase in melting point (liquidus temperature) is observed (characteristic 33). Therefore, Co is an extremely effective component for suppressing erosion while suppressing an increase in melting point (liquidus temperature). As shown in the characteristics 23 and 33, the content of Co is preferably 0.05% or more (the minimum content at which the effect of inhibiting erosion was confirmed by experiments) and 0.6% or less, and segregation occurred. Considering the balance between the margin for the rise of the melting point and the effect of suppressing the erosion, the content is more preferably 0.4% by mass or less.

Feの添加は、微量でも侵食の抑制に格段の効果がある(特性21)。しかし一方、融点(液相線温度)の変化比率も比較的急速に増大する(特性31)。これらを総合的に考慮すると、Feの含有率は0.05質量%以下とするのが特に好ましい。   The addition of Fe has a remarkable effect in suppressing erosion even in a small amount (characteristic 21). However, on the other hand, the change rate of the melting point (liquidus temperature) also increases relatively rapidly (characteristic 31). Considering these comprehensively, it is particularly preferable that the Fe content is 0.05% by mass or less.

Niの添加は、侵食の抑制には効果が期待できない(特性22)。また、Feよりは緩やかであるが含有率の増大に伴って融点(液相線温度)も上昇する傾向である(特性32)。しかし、NiにはFeやCoの添加によって低下しがちなハンダゴテのコテ先のぬれ性を高める効果があるので、必要なぬれ性を確保するために有用な成分である。   The addition of Ni cannot be expected to be effective in suppressing erosion (characteristic 22). Although the melting point is lower than that of Fe, the melting point (liquidus temperature) tends to increase as the content increases (characteristic 32). However, Ni has an effect of increasing the wettability of the iron tip of a soldering iron, which tends to be reduced by the addition of Fe or Co, and is therefore a useful component for ensuring the necessary wettability.

以下に、具体的な実施例と、その試験結果について説明する。   Hereinafter, specific examples and test results thereof will be described.

第1実施例として、本発明のはんだを、フラックス成分を内蔵した糸状に形成してマニュアルソルダリング用の糸はんだ試料を製作した。そして、そのはんだ試料によるFeめっき層の侵食試験を行った。   As a first example, the solder of the present invention was formed into a thread shape with a built-in flux component to produce a thread solder sample for manual soldering. Then, an erosion test of the Fe plating layer with the solder sample was performed.

図2は、侵食試験の試験装置1を概略的に図示したものである。図2(a)は試験装置1の主要部の正面図である。図2(a)の右側ではハンダゴテ2が固定されており、その先端には試験片3が設けられている。試験片3は、ハンダゴテのコテ先に相当するものであるが、侵食量の測定を容易にするため、略円柱棒状に成形されている。試験装置1は、ハンダゴテ2の内部に備えるヒータを制御することにより、試験片3の温度を所定の温度に保持することができる。図2(a)の左側でははんだ送り装置4が固定されており、その先端からはんだ試料5が図の矢印方向に送出される。試験片3とはんだ試料5とは、略同軸上で対向するように位置決めされている。はんだ送り装置4ではんだ試料5を試験片3に向けて送出すると、はんだ試料5の先端が試験片3の先端に接触する。このとき、試験片3の温度を充分高く設定しておくと、はんだ試料5の先端が溶融するとともに試験片3の先端が僅かに侵食される。この侵食試験では、このようなはんだ試料5の溶融を繰り返し行った後、試験片3の侵食量を測定した。   FIG. 2 schematically shows a test apparatus 1 for an erosion test. FIG. 2A is a front view of a main part of the test apparatus 1. A soldering iron 2 is fixed on the right side of FIG. 2A, and a test piece 3 is provided at the tip. The test piece 3 corresponds to an iron tip of a soldering iron, but is formed into a substantially cylindrical rod shape in order to easily measure the erosion amount. The test apparatus 1 can maintain the temperature of the test piece 3 at a predetermined temperature by controlling a heater provided inside the soldering iron 2. On the left side of FIG. 2A, a solder feeding device 4 is fixed, and a solder sample 5 is sent out from the tip thereof in the direction of the arrow in the figure. The test piece 3 and the solder sample 5 are positioned so as to face each other substantially coaxially. When the solder sample 5 is sent out to the test piece 3 by the solder feeder 4, the tip of the solder sample 5 comes into contact with the tip of the test piece 3. At this time, if the temperature of the test piece 3 is set sufficiently high, the tip of the solder sample 5 is melted and the tip of the test piece 3 is slightly eroded. In this erosion test, the amount of erosion of the test piece 3 was measured after such melting of the solder sample 5 was repeatedly performed.

図2(b)は、試験片3の先端部の拡大断面図である。銅製で丸棒状の試験片基体10の外面にはFeめっき層12(200〜300μm)が形成され、更にその外表面には薄いCrめっき層14(2〜10μm)が形成されている。試験片3の外径はφ5.4mmである。試験片3の先端面中央部には、Crめっき層14が形成されていないφ3mmのFe露出部13が設けられており、Feめっき層12の外表面が露出している。送出されたはんだ試料5は、直接このFe露出部13部に当接するように位置決めされている。このようにして、本試験ではFe露出部13におけるFeめっき層12の侵食量を評価する(代表的な侵食形態18を破線で示す)。   FIG. 2B is an enlarged cross-sectional view of the tip portion of the test piece 3. An Fe plating layer 12 (200 to 300 μm) is formed on the outer surface of a round bar-shaped test piece substrate 10 made of copper, and a thin Cr plating layer 14 (2 to 10 μm) is further formed on the outer surface. The outer diameter of the test piece 3 is φ5.4 mm. At the center of the distal end surface of the test piece 3, a Fe exposed portion 13 of φ3 mm where the Cr plating layer 14 is not formed is provided, and the outer surface of the Fe plating layer 12 is exposed. The sent solder sample 5 is positioned so as to directly contact the Fe exposed portion 13. Thus, in this test, the amount of erosion of the Fe plating layer 12 in the Fe exposed portion 13 is evaluated (a typical erosion mode 18 is indicated by a broken line).

はんだ試料5は、φ1.0mmのヤニ入りはんだとした。ヤニ入りはんだとは、はんだの中心部に3%程度のフラックスを含有させたもので、本試験ではフラックスとしてハロゲン化物入りロジン系フラックスを用いた。   The solder sample 5 was a φ1.0 mm tin-containing solder. The tin-containing solder contains approximately 3% of a flux in the center of the solder. In this test, a rosin-containing flux containing a halide was used as the flux.

表1は、本試験で評価した28種類のはんだ試料5の成分表(フラックス成分及び不可避不純物を除く)である。   Table 1 is a component table (excluding flux components and unavoidable impurities) of 28 kinds of solder samples 5 evaluated in this test.

Figure 0003602529
Figure 0003602529

表1の最左列に試料No.(S01〜S43,CS51〜CS56)を、その右列には試験結果の特性No.(図3〜図7参照。詳細は後述する。)を、更にその右側の各列には各試料の成分比率(質量%)を示す。試料S01〜S07は、Sn−3.5Agに、Fe族元素であるCo又はFeを単独で添加したものである。例えば試料S01はAgを3.5%、Feを0.02%含有し、残部はSnである(以下Sn−3.5Ag−0.02Feと表記する)。   Sample No. is shown in the leftmost column of Table 1. (S01 to S43, CS51 to CS56), and the right column shows the characteristic No. of the test result. (See FIG. 3 to FIG. 7. Details will be described later.) Further, each column on the right side shows the component ratio (% by mass) of each sample. Samples S01 to S07 are each obtained by adding Co or Fe, which is an Fe group element, to Sn-3.5Ag alone. For example, sample S01 contains 3.5% of Ag and 0.02% of Fe, and the balance is Sn (hereinafter referred to as Sn-3.5Ag-0.02Fe).

試料S11〜S15は、Sn−3.5Agに、Fe族元素であるNiを添加したもの、及び更にFe又はCoを添加したものである。   Samples S11 to S15 are Sn-3.5Ag to which Ni which is a Fe group element is added, and further Fe or Co is added.

試料S21〜S23は、Sn−0.7Cuに、Co、Fe及びNiの何れかを単独又は組み合わせて添加したものである。   Samples S21 to S23 are obtained by adding any one of Co, Fe and Ni to Sn-0.7Cu alone or in combination.

試料S31〜S34は、Sn−3.5Ag−0.75Cu又はSn−0.7Cu−0.3Agに、Co、Fe及びNiの何れかを単独又は組み合わせて添加したものである。   Samples S31 to S34 are obtained by adding any one of Co, Fe and Ni to Sn-3.5Ag-0.75Cu or Sn-0.7Cu-0.3Ag, alone or in combination.

試料S41〜S43は、Sn−3.5Ag−0.75Cu−1.0Biに、Co、Fe及びNiの何れかを単独又は組み合わせて添加したものである。   Samples S41 to S43 are obtained by adding any one of Co, Fe and Ni to Sn-3.5Ag-0.75Cu-1.0Bi alone or in combination.

試料No.CS51〜CS56は、比較対照するための比較試料である。比較試料CS51は従来広く使用されていた鉛入りのSn−Pb共晶はんだであり、Sn−37Pbである。比較試料CS52〜CS56は、従来の鉛フリーはんだの代表的なものであり、比較試料CS52はSn−3.5Ag、比較試料CS53はSn−0.7Cu、比較試料CS54はSn−3.5Ag−0.75Cu、比較試料CS55はSn−0.7Cu−0.3Ag、比較試料CS56はSn−3.5Ag−0.75Cu−1.0Biである。   Sample No. CS51 to CS56 are comparative samples for comparative control. The comparative sample CS51 is a lead-containing Sn-Pb eutectic solder widely used conventionally, and is Sn-37Pb. Comparative samples CS52 to CS56 are typical of conventional lead-free solders. Comparative sample CS52 is Sn-3.5Ag, comparative sample CS53 is Sn-0.7Cu, and comparative sample CS54 is Sn-3.5Ag-. 0.75Cu, Comparative Sample CS55 is Sn-0.7Cu-0.3Ag, and Comparative Sample CS56 is Sn-3.5Ag-0.75Cu-1.0Bi.

試験条件として、試験片3の温度を、300℃、350〜400℃(10℃間隔)、425℃及び450℃に設定した。はんだ試料5の送出は、1回(3秒間)当り5mmとし、送出回数を5000回とした。なお、送出回数6〜7回で、溶融したはんだは自重によって落下する。   As test conditions, the temperature of the test piece 3 was set to 300 ° C, 350 to 400 ° C (10 ° C intervals), 425 ° C, and 450 ° C. The delivery of the solder sample 5 was 5 mm per one time (3 seconds), and the number of times of delivery was 5000 times. Note that the molten solder falls by its own weight when the number of times of sending is 6 to 7 times.

5000回送出後、試験片3をその軸線方向に中心線に沿って切断し、Fe露出部13の上部、中央および下部におけるFeめっき層12の侵食量を測定して、その最大値を測定値とした。図3〜図7のグラフはその結果を示す。これらのグラフにおいて、横軸は試験片3の温度(℃)、縦軸は侵食量(μm)を示す。   After sending 5000 times, the test piece 3 is cut along the center line in the axial direction, the amount of erosion of the Fe plating layer 12 in the upper, middle and lower portions of the Fe exposed portion 13 is measured, and the maximum value is measured. And The graphs in FIGS. 3 to 7 show the results. In these graphs, the horizontal axis indicates the temperature (° C.) of the test piece 3 and the vertical axis indicates the erosion amount (μm).

図3は、試料S01〜試料S07の結果をそれぞれ実線の特性101〜107で、比較試料CS51及びCS52の結果をそれぞれ破線の特性251及び252で示す。   FIG. 3 shows the results of samples S01 to S07 by solid line characteristics 101 to 107, and the results of comparative samples CS51 and CS52 by broken line characteristics 251 and 252, respectively.

比較試料CS51(Sn−37Pb)の特性251に対し、従来の鉛フリーはんだである比較試料CS52(Sn−3.5Ag)の特性252は3倍以上の侵食量であった。これに対し、Coを0.05質量%添加した試料S03(Sn−3.5Ag−0.05Co)の特性103及びCoを0.1質量%添加した試料S04(Sn−3.5Ag−0.1Co)の特性104は、通常マニュアルはんだ付けが行われる400℃以下の領域において特性252よりも小さい侵食量を示した。そして、更にCoの添加量を増した試料S05(Sn−3.5Ag−0.3Co)の特性105、試料S06(Sn−3.5Ag−0.5Co)の特性106及び試料S07(Sn−3.5Ag−1.0Co)の特性107は、何れも特性251と同程度ないしはそれ以下という小侵食量であった。この結果から、Coの添加はSn−Ag系の鉛フリーはんだにおいて耐侵食性向上に顕著な効果のあることが確認された。   In contrast to the characteristic 251 of the comparative sample CS51 (Sn-37Pb), the characteristic 252 of the comparative sample CS52 (Sn-3.5Ag) which is a conventional lead-free solder had an erosion amount three times or more. On the other hand, the characteristic 103 of the sample S03 (Sn-3.5Ag-0.05Co) containing 0.05% by mass of Co and the sample S04 (Sn-3.5Ag-0. The characteristic 104 of 1Co) showed a smaller amount of erosion than the characteristic 252 in a region of 400 ° C. or lower where manual soldering is usually performed. Further, the characteristic 105 of the sample S05 (Sn-3.5Ag-0.3Co), the characteristic 106 of the sample S06 (Sn-3.5Ag-0.5Co), and the sample S07 (Sn-3) in which the amount of Co added was further increased. The characteristic 107 of 0.5Ag-1.0Co) had a small erosion amount which was almost equal to or less than the characteristic 251. From these results, it was confirmed that the addition of Co had a remarkable effect on improving the erosion resistance in the Sn-Ag-based lead-free solder.

また、Feを添加した試料S01(Sn−3.5Ag−0.02Fe)及び試料S02(Sn−3.5Ag−0.05Fe)の特性101、102も、特性252よりも侵食量が小さく、また添加量の増加に伴って侵食量の減少が見られた。この結果から、Feの添加はSn−Ag系の鉛フリーはんだにおいて耐侵食性向上に顕著な効果のあることが確認された。   Further, the characteristics 101 and 102 of the sample S01 (Sn-3.5Ag-0.02Fe) and the sample S02 (Sn-3.5Ag-0.05Fe) to which Fe was added also had a smaller amount of erosion than the characteristic 252, and The amount of erosion decreased as the amount of addition increased. From these results, it was confirmed that the addition of Fe had a remarkable effect on improving the erosion resistance in the Sn-Ag-based lead-free solder.

図4は、試料S11〜試料S15の結果をそれぞれ実線の特性111〜115で、比較試料CS51及びCS52の結果をそれぞれ破線の特性251及び252で示す。   FIG. 4 shows the results of samples S11 to S15 by solid line characteristics 111 to 115, and the results of comparative samples CS51 and CS52 by broken line characteristics 251 and 252, respectively.

Sn−3.5Agに0.1質量%のNiを添加した試料S11(Sn−3.5Ag−0.1Ni)の特性111は、特性252よりも侵食量が大であった。しかし、更にCo又はFeを添加した試料S12(Sn−3.5Ag−0.05Fe−0.1Ni)の特性112、試料S13(Sn−3.5Ag−0.1Co−0.1Ni)の特性113、試料S14(Sn−3.5Ag−0.2Co−0.1Ni)の特性114及び試料S15(Sn−3.5Ag−0.1Co−0.015Fe−0.1Ni)の特性115は、特性111に対し、侵食量が格段に減少した。特に400℃以下の領域では特性252よりも侵食量が小さく、特性114や特性115は特性251とほぼ同程度の小侵食量であった。   The characteristic 111 of the sample S11 (Sn-3.5Ag-0.1Ni) in which 0.1% by mass of Ni was added to Sn-3.5Ag had a larger amount of erosion than the characteristic 252. However, characteristics 112 of sample S12 (Sn-3.5Ag-0.05Fe-0.1Ni) to which Co or Fe is further added, and characteristics 113 of sample S13 (Sn-3.5Ag-0.1Co-0.1Ni) The characteristic 114 of the sample S14 (Sn-3.5Ag-0.2Co-0.1Ni) and the characteristic 115 of the sample S15 (Sn-3.5Ag-0.1Co-0.015Fe-0.1Ni) are represented by a characteristic 111. In contrast, the amount of erosion was significantly reduced. In particular, in the region of 400 ° C. or lower, the amount of erosion was smaller than that of the characteristic 252, and the characteristics 114 and 115 had a small amount of erosion almost the same as the characteristic 251.

また、別途テストによってCoやFeの添加がはんだぬれ性を低下させる傾向にある一方、Niの添加がぬれ性の向上に効果大であることが確認されている。この点を考慮すると、Co又はFeの添加とNiの添加とを組み合わせることにより、ぬれ性の低下を抑制しつつ、耐侵食性を大幅に向上させることができる。また、その添加割合を適宜調整することにより、耐侵食性の度合を好適に調整できる、即ち一般的に相反する傾向のある耐侵食性とぬれ性とのバランスを調節することができる。   In addition, it has been confirmed by a separate test that the addition of Co or Fe tends to lower the solder wettability, while the addition of Ni is effective in improving the wettability. Considering this point, by combining the addition of Co or Fe and the addition of Ni, it is possible to significantly improve the erosion resistance while suppressing the decrease in wettability. Further, by appropriately adjusting the addition ratio, the degree of erosion resistance can be suitably adjusted, that is, the balance between erosion resistance and wettability, which generally tend to be contradictory, can be adjusted.

図5は、試料S21〜試料S23の結果をそれぞれ実線の特性121〜123で、比較試料CS51及びCS53の結果をそれぞれ破線の特性251及び253で示す。   FIG. 5 shows the results of samples S21 to S23 by solid line characteristics 121 to 123, and the results of comparative samples CS51 and CS53 by broken line characteristics 251 and 253, respectively.

比較試料CS51(Sn−37Pb)の特性251に対し、Sn−Cu系の鉛フリーはんだである比較試料CS53(Sn−0.7Cu)の特性253は5倍以上の侵食量であった。これに対し、Coを0.3質量%添加した試料S21(Sn−0.7Cu−0.3Co)の特性121は、格段に小さな侵食量(特性251に近いレベル)を示した。また、それよりもCoの添加量を削減しつつ0.1質量%のNiを添加してぬれ性を高めた試料S22(Sn−0.7Cu−0.2Co−0.1Ni)の特性122や、更にCoの添加量を削減しつつ0.015質量%のFeを添加した試料S23(Sn−0.7Cu−0.1Co−0.015Fe−0.1Ni)の特性123は、特性121よりは侵食量が増大するものの、特性253に対して充分小さな侵食量であった。この結果から、CoやFeの添加はSn−Cu系の鉛フリーはんだにおいて耐侵食性向上に顕著な効果があり、Niを添加してぬれ性を高めた場合にもその効果が充分得られることが確認された。   In contrast to the characteristic 251 of the comparative sample CS51 (Sn-37Pb), the characteristic 253 of the comparative sample CS53 (Sn-0.7Cu), which is a Sn-Cu-based lead-free solder, was eroded five times or more. On the other hand, the characteristic 121 of the sample S21 (Sn-0.7Cu-0.3Co) to which 0.3% by mass of Co was added showed a remarkably small amount of erosion (a level close to the characteristic 251). In addition, the characteristics 122 of the sample S22 (Sn-0.7Cu-0.2Co-0.1Ni) in which the wettability was increased by adding 0.1% by mass of Ni while further reducing the amount of Co added, Further, the characteristic 123 of the sample S23 (Sn-0.7Cu-0.1Co-0.015Fe-0.1Ni) to which 0.015% by mass of Fe was added while further reducing the amount of Co added was smaller than that of the characteristic 121. Although the amount of erosion increased, the amount of erosion was small enough for the property 253. From these results, it can be seen that the addition of Co or Fe has a remarkable effect on the improvement of erosion resistance in Sn-Cu-based lead-free solder, and that the effect can be sufficiently obtained even when Ni is added to enhance the wettability. Was confirmed.

図6は、試料S31〜試料S34の結果をそれぞれ実線の特性131〜134で、比較試料CS51、CS54及びCS55の結果をそれぞれ破線の特性251、254及び255で示す。   FIG. 6 shows the results of samples S31 to S34 by solid line characteristics 131 to 134, and the results of comparative samples CS51, CS54 and CS55 by broken line characteristics 251, 254 and 255, respectively.

比較試料CS51(Sn−37Pb)の特性251に対し、Sn−Ag−Cu系の鉛フリーはんだである比較試料CS54(Sn−0.35Ag−0.75Cu)の特性254は4倍以上の侵食量であった。これに対し、Coを0.3質量%添加した試料S31(Sn−3.5Ag−0.75Cu−0.3Co)の特性131は、格段に小さな侵食量(特に400℃以下の領域では特性251よりも小侵食量)を示した。また、それよりもCoの添加量を削減しつつ0.1質量%のNiを添加してぬれ性を高めた試料S32(Sn−3.5Ag−0.75Cu−0.2Co−0.1Ni)の特性132や、更にCoの添加量を削減しつつ0.015質量%のFeを添加した試料S33(Sn−3.5Ag−0.75Cu−0.1Co−0.015Fe−0.1Ni)の特性133は、特性131よりは侵食量が増大するものの、特性254に対して充分小さな侵食量であった。特に400℃以下の領域では特性251に近いレベルの小侵食量であった。   Compared to the characteristic 251 of the comparative sample CS51 (Sn-37Pb), the characteristic 254 of the comparative sample CS54 (Sn-0.35Ag-0.75Cu), which is a Sn-Ag-Cu-based lead-free solder, is four times or more the erosion amount. Met. On the other hand, the characteristic 131 of the sample S31 (Sn-3.5Ag-0.75Cu-0.3Co) to which 0.3% by mass of Co was added has a significantly smaller erosion amount (particularly, the characteristic 251 in the region of 400 ° C. or lower). Less erosion). Sample S32 (Sn-3.5Ag-0.75Cu-0.2Co-0.1Ni) in which the wettability was enhanced by adding 0.1% by mass of Ni while further reducing the amount of Co added. 132 of the sample S33 (Sn-3.5Ag-0.75Cu-0.1Co-0.015Fe-0.1Ni) to which 0.015% by mass of Fe was added while further reducing the amount of Co added. Although the erosion amount of the characteristic 133 is larger than that of the characteristic 131, the erosion amount is sufficiently smaller than that of the characteristic 254. Particularly, in the region of 400 ° C. or lower, the small erosion amount was at a level close to the characteristic 251.

また、同じくSn−Ag−Cu系で、低Ag含有率の鉛フリーはんだである比較試料CS55(Sn−0.7Cu−0.3Ag)の特性255は、比較試料CS54の特性254と同等以上の大きな侵食量であった。これに対し、Coを0.2質量%添加した試料S34(Sn−0.7Cu−0.3Ag−0.2Co)の特性134は、特性132や特性133より僅かに侵食量が多いものの、特性255に対して格段に小さな侵食量であった。   The characteristic 255 of the comparative sample CS55 (Sn-0.7Cu-0.3Ag), which is also a Sn-Ag-Cu-based lead-free solder with a low Ag content, is equal to or greater than the characteristic 254 of the comparative sample CS54. The amount of erosion was large. On the other hand, the characteristic 134 of the sample S34 (Sn-0.7Cu-0.3Ag-0.2Co) to which 0.2% by mass of Co is added has a slightly larger amount of erosion than the characteristic 132 and the characteristic 133, The amount of erosion was remarkably small as compared with 255.

以上の結果から、CoやFeの添加はSn−Ag−Cu系の鉛フリーはんだにおいて耐侵食性向上に顕著な効果があり、Niを添加してぬれ性を高めた場合にもその効果が充分得られることが確認された。   From the above results, the addition of Co or Fe has a remarkable effect on the improvement of erosion resistance in Sn-Ag-Cu-based lead-free solder, and the effect is sufficient even when Ni is added to increase the wettability. It was confirmed that it could be obtained.

図7は、試料S41〜試料S43の結果をそれぞれ実線の特性141〜143で、比較試料CS51及びCS56の結果をそれぞれ破線の特性251及び256で示す。   FIG. 7 shows the results of the samples S41 to S43 by solid-line characteristics 141 to 143, respectively, and the results of the comparative samples CS51 and CS56 by broken-line characteristics 251 and 256, respectively.

比較試料CS51(Sn−37Pb)の特性251に対し、Sn−Ag−Cu−Bi系の鉛フリーはんだ(Biの添加により機械的強度を向上させ、融点を低下させたもの)である比較試料CS56(Sn−0.35Ag−0.75Cu−1.0Bi)の特性256は4倍以上の侵食量であった。これに対し、Coを0.3質量%添加した試料S41(Sn−3.5Ag−0.75Cu−1.0Bi−0.3Co)の特性141は、格段に小さな侵食量(特性251に近いレベル)を示した。また、それよりもCoの添加量を削減しつつ0.1質量%のNiを添加してぬれ性を高めた試料S42(Sn−3.5Ag−0.75Cu−1.0Bi−0.2Co−0.1Ni)の特性142や、更にCoの添加量を削減しつつ0.015質量%のFeを添加した試料S43(Sn−3.5Ag−0.75Cu−1.0Bi−0.1Co−0.015Fe−0.1Ni)の特性143は、特性141相当もしくはやや大きな侵食量であったものの、特性256に対して充分小さな侵食量であった。この結果から、CoやFeの添加はSn−Ag−Cu−Bi系の鉛フリーはんだにおいて耐侵食性向上に顕著な効果があり、Niを添加してぬれ性を高めた場合にもその効果が充分得られることが確認された。   In contrast to the characteristic 251 of the comparative sample CS51 (Sn-37Pb), a comparative sample CS56 which is a Sn-Ag-Cu-Bi-based lead-free solder (having improved mechanical strength and reduced melting point by adding Bi). The characteristic 256 of (Sn-0.35Ag-0.75Cu-1.0Bi) was four times or more the amount of erosion. On the other hand, the characteristic 141 of the sample S41 (Sn-3.5Ag-0.75Cu-1.0Bi-0.3Co) to which 0.3% by mass of Co was added has an extremely small erosion amount (a level close to the characteristic 251). )showed that. Further, the sample S42 (Sn-3.5Ag-0.75Cu-1.0Bi-0.2Co-), in which the wettability was improved by adding 0.1% by mass of Ni while further reducing the amount of Co added. Sample 142 (Sn-3.5Ag-0.75Cu-1.0Bi-0.1Co-0) with the characteristic 142 of 0.1Ni) and 0.015% by mass of Fe added while further reducing the amount of Co added. The characteristic 143 of (0.015Fe-0.1Ni) was equivalent to or slightly larger than the characteristic 141, but was sufficiently small as compared with the characteristic 256. From this result, the addition of Co or Fe has a remarkable effect on the improvement of the erosion resistance in Sn-Ag-Cu-Bi-based lead-free solder, and the effect is improved even when Ni is added to increase the wettability. It was confirmed that a sufficient amount was obtained.

第2実施例として、本発明のはんだを溶融させてはんだ浴槽に貯溜し、これに丸棒状の鉄(浸漬はんだ槽を想定したもの)を浸漬し、その平均侵食量を測定する侵食試験を行った。   As a second example, an erosion test was conducted in which the solder of the present invention was melted and stored in a solder bath, and a round bar-shaped iron (assuming an immersion solder bath) was immersed in the bath. Was.

表2は、本試験で評価した4種類のはんだ試料の成分表である。   Table 2 is a component table of four types of solder samples evaluated in this test.

Figure 0003602529
Figure 0003602529

表2の最左列に試料No.(S61,S62,CS71,CS72)を、その右側の各列には各試料の成分比率(質量%)を示す。試料61はSn−3.5Ag−0.023Fe、試料62はSn−3.5Ag−0.016Feである。試料CS71,CS72は、比較対照するための比較試料である。比較試料CS71は従来広く使用されていたSn−Pb共晶はんだであり、Sn−37Pbである。比較試料CS72は、従来の鉛フリーはんだの代表的なものであり、Sn−3.5Agである。   Sample No. is shown in the leftmost column of Table 2. (S61, S62, CS71, CS72), and each column on the right side shows the component ratio (% by mass) of each sample. Sample 61 is Sn-3.5Ag-0.023Fe, and sample 62 is Sn-3.5Ag-0.016Fe. Samples CS71 and CS72 are comparative samples for comparison. The comparative sample CS71 is a Sn-Pb eutectic solder widely used conventionally, and is Sn-37Pb. Comparative sample CS72 is a typical lead-free solder, and is Sn-3.5Ag.

試験条件として、溶融はんだ(試料S61,S62及び比較試料CS71,CS72)の温度を、350℃、400℃及び450℃に設定し、鉄丸棒の浸漬時間を2、4、6及び8時間に設定した。表3は、その試験結果を示す。   As test conditions, the temperatures of the molten solder (samples S61 and S62 and comparative samples CS71 and CS72) were set to 350 ° C., 400 ° C. and 450 ° C., and the immersion time of the iron round bar was set to 2, 4, 6 and 8 hours. Set. Table 3 shows the test results.

Figure 0003602529
Figure 0003602529

表3の最左列にデータNo.(D1〜D7)を、その右列には試料No.を、更にその右側には試験条件として浸漬温度(℃)及び浸漬時間(h)を示し、最右列には浸漬後の鉄丸棒の侵食量(μm)を示す。即ちデータD1は、試料S61を400℃に保持して鉄丸棒を4時間浸漬したとき、その侵食量が2μmであったことを示す。以下、データD2〜データD7も同様の表記に従う。   In the leftmost column of Table 3, data No. (D1 to D7), and Sample No. in the right column. The immersion temperature (° C.) and the immersion time (h) are shown as test conditions on the right side, and the erosion amount (μm) of the iron round bar after immersion is shown in the rightmost column. That is, data D1 shows that when the sample S61 was held at 400 ° C. and the iron round bar was immersed for 4 hours, the erosion amount was 2 μm. Hereinafter, data D2 to data D7 follow the same notation.

データD3とデータD4とを比較することにより、浸漬時間が長いほど侵食量の大きいことが確認された。また、データD3とデータD5とを比較することにより、従来の鉛フリーはんだ(Sn−3.5Ag)は、Sn−Pb共晶はんだに比べ、3倍以上の侵食量となっていることが確認された。更に、データD5〜データD7によると、温度を450→400→350℃と低減させるに従って、浸漬時間が2→4→6時間と増加しているにもかかわらず、侵食量が30→25→15μmと減少している。このことから、この浸漬温度範囲、浸漬時間範囲では、浸漬温度の影響が大であることが確認された。   By comparing data D3 and data D4, it was confirmed that the longer the immersion time, the greater the amount of erosion. Further, by comparing data D3 and data D5, it was confirmed that the conventional lead-free solder (Sn-3.5Ag) had an erosion amount three times or more that of the Sn-Pb eutectic solder. Was done. Furthermore, according to data D5 to data D7, as the temperature is reduced from 450 to 400 to 350 ° C., the erosion amount increases from 30 to 25 to 15 μm despite the increase in the immersion time from 2 to 4 to 6 hours. And has decreased. From this, it was confirmed that the influence of the immersion temperature was large in the immersion temperature range and the immersion time range.

そして、データD1とデータD6とを比較すると、同条件(400℃、4時間)であっても、データD1の侵食量(2μm)がデータD6の侵食量(25μm)よりも格段に少なくなっている。これは、同じ鉛フリーはんだであっても、Fe添加により、侵食量が大幅に減少したことを示している。同様に、データD2とデータD7とを比較すると、同条件(350℃、6時間)であっても、データD2の侵食量(3μm)がデータ7の侵食量(15μm)よりも格段に少なくなっており、やはりFe添加による顕著な効果が確認された。   When the data D1 and the data D6 are compared, the erosion amount of the data D1 (2 μm) is much smaller than the erosion amount of the data D6 (25 μm) even under the same conditions (400 ° C., 4 hours). I have. This indicates that even with the same lead-free solder, the amount of erosion was significantly reduced by the addition of Fe. Similarly, comparing data D2 and data D7, even under the same conditions (350 ° C., 6 hours), the erosion amount of data D2 (3 μm) is much smaller than the erosion amount of data 7 (15 μm). Also, a remarkable effect was confirmed by the addition of Fe.

また、データD1とデータD2との比較により、Feを添加した鉛フリーはんだは、350〜400℃の範囲において、温度による侵食量への影響が少ないことが確認された。   In addition, by comparing data D1 and data D2, it was confirmed that the lead-free solder to which Fe was added had little effect on the amount of erosion due to temperature in the range of 350 to 400 ° C.

以上の試験結果から、鉛フリーはんだにFeを添加することによって、溶融はんだによる浸漬はんだ槽の槽壁等の侵食を抑制する顕著な効果が確認された。   From the above test results, a remarkable effect of suppressing the erosion of the bath wall of the immersion solder bath by the molten solder by adding Fe to the lead-free solder was confirmed.

第3実施例として、本発明のはんだを溶融させてはんだ浴槽に貯溜し、これにプレート状の純鉄及びステンレス材(浸漬はんだ槽を想定したもの)を浸漬して、その侵食状態を評価する侵食試験を行った。   As a third embodiment, the solder of the present invention is melted and stored in a solder bath, and plate-like pure iron and stainless steel (assuming an immersion solder bath) are immersed in the bath to evaluate the erosion state. An erosion test was performed.

表4は、本試験で評価した7種類のはんだ試料の成分表である。   Table 4 is a component table of seven types of solder samples evaluated in this test.

Figure 0003602529
Figure 0003602529

表4の最左列に試料No.(S81〜S85,CS71,CS72)を、その右側の各列には各試料の成分比率(質量%)を示す。試料81はSn−3.5Ag−0.2Co、試料82はSn−3.0Ag−0.5Co、試料83はSn−3.0Ag−0.5Cu−0.2Co−0.1Ni、試料84はSn−3.0Ag−0.5Cu−0.2Co−0.015Fe、試料85はSn−3.5Ag−0.7Cu−0.2Coである。比較用の試料CS71,CS72は、実施例2の試料CS71,CS72(表2参照)と同成分である。   Sample No. is shown in the leftmost column of Table 4. (S81 to S85, CS71, CS72), and the respective columns on the right side thereof show the component ratio (% by mass) of each sample. Sample 81 is Sn-3.5Ag-0.2Co, Sample 82 is Sn-3.0Ag-0.5Co, Sample 83 is Sn-3.0Ag-0.5Cu-0.2Co-0.1Ni, and Sample 84 is The sample was Sn-3.0Ag-0.5Cu-0.2Co-0.015Fe, and the sample 85 was Sn-3.5Ag-0.7Cu-0.2Co. Samples CS71 and CS72 for comparison have the same components as samples CS71 and CS72 of Example 2 (see Table 2).

浸漬したプレートの材質はFe(純鉄)、SUS304(ステンレス)及びSUS316(ステンレス)の3種類である(何れも焼鈍材)。SUS304は一般的なはんだ槽に広く用いられているステンレス材、SUS316は、SUS304よりも一般的に耐食性が高いとされているステンレス材である。プレートの形状はそれぞれ幅5mm×長さ70mm×厚さ0.4mmの帯状である。   The material of the immersed plate is Fe (pure iron), SUS304 (stainless steel), and SUS316 (stainless steel) (all are annealed materials). SUS304 is a stainless steel material widely used in a general solder bath, and SUS316 is a stainless steel material generally considered to have higher corrosion resistance than SUS304. The shape of the plate is a strip having a width of 5 mm, a length of 70 mm and a thickness of 0.4 mm.

試験方法として、上記各プレートを、長手方向を上下にして吊持し、それぞれ400℃の溶融はんだ(試料S81〜S85及び比較試料CS71,CS72)を貯溜したはんだ浴槽に浸漬した。浸漬深さは50mm、浸漬時間は9時間である。浸漬後取り出し、ピット状エロージョン(侵食)が発生している箇所で切断し、断面観察によって侵食深さ(侵食量)を測定した。表5は、その結果を示す。   As a test method, each plate was suspended with its longitudinal direction up and down, and immersed in a solder bath in which molten solder (samples S81 to S85 and comparative samples CS71 and CS72) at 400 ° C. was stored. The immersion depth is 50 mm and the immersion time is 9 hours. After immersion, it was taken out, cut at a portion where pit-shaped erosion (erosion) occurred, and the erosion depth (erosion amount) was measured by cross-sectional observation. Table 5 shows the results.

Figure 0003602529
Figure 0003602529

表5の最左列にデータNo.(D81〜D87)を、その右列には試料No.を、更にその右側の各欄には浸漬したプレートの材質別に評価結果を記号で示す。各記号の意味は次の通りである。   In the leftmost column of Table 5, data No. (D81 to D87), and Sample No. The evaluation results are indicated by symbols for each material of the immersed plate in each column on the right side. The meaning of each symbol is as follows.

◎:耐久性良好(侵食量≦10μm)
○:耐久性有り(10μm<侵食量≦50μm)
△:やや耐久性劣る(50μm<侵食量≦200μm)
×:耐久性劣る(局所的な深いピット状の侵食あり。局所的に侵食量>200μm)
−: 試験せず
データD86,D87が示すように、高温の溶融はんだは純鉄だけでなくステンレス材に対しても浸食作用を有することが確認された。そして、その浸食作用は従来のSn−Pb共晶はんだ(試料CS71。評価○〜◎)よりも一般的な鉛フリーはんだ(試料CS72。評価△〜○)の方が大きくなっていることが確認された。また、はんだによる侵食に対し、SUS316(評価○〜◎)はSUS304(評価△〜○)よりも有利であることが確認された。
:: good durability (erosion amount ≦ 10 μm)
:: Durable (10 μm <erosion amount ≦ 50 μm)
△: somewhat poor durability (50 μm <erosion amount ≦ 200 μm)
×: Inferior durability (local deep pit-like erosion. Local erosion amount> 200 μm)
-: Not tested As shown by data D86 and D87, it was confirmed that the high-temperature molten solder had an erosion effect not only on pure iron but also on stainless steel. Then, it was confirmed that the erosion action of the general lead-free solder (sample CS72; evaluations Δ to ○) was larger than that of the conventional Sn-Pb eutectic solder (sample CS71; evaluations ○ to ○). Was done. In addition, it was confirmed that SUS316 (evaluation 〜 to)) is more advantageous than SUS304 (evaluation △ to ○) for erosion by solder.

これに対しCo等を添加した本発明の鉛フリーはんだは、データD81〜D85が示すように、試料S81〜S85の何れも、何れの材質のプレートに対しても侵食量が10μm以下(評価◎)であり、侵食量が格段に小さいことが確認された。即ち本発明の鉛フリーはんだは、従来の一般的な鉛フリーはんだよりも格段に、また従来のSn−Pb共晶はんだに対しても同等以上にはんだ槽に対する侵食抑制効果が高いことが確認された。またステンレス材に対して、SUS316のみならずSUS304に対しても充分高い侵食抑制効果を有していることが確認された。   On the other hand, as shown by data D81 to D85, the lead-free solder of the present invention to which Co or the like is added has an erosion amount of 10 μm or less for any of the samples S81 to S85 on any material plate. ), And it was confirmed that the amount of erosion was extremely small. That is, it has been confirmed that the lead-free solder of the present invention has a significantly higher erosion suppression effect on the solder bath than the conventional general lead-free solder, and even more than the conventional Sn-Pb eutectic solder. Was. It was also confirmed that the stainless steel material had a sufficiently high erosion control effect not only on SUS316 but also on SUS304.

以上、第1〜第3実施例によって本発明の顕著な効果について説明したが、本発明は、これら実施例に供した試料のみに留まるものではなく、その成分や含有比率を特許請求の範囲内で適宜変形して良い。   As described above, the remarkable effects of the present invention have been described with reference to the first to third embodiments. However, the present invention is not limited to only the samples provided in these examples, and its components and content ratios are within the scope of the claims. May be appropriately modified.

代表的な鉛フリーはんだにおける、Co、Ni及びFeの各含有%に対する侵食量及び融点の変化比率を示すグラフである。It is a graph which shows the erosion amount and the change rate of a melting point with respect to each content% of Co, Ni, and Fe in a typical lead-free solder. 本発明の第1実施例にかかる試験装置の概略図であり、(a)は部分正面図、(b)はその試験片3の先端部の拡大断面である。1 is a schematic view of a test apparatus according to a first embodiment of the present invention, in which (a) is a partial front view, and (b) is an enlarged cross section of the tip of a test piece 3; 本発明の第1実施例にかかる侵食試験の結果を示すグラフであり、特にSn−Ag系はんだについて示す。4 is a graph showing the results of an erosion test according to the first embodiment of the present invention, particularly showing an Sn-Ag-based solder. 本発明の第1実施例にかかる侵食試験の結果を示すグラフであり、特にSn−Ag系はんだにNiを添加したものについて示す。4 is a graph showing the results of an erosion test according to the first embodiment of the present invention, particularly showing a case where Ni is added to a Sn-Ag-based solder. 本発明の第1実施例にかかる侵食試験の結果を示すグラフであり、特にSn−Cu系はんだについて示す。4 is a graph showing the results of an erosion test according to the first embodiment of the present invention, and particularly shows a Sn—Cu-based solder. 本発明の第1実施例にかかる侵食試験の結果を示すグラフであり、特にSn−Ag−Cu系はんだについて示す。3 is a graph showing the results of an erosion test according to the first embodiment of the present invention, and particularly shows a Sn-Ag-Cu-based solder. 本発明の第1実施例にかかる侵食試験の結果を示すグラフであり、特にSn−Ag−Cu−Bi系はんだについて示す。4 is a graph showing the results of an erosion test according to the first embodiment of the present invention, and particularly shows a Sn-Ag-Cu-Bi-based solder.

符号の説明Explanation of reference numerals

1 試験装置
2 ハンダゴテ
3 試験片
4 はんだ送り装置
5 はんだ試料
10 試験片基体
12 Feめっき層
13 Fe露出部
14 Crめっき層
DESCRIPTION OF SYMBOLS 1 Test apparatus 2 Soldering iron 3 Test piece 4 Solder feeder 5 Solder sample 10 Test piece base 12 Fe plating layer 13 Fe exposed part 14 Cr plating layer

Claims (12)

Ag0.2〜5質量%と、Ni0.01〜1質量%と、Co0.05〜0.6質量%と、残部Sn及び不可避不純物とからなり、かつNiとCoとの合計が1質量%以下であることを特徴とするマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだ。 Ag is 0.2 to 5% by mass, Ni is 0.01 to 1% by mass , Co is 0.05 to 0.6% by mass, the balance is Sn and unavoidable impurities, and the total of Ni and Co is 1% by mass or less. Lead-free solder for manual soldering or flow soldering. Fe0.01〜1質量%を含み、かつFe、Ni及びCoの合計が1質量%以下である請求項1記載のマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだ。 2. The lead-free solder for manual soldering or flow soldering according to claim 1, wherein the solder contains 0.01 to 1 % by mass of Fe and the total of Fe, Ni and Co is 1% by mass or less. Cu0.1〜2.5質量%と、Fe0.01〜1質量%と、Ni0.01〜1質量%と、Co0.05〜0.6質量%と、残部Sn及び不可避不純物とからなり、かつFe、Ni及びCoの合計が1質量%以下であることを特徴とするマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだ。 0.1 to 2.5 mass% of Cu, 0.01 to 1 mass% of Fe, 0.01 to 1 mass% of Ni, 0.05 to 0.6 mass% of Co, balance Sn and inevitable impurities, and A lead-free solder for manual soldering or flow soldering, wherein the total of Fe, Ni and Co is 1% by mass or less. Ag2〜5質量%と、Cu0.1〜2.5質量%と、Co0.1〜0.6質量%と、残部Sn及び不可避不純物とからなることを特徴とするマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだ。 Ag or flow soldering , comprising 2 to 5% by mass of Ag, 0.1 to 2.5% by mass of Cu, 0.1 to 0.6% by mass of Co, and the balance Sn and unavoidable impurities. For lead-free solder. Ag0.2〜5質量%と、Cu0.1〜2.5質量%と、Fe0.01〜1質量%と、Co0.1〜0.6質量%と、残部Sn及び不可避不純物とからなり、かつFeとCoとの合計が1質量%以下であることを特徴とするマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだ。 0.2 to 5% by mass of Ag, 0.1 to 2.5% by mass of Cu, 0.01 to 1% by mass of Fe, 0.1 to 0.6% by mass of Co, balance Sn and unavoidable impurities, and A lead-free solder for manual soldering or flow soldering , wherein the total of Fe and Co is 1% by mass or less . Ni0.01〜1質量%を含み、かつFe、Ni及びCoの合計が1質量%以下である請求項4または5記載のマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだ。 The lead-free solder for manual soldering or flow soldering according to claim 4 or 5, wherein the solder contains 0.01 to 1% by mass of Ni and the total of Fe, Ni and Co is 1% by mass or less . Ag0.2〜5質量%と、Cu0.1〜2.5質量%と、Bi0.1〜5質量%と、Co0.05〜0.6質量%と、残部Sn及び不可避不純物とからなることを特徴とするマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだ。 0.2 to 5% by mass of Ag, 0.1 to 2.5% by mass of Cu, 0.1 to 5% by mass of Bi, 0.05 to 0.6% by mass of Co, with the balance being Sn and unavoidable impurities. Features lead-free solder for manual soldering or flow soldering. Fe0.01〜1質量%と、Ni0.01〜1質量%とを含み、かつFe、Ni及びCoの合計が1質量%以下である請求項7記載のマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだ。 8. The lead for manual soldering or flow soldering according to claim 7, comprising 0.01 to 1% by mass of Fe and 0.01 to 1% by mass of Ni, and wherein the total of Fe, Ni and Co is 1% by mass or less. Free solder. Ag2〜5質量%と、Cu0.1〜2.5質量%と、Bi0.1〜5質量%と、Ni0.01〜1質量%と、Co0.05〜0.6質量%と、残部Sn及び不可避不純物とからなり、かつNiとCoとの合計が1質量%以下であることを特徴とするマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだ。 Ag 2 to 5% by mass, Cu 0.1 to 2.5% by mass, Bi 0.1 to 5% by mass, Ni 0.01 to 1% by mass, Co 0.05 to 0.6% by mass, and the balance Sn and A lead-free solder for manual soldering or flow soldering , comprising unavoidable impurities, wherein the total of Ni and Co is 1% by mass or less . フラックス成分を内蔵して糸状に形成された請求項1乃至9のいずれか1項に記載のマニュアルソルダリング用鉛フリーはんだ。 The lead-free solder for manual soldering according to any one of claims 1 to 9 , wherein the solder component is formed in a thread shape with a built-in flux component. 棒状又はインゴット状に成形された請求項1乃至9のいずれか1項に記載のフローソルダリング用鉛フリーはんだ。 The lead-free solder for flow soldering according to any one of claims 1 to 9 , which is formed into a rod shape or an ingot shape. 請求項1乃至11のいずれか1項に記載のマニュアルソルダリング用またはフローソルダリング用鉛フリーはんだを用いて、電子部材をプリント基板に接合したことを特徴とする電子部品。 Using manual lead-free solder for soldering or for flow soldering according to any one of claims 1 to 11, an electronic component, characterized in that joining the electronic component on the printed circuit board.
JP2004012905A 2003-01-22 2004-01-21 Lead-free solder for manual soldering or flow soldering and electronic components using it Expired - Fee Related JP3602529B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004012905A JP3602529B1 (en) 2003-01-22 2004-01-21 Lead-free solder for manual soldering or flow soldering and electronic components using it

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003013989 2003-01-22
JP2003378136 2003-11-07
JP2004012905A JP3602529B1 (en) 2003-01-22 2004-01-21 Lead-free solder for manual soldering or flow soldering and electronic components using it

Publications (2)

Publication Number Publication Date
JP3602529B1 true JP3602529B1 (en) 2004-12-15
JP2005153007A JP2005153007A (en) 2005-06-16

Family

ID=34068880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004012905A Expired - Fee Related JP3602529B1 (en) 2003-01-22 2004-01-21 Lead-free solder for manual soldering or flow soldering and electronic components using it

Country Status (1)

Country Link
JP (1) JP3602529B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8716860B2 (en) 2011-12-14 2014-05-06 Mk Electron Co., Ltd. Tin-based solder ball and semiconductor package including the same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492231B2 (en) * 2004-07-06 2010-06-30 セイコーエプソン株式会社 Lead-free solder alloy
GB2431412B (en) * 2005-10-24 2009-10-07 Alpha Fry Ltd Lead-free solder alloy
WO2007102588A1 (en) * 2006-03-09 2007-09-13 Nippon Steel Materials Co., Ltd. Lead-free solder alloy, solder ball and electronic member, and lead-free solder alloy, solder ball and electronic member for automobile-mounted electronic member
WO2007102589A1 (en) * 2006-03-09 2007-09-13 Nippon Steel Materials Co., Ltd. Lead-free solder alloy, solder ball and electronic member, and lead-free solder alloy, solder ball and electronic member for automobile-mounted electronic member
JP4076182B2 (en) * 2006-07-27 2008-04-16 トピー工業株式会社 Lead-free solder alloy
WO2008084603A1 (en) * 2007-01-11 2008-07-17 Topy Kogyo Kabushiki Kaisha Manual soldering lead-free solder alloy
JP5080946B2 (en) * 2007-01-11 2012-11-21 株式会社日本フィラーメタルズ Lead-free solder alloy for manual soldering
DE102009054068A1 (en) * 2009-11-20 2011-05-26 Epcos Ag Solder material for fixing an outer electrode in a piezoelectric component and piezoelectric component with a solder material
WO2012131861A1 (en) 2011-03-28 2012-10-04 千住金属工業株式会社 Lead-free solder ball
ES2556797T3 (en) * 2012-01-26 2016-01-20 Nv Bekaert Sa Chinese finger fixed to a steel wire with metal welding
CN110900036B (en) * 2012-10-09 2022-10-28 阿尔法组装解决方案公司 High-temperature reliable lead-free and antimony-free tin solder
WO2015037279A1 (en) 2013-09-11 2015-03-19 千住金属工業株式会社 Lead-free solder, lead-free solder ball, solder joint obtained using said lead-free solder, and semiconductor circuit including said solder joint
JP6138843B2 (en) * 2014-06-27 2017-05-31 株式会社タムラ製作所 Lead-free solder alloy-containing solder paste composition, solder joint structure, and electronic circuit board
JP6082952B1 (en) 2016-07-04 2017-02-22 株式会社弘輝 Solder alloy, solder containing solder
MY190589A (en) * 2016-08-19 2022-04-27 Senju Metal Industry Co Solder alloy for preventing fe erosion, resin flux cored solder, wire solder, resin flux cored wire solder, flux coated solder, solder joint and soldering method
JP6365653B2 (en) 2016-08-19 2018-08-01 千住金属工業株式会社 Solder alloy, solder joint and soldering method
WO2019035197A1 (en) * 2017-08-17 2019-02-21 千住金属工業株式会社 Solder alloy for preventing fe erosion, flux cored solder, wire solder, flux cored wire solder, flux-coated solder and solder joint
US11732330B2 (en) * 2017-11-09 2023-08-22 Alpha Assembly Solutions, Inc. High reliability lead-free solder alloy for electronic applications in extreme environments
JP6578393B2 (en) * 2018-02-27 2019-09-18 株式会社タムラ製作所 Lead-free solder alloy, electronic circuit mounting board, and electronic control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8716860B2 (en) 2011-12-14 2014-05-06 Mk Electron Co., Ltd. Tin-based solder ball and semiconductor package including the same

Also Published As

Publication number Publication date
JP2005153007A (en) 2005-06-16

Similar Documents

Publication Publication Date Title
JP3602529B1 (en) Lead-free solder for manual soldering or flow soldering and electronic components using it
JP4577888B2 (en) Fe erosion prevention solder alloy and Fe erosion prevention method
EP1897649B1 (en) Lead-free solder alloy
JP5115915B2 (en) Lead-free solder, processed solder, solder paste and electronic component soldering board
JP5279714B2 (en) Bonding composition
JP4618089B2 (en) Sn-In solder alloy
JP2008168322A (en) Fe EROSION-SUPPRESSED LEAD-FREE SOLDER ALLOY
JP3262113B2 (en) Solder alloy
KR100696157B1 (en) Soldering method and solder alloy for additional supply
CN101384395B (en) Lead-free solder alloy
JP2019141880A (en) SOLDER ALLOY FOR PREVENTING Fe THINNING, RESIN-CONTAINING SOLDER, WIRE SOLDER, RESIN-CONTAINING WIRE SOLDER, FLUX-COATED SOLDER, SOLDER JOINT AND SOLDERING METHOD
JP2004148372A (en) Lead-free solder and soldered article
KR101945683B1 (en) Fe erosion-resistant solder alloy, resin flux-containing solder, lead solder, solder containing resin flux, flux-clad solder, solder joint and soldering method
JP3966554B2 (en) Solder alloy
KR100963462B1 (en) SOLDER ALLOY AND METHOD FOR Fe-LEACHING PREVENTION
JP5080946B2 (en) Lead-free solder alloy for manual soldering
JP6344541B1 (en) Fe erosion prevention solder alloy, cored wire solder, wire solder, cored wire solder, flux coated solder, and solder joint
JP2007111715A (en) Solder alloy
KR100574878B1 (en) Lead-free soldering alloy
WO2018034320A1 (en) Solder alloy for preventing fe erosion, resin flux cored solder, wire solder, resin flux cored wire solder, flux coated solder, solder joint and soldering method
JP2004330259A (en) LEAD-FREE SnCu SOLDER ALLOY
JP2007038228A (en) Solder alloy
JP2008283017A (en) Soldering method of component-mounting board, and the component-mounting board
JP4683015B2 (en) Lead-free solder alloy

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370