JP3602329B2 - Method for recovering indium from indium-containing material - Google Patents

Method for recovering indium from indium-containing material Download PDF

Info

Publication number
JP3602329B2
JP3602329B2 JP9239498A JP9239498A JP3602329B2 JP 3602329 B2 JP3602329 B2 JP 3602329B2 JP 9239498 A JP9239498 A JP 9239498A JP 9239498 A JP9239498 A JP 9239498A JP 3602329 B2 JP3602329 B2 JP 3602329B2
Authority
JP
Japan
Prior art keywords
indium
leaching
sulfide
acid
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9239498A
Other languages
Japanese (ja)
Other versions
JPH11269570A (en
Inventor
健作 福田
則人 石森
周志 倉持
理人 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP9239498A priority Critical patent/JP3602329B2/en
Publication of JPH11269570A publication Critical patent/JPH11269570A/en
Application granted granted Critical
Publication of JP3602329B2 publication Critical patent/JP3602329B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【0001】
【発明の属する技術分野】
本発明は、インジウム含有物からインジウムを回収する方法に関する。
【0002】
【従来の技術】
インジウムは、III−V族化合物半導体としてInP、InAs等の金属間化合物に、あるいは太陽電池用材料として錫をドープした酸化インジウム(ITO)、透明導電性薄膜に利用されており、今後その需要は益々伸長するものと期待されている。
【0003】
元来、インジウムには主たる鉱石がなく、工業的には亜鉛製錬、鉛製錬の副産物、例えばばい煙中に濃縮されたインジウムを回収することにより生産されている。したがってインジウム回収の原料は、Zn、Fe、Cu、Al、Ga、As、Cd等の金属不純物を多く含んでおり、またこれら金属成分以外にも微量に含まれる成分の種類が多い。
【0004】
したがって、これら金属不純物を除去し、高純度のインジウムを回収するには複雑な工程が必要となり、一般に上記インジウムの回収工程は、(A)pH調整により水酸化物として沈殿させる方法、(B)硫化剤の添加により硫化物として沈殿させる方法、(C)金属Al、Zn、Cd、Zn−Cd合金等の添加により置換析出させる方法、(D)溶媒抽出によってインジウムを回収する方法、(E)イオン交換法によるインジウムの回収方法、等の化学精製と、電解製錬法との組み合わせにより行なわれている。
【0005】
【発明が解決しようとする課題】
しかしながら前記回収工程のうち、(A)の方法は、金属イオンの水酸化物生成pH領域の違いを利用したものであり、例えばZn、AlとInの分離法としてはpHを12以上にすることによってZn、Alを溶解し、Inを水酸化物として沈殿させて回収する方法がある。しかしこの方法では、生成したInの水酸化物は濾過性が極めて悪いため濾過設備が大きくなり、操作も長時間となる。またこの方法ではFe、Cu、As、Cd等の不純物とInとの分離は困難である。
【0006】
(B)の方法は、金属硫化物の溶解度積の違いを利用したものであるが、前述のような様々な金属不純物を含むため純度の低い硫化物が大量に発生する。これらの硫化物は一般に濾過性が悪く、また得られたInの硫化物を浸出する場合、硫酸のみではInを完全に浸出することができないため、この方法には、湿式亜鉛工程に応用し難いという欠点がある。
【0007】
(C)については、インジウムより貴な不純物を含む場合にはその金属とInの分離は不可能である。またInが置換析出する場合に生成するスポンジは塊状化するため好ましい粉状金属が得られない。
【0008】
(D)、(E)についてはInと分離する不純物によっては前処理に負担がかかりまたランニングコストが高いという問題がある。
【0009】
上記いずれの化学精製方法においても、不純物金属の分離が不十分であるため、これと組み合わせる電解製錬方法も簡便な電解採取法(水溶液中に目的金属を浸出させておき不溶性の陽極を用いて電気分解し、一挙に陰極に高純度の金属を得る)を採用できず、煩雑な電解精製法(粗金属を陽極に、高純度金属を陰極において電気分解して精製を行なう)を採用せざるを得なかった。
【0010】
したがって上記いずれの方法もそれぞれ欠点を有しており、実際の回収には上記の方法を組み合わせたものが使用されており、高純度Inを回収するためには工程が複雑でかつ煩雑となり、経済的な方法はまだ提案されていなかった。
【0011】
本発明の目的は、従来技術のもつ前記課題を解決して、様々な不純物を含むインジウム含有物から高純度インジウムを効率よく回収する方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を続け、試行錯誤の結果本発明に到達することができた。
【0013】
すなわち、本発明は第1に、(1)インジウム含有物を酸で浸出処理し、Inと共に酸に可溶な金属を溶解する酸浸出工程と、(2)前記(1)の工程で得られた浸出液にAg/AgCl電極使用で酸化還元電位を50〜320mVに調整しながら硫化剤を添加し、Cu等のIn以外の金属を沈殿除去するCu等除去工程と、(3)前記(2)の工程で得られたインジウム含有水溶液に硫酸と硫化剤を添加してInを硫化物として沈殿濃縮する硫化沈殿工程と、(4)前記(3)の工程で得られたインジウム硫化物に硫酸酸性下でSO2ガスを吹き込むことによりInを選択的に浸出するSO2浸出工程と、(5)前記(4)の工程で得られたインジウム含有浸出液のpHを1〜3.5の範囲内に調整し、空気吹き込みによって該インジウム含有浸出液中に溶存するSO2の濃度を0.05〜0.3g/lに調整した後、金属粉を添加し、インジウムスポンジを置換析出させる置換析出工程と、(6)浸出液のpHが0.5〜1.5の範囲内かつAg/AgCl電極使用で酸化還元電位が−400〜−500mVの範囲内にあるように塩酸を添加して前記(5)の工程で得られたインジウムスポンジを浸出する塩酸浸出工程と、(7)前記(6)の工程で得られたインジウム浸出液に硫化剤を添加し、Cd等の残留金属イオンを沈殿除去して電解元液を得るCd等除去工程と、(8)前記(7)の工程で得られた電解元液を電解して高純度の金属インジウムを得る電解採取工程、とからなることを特徴とするインジウム含有物からインジウムを回収する方法;第2に、前記(2)の工程において、使用する硫化剤がH2SとNaSHの少なくとも1種である、第1のインジウムを回収する方法;第3に、前記(5)の工程において、置換に使用する金属粉が亜鉛末である、第1のインジウムを回収する方法である。
【0014】
【発明の実施の形態】
本発明ではインジウムを含有するものを広く出発原料として採用し得るが、ここでは湿式亜鉛製錬に際して副生する中和石こうに適用する場合について説明することにする。本発明の方法によるインジウム回収の工程を図1に示す。
【0015】
(1)の工程では、中和石こうを硫酸で浸出すると、Inと共にCu、As、Al、Fe、Zn、Ga等の酸に可溶な不純物金属イオンが浸出され、不溶性石こうとのスラリーを形成する。浸出に使用する酸としては、硫酸の他に塩酸、硝酸等を使用でき、硫酸に制限されるものではないが硫酸が最も安価である。In浸出液の硫酸濃度は通常20〜40g/lである。
【0016】
(2)の工程では、(1)の工程で得られたIn浸出スラリーに、硫化剤として例えばH S、NaSHを酸化還元電位(以下Ehと言う)が50〜320mV(Ag/AgCl電極使用)の範囲内に入るようにコントロールしながら添加し、Cu、As等の不純物を硫化物として沈殿除去する。このとき硫酸濃度も20〜40g/lにコントロールするためInは沈殿しない。
【0017】
(1)および(2)の工程の処理により中和石こう中に含まれるInの90%以上が硫酸酸性溶液中に移行するので、例えばフィルタープレス等を用いて沈殿物(銅残渣)を固液分離する。この時浸出時の不溶性石こうが濾過助剤の働きをするため、一般には悪い硫化物の濾過性が著しく改善される。銅残渣は亜鉛製錬の本系統へ送られる。
【0018】
(3)の工程では、(2)の工程で得られたIn含有水溶液に硫化剤例えばH S、NaSHを硫酸と同時に添加し、Inを硫化物として沈殿させ、フィルタープレス等を用いて固液分離し、液中に残るZn、Fe、Al、Ga等の不純物を分離除去する。Inの沈殿への回収率は95%以上である。濾液(硫化后液)は排水系統へ送られる。
【0019】
(4)の工程では、(3)の工程で得られた硫化インジウムに、硫酸酸性下でSO2ガスを吹き込みながらInを浸出する。
【0020】
硫化物の酸浸出法には一般に、(a)硫化水素発生型、(b)硫黄生成型、(c)硫酸生成型の3通りの型があるが、硫化インジウムを浸出する場合、(a)の反応では溶解度積が小さいため、Inを完全に浸出することができず、(b)、(c)の反応では酸化剤として酸素を用いる場合、反応温度、圧力をそれぞれ150℃、12kg/cm のように高くする必要があるためオートクレーブ等の圧力容器を反応槽としなければならない。また、この方法でInを完全に浸出することは可能であるが、酸化力が強力であるため含有している不純物も同様に完全に浸出されてしまう。
【0021】
本発明の方法では、酸化剤としてSO を用いることで(a)と(b)との反応の組み合わせを行ない、酸化力を適度にコントロールしInは浸出しつつ他の不純物の浸出を抑える、つまり選択的にInを浸出する。この時の温度は常温でもよく、圧力も大気圧でよいため通常の反応槽を使用することができる。反応後Inの90%以上が浸出液に移行するためフィルタープレス等を用いて固液分離する。ケーキ(硫黄残渣)は亜鉛製錬の本系統へ送られる。
【0022】
(5)の工程では、(4)の工程で得られたIn浸出液をアルカリ例えば苛性ソーダ等で中和し、好ましくはpHを1〜3.5の範囲に調整する。pHが1より低いと後の工程で置換剤として加える亜鉛末の使用量が過剰に必要となり、pHが3.5を超えるとInが水酸化物を生成してしまうためである。pHの調整後、インジウムよりイオン化傾向の大きい金属の粉末、例えば亜鉛末を添加してインジウムスポンジを置換析出させる。(4)の工程で浸出にSO を使用しているため(5)の工程に供するIn浸出液中にはSO が溶存している。この濃度を0.05〜0.3g/lにコントロールすることによりインジウムスポンジの塊状化を防止することができ、粉状のインジウムスポンジを得ることができる。置換后液は前記(3)の工程へ繰り返される。
【0023】
(6)の工程では、(5)の工程で得られたインジウムスポンジを塩酸でpHを0.5〜1.5の範囲内、Ehを−400〜−500mVの範囲内にそれぞれコントロールして浸出する。この時Inの90%以上が浸出液に移行するためフィルタープレス等を用いて固液分離する。浸出残分(スポンジ滓)にはCd、Pb、Ni、As等の微量金属が濃縮されて除去できる。スポンジ滓は前記(4)の工程へ繰り返される。
【0024】
(7)の工程では、(6)の工程で得られたIn浸出液にまだCd、As等が残留している場合、硫化剤例えばH Sガスを吹き込み、最終浄液を行ない、固液分離して濾液を電解元液とする。ケーキ(カドミ残渣)は前記(4)の工程へ繰り返される。
【0025】
(8)の工程では、(7)の工程で得られた電解元液から、アノードにDSA(寸法適格陽極)、カソードにTi板を用いて電解採取を行ない、高純度の金属インジウムを得る。
【0026】
【実施例】
湿式亜鉛製錬工程で副生する中和石こうを出発原料としてインジウムの回収処理を行なった。
(1)酸浸出
In回収の原料である中和石こう294.5gに水を加えて固体濃度203g/lのパルプとし、撹拌機で機械撹拌をしながら、これに終酸濃度が28g/lになるように硫酸を添加し、温度を60℃に保ちながら2時間浸出した。原料および得られた浸出液のIn、Zn、Cu、Asの含有率と分配率を表1に示す。
【0027】
【表1】

Figure 0003602329
(2)Cu等の除去
上記浸出工程で得られた浸出スラリーに、Ehが300mV(Ag/AgCl電極使用)になるまでNaSHを添加して硫化反応を行った。反応時間は2時間、反応温度は60℃であった。反応終了後、得られたスラリーを濾過し、ケーキを銅残渣、濾液を脱銅液とした。それぞれの分析結果を表2に示す。
【0028】
【表2】
Figure 0003602329
(3)硫化沈殿
上記脱銅液(In含有水溶液)を撹拌機で撹拌しながら、硫酸でpHを0.8の一定レベルに保ち、Ehが−20mV(Ag/AgCl電極使用)になるまでNaSHを添加してInを硫化物として沈殿させた。反応は60℃の温度で5時間行った。反応終了後、得られたスラリーを濾過し、ケーキを硫化残渣、濾液を硫化后液とした。それぞれの分析結果と物質収支を表3に示す。
【0029】
【表3】
Figure 0003602329
(4)SO 浸出
上記(1)〜(3)の工程を繰り返して得られた硫化残渣を集めて417.7gとし、これに水を加えて固体濃度119g/lのパルプとし、撹拌機で撹拌しながら硫酸を加えて硫酸濃度を51g/lとし、溶存SO 濃度が8g/lになるようにSO ガスを吹き込んだ。反応は、80℃の温度で2時間行った。反応終了後、得られたスラリーを濾過し、ケーキを硫黄残渣、濾液をSO 浸出液とした。それぞれの分析結果と物質収支を表4に示す。
【0030】
【表4】
Figure 0003602329
(5)置換析出
上記SO 浸出液に空気を吹き込んで溶存SO 濃度が0.2g/lになるまで脱気し、pHが2.5になるまでNaOHを加えて中和したものを置換元液とした。得られた置換元液3000mlに、Inに対して1.8当量の亜鉛末を添加し、Inスポンジを置換析出させた。反応温度は60℃、反応時間は1時間であった。各産物の分析結果と物質収支を表5に示す。
【0031】
【表5】
Figure 0003602329
(6)塩酸浸出工程
上記の諸工程を繰り返して集めたスポンジIn238.1gに水を加えて固体濃度144g/lのパルプとし、撹拌機で撹拌しながら、pHが1、Ehが−480mV(Ag/AgCl電極使用)となるように塩酸を添加してインジウムを浸出した。反応温度は65℃、反応時間は3時間であった。各産物の分析結果と物質収支を表6に示す。
【0032】
【表6】
Figure 0003602329
(7)Cd等除去工程
上記塩酸浸出工程で得られた塩酸浸出液1500mlにNaOHを加えてpH1.5まで中和した後、この液に1.5LのH Sガスを吹き込んでCd等の不純物を硫化物として沈殿させた。反応温度は40℃、反応時間は0.5時間であった。
反応後の懸濁液を濾過し、ケーキをカドミ残渣、濾液を脱Cd液とした。各産物の分析結果と物質収支を表7に示す。
【0033】
【表7】
Figure 0003602329
(8)電解採取工程
上記(7)の工程で得られた脱Cd液を電解元液とし、温度40℃、電流密度150A/m で48時間電解採取を行った。アノードにはDSAを、カソードにはTi板を使用した。電解元液および得られたインジウムと電解尾液の分析結果と物質収支を表8に示す。
【0034】
【表8】
Figure 0003602329
【0035】
【発明の効果】
本発明の方法によれば、多種、多様の金属不純物を含むインジウム含有物から、電解精製を要しない簡略な工程で、効率よく、しかも純度が5N以上の高純度のインジウムを回収することができる。
【図面の簡単な説明】
【図1】本発明の方法の概略を示す工程図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for recovering indium from an indium-containing material.
[0002]
[Prior art]
Indium is used as a group III-V compound semiconductor for intermetallic compounds such as InP and InAs, or as a material for solar cells, for tin-doped indium oxide (ITO) and for transparent conductive thin films. It is expected to grow further.
[0003]
Originally, indium has no main ore, and is industrially produced by recovering by-products of zinc smelting and lead smelting, for example, indium concentrated in soot and smoke. Therefore, the raw material for indium recovery contains a large amount of metal impurities such as Zn, Fe, Cu, Al, Ga, As, and Cd, and there are many types of components contained in trace amounts other than these metal components.
[0004]
Therefore, a complicated process is required to remove these metal impurities and recover high-purity indium. In general, the recovery process of indium includes (A) a method of precipitating as hydroxide by adjusting pH, and (B) A method of precipitating as a sulfide by adding a sulphidizing agent, a method of (C) a method of substituting and precipitating by adding metal Al, Zn, Cd, a Zn-Cd alloy, a method of (D) a method of recovering indium by solvent extraction, and a method of (E). It is carried out by a combination of chemical purification such as a method of recovering indium by an ion exchange method and an electrolytic smelting method.
[0005]
[Problems to be solved by the invention]
However, in the above-mentioned recovery step, the method (A) utilizes the difference in the pH range in which hydroxides of metal ions are formed. For example, as a method for separating Zn, Al and In, the pH is set to 12 or more. Zn and Al are dissolved, and In is precipitated as hydroxide to recover. However, in this method, the generated In hydroxide has extremely poor filterability, so that the filtration equipment is large and the operation is long. Further, in this method, it is difficult to separate In from impurities such as Fe, Cu, As, and Cd.
[0006]
The method (B) utilizes the difference in solubility products of metal sulfides. However, since various metal impurities are contained as described above, a large amount of low-purity sulfides is generated. These sulfides generally have poor filterability, and when leaching the obtained sulfide of In, since sulfuric acid alone cannot completely leach In, it is difficult to apply this method to the wet zinc process. There is a disadvantage that.
[0007]
In the case of (C), in the case where impurities containing noble metals are contained, it is impossible to separate In from the metals. Further, a sponge formed when In is substituted and precipitated is agglomerated, so that a preferable powdery metal cannot be obtained.
[0008]
As for (D) and (E), there is a problem that a load is applied to the pretreatment depending on impurities separated from In, and the running cost is high.
[0009]
In any of the above chemical refining methods, the separation of impurity metals is inadequate. Therefore, the electrolytic smelting method combined with this method is also a simple electrolytic extraction method (the target metal is leached in an aqueous solution and an insoluble anode is used. Electrolysis and the use of a high-purity metal on the cathode at once can not be adopted, and a complicated electrolytic purification method (purification by electrolyzing a high-purity metal on the cathode and a high-purity metal on the cathode) must be adopted. Did not get.
[0010]
Therefore, each of the above methods has its own drawbacks, and a combination of the above methods is used for actual recovery, and the process becomes complicated and complicated to recover high-purity In. Method was not yet proposed.
[0011]
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for efficiently recovering high-purity indium from indium-containing substances containing various impurities.
[0012]
[Means for Solving the Problems]
The present inventors have continued intensive research to solve the above-mentioned problems, and have reached the present invention as a result of trial and error.
[0013]
That is, the present invention is firstly obtained by (1) an acid leaching step of leaching an indium-containing substance with an acid and dissolving an acid-soluble metal together with In, and (2) the step of (1). A step of adding a sulfurizing agent to the leachate using an Ag / AgCl electrode while adjusting the oxidation-reduction potential to 50 to 320 mV to precipitate and remove metals other than In such as Cu; and (3) the step (2). Sulfuric acid and a sulfurizing agent are added to the indium-containing aqueous solution obtained in the step to precipitate and concentrate In as sulfide; and (4) the indium sulfide obtained in the step (3) is acidified with sulfuric acid. An SO 2 leaching step in which In is selectively leached by blowing SO 2 gas below; and (5) adjusting the pH of the indium-containing leaching solution obtained in the step (4) to a range of 1 to 3.5. Adjust and inflate the indium by blowing air. After adjusting the concentration of SO 2 dissolved in the leaching solution to 0.05 to 0.3 g / l, by adding a metal powder, a displacement deposition step of displacement deposition indium sponge, a pH of 6 leachate 0. Hydrochloric acid is added so that the oxidation-reduction potential is in the range of -400 to -500 mV using the Ag / AgCl electrode in the range of 5 to 1.5, and the indium sponge obtained in the step (5) is leached. (7) a step of adding a sulfide agent to the indium leachate obtained in the step (6) to precipitate and remove residual metal ions such as Cd to obtain an electrolysis source solution; (8) an electrowinning step of electrolyzing the electrolysis source solution obtained in the step (7) to obtain high-purity metal indium, a method for recovering indium from the indium-containing material; 2. In the step (2), And a method for recovering the first indium, wherein the sulfurizing agent used is at least one of H 2 S and NaSH; thirdly, in the step (5), the metal powder used for the substitution is zinc powder. This is a method for recovering a first indium.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, a material containing indium can be widely used as a starting material. Here, a case where the present invention is applied to neutralized gypsum by-produced in wet zinc smelting will be described. FIG. 1 shows the steps of indium recovery by the method of the present invention.
[0015]
In the step (1), when neutralized gypsum is leached with sulfuric acid, impurity metal ions soluble in acids such as Cu, As, Al, Fe, Zn, and Ga are leached together with In to form a slurry with insoluble gypsum. I do. As an acid to be used for leaching, hydrochloric acid, nitric acid and the like can be used in addition to sulfuric acid. Although not limited to sulfuric acid, sulfuric acid is the cheapest. The sulfuric acid concentration of the In leaching solution is usually 20 to 40 g / l.
[0016]
In the step of (2), the In leach slurry obtained in step (1), for example, H 2 S as a sulfurizing agent, (hereinafter referred Eh) the redox potential NaSH is 50~320mV (Ag / AgCl electrode used ) Is added while controlling so as to fall within the range, and impurities such as Cu and As are precipitated and removed as sulfides. At this time, In is not precipitated because the sulfuric acid concentration is also controlled to 20 to 40 g / l.
[0017]
Since 90% or more of In contained in the neutralized gypsum is transferred into the sulfuric acid acidic solution by the treatments of the steps (1) and (2), the precipitate (copper residue) is solid-liquid separated by using, for example, a filter press. To separate. At this time, insoluble gypsum at the time of leaching functions as a filter aid, so that generally poor filterability of poor sulfide is remarkably improved. The copper residue is sent to the main system of zinc smelting.
[0018]
In the step (3), a sulfide agent such as H 2 S or NaSH is added to the In-containing aqueous solution obtained in the step (2) simultaneously with sulfuric acid to precipitate In as a sulfide and solidify using a filter press or the like. Liquid separation is performed to separate and remove impurities such as Zn, Fe, Al, and Ga remaining in the liquid. The recovery of In into the precipitate is 95% or more. The filtrate (post-sulfidation liquid) is sent to the drainage system.
[0019]
In the step (4), In is leached into the indium sulfide obtained in the step (3) while blowing SO2 gas under sulfuric acidity.
[0020]
Generally, there are three types of sulfide acid leaching methods: (a) hydrogen sulfide generation type, (b) sulfur generation type, and (c) sulfuric acid generation type. When leaching indium sulfide, (a) In the reaction (1), the solubility product is small, so that In cannot be completely leached. In the reactions (b) and (c), when oxygen is used as an oxidizing agent, the reaction temperature and pressure are 150 ° C. and 12 kg / cm, respectively. the pressure vessel such as an autoclave it is necessary to increase as 2 to do with the reaction vessel. In addition, although In can be completely leached by this method, since the oxidizing power is strong, the contained impurities are similarly completely leached.
[0021]
In the method of the present invention, the reaction between (a) and (b) is performed by using SO 2 as an oxidizing agent, and the oxidizing power is appropriately controlled to suppress the leaching of other impurities while leaching In. That is, In is selectively leached. The temperature at this time may be room temperature, and the pressure may be atmospheric pressure, so that a normal reaction tank can be used. After the reaction, 90% or more of In is transferred to the leaching solution, so that solid-liquid separation is performed using a filter press or the like. The cake (sulfur residue) is sent to the main line of zinc smelting.
[0022]
In the step (5), the In leachate obtained in the step (4) is neutralized with an alkali such as caustic soda, and the pH is preferably adjusted to a range of 1 to 3.5. If the pH is lower than 1, an excessive amount of zinc powder to be added as a replacement agent in the subsequent step is required, and if the pH exceeds 3.5, In generates hydroxide. After adjusting the pH, a metal powder having a higher ionization tendency than indium, for example, zinc dust is added to replace and precipitate indium sponge. Since SO 2 is used for leaching in the step (4), SO 2 is dissolved in the In leaching solution used in the step (5). By controlling this concentration to 0.05 to 0.3 g / l, the indium sponge can be prevented from agglomerating, and a powdery indium sponge can be obtained. The solution after the replacement is repeated to the step (3).
[0023]
In the step (6), the indium sponge obtained in the step (5) is leached with hydrochloric acid while controlling the pH within a range of 0.5 to 1.5 and the Eh within a range of -400 to -500 mV. I do. At this time, since 90% or more of In is transferred to the leaching solution, solid-liquid separation is performed using a filter press or the like. Trace metals such as Cd, Pb, Ni and As can be concentrated and removed from the leaching residue (sponge slag). The sponge residue is repeated to the step (4).
[0024]
In the step (7), when Cd, As, etc. still remain in the In leachate obtained in the step (6), a sulfide agent, for example, H 2 S gas is blown, and a final purification is performed to perform solid-liquid separation. The filtrate is used as an electrolyte. The cake (cadmium residue) is repeated to the above step (4).
[0025]
In the step (8), high-purity metal indium is obtained from the electrolytic solution obtained in the step (7) by using a DSA (size-qualified anode) as an anode and a Ti plate as a cathode.
[0026]
【Example】
Indium was recovered using neutralized gypsum produced as a by-product in the wet zinc smelting process as a starting material.
(1) Water is added to 294.5 g of neutralized gypsum, which is a raw material for acid leaching In recovery, to give a pulp having a solid concentration of 203 g / l, and the final acid concentration is reduced to 28 g / l while mechanically stirring with a stirrer. Sulfuric acid was added to the mixture, and leaching was performed for 2 hours while maintaining the temperature at 60 ° C. Table 1 shows the content and distribution of In, Zn, Cu, and As in the raw material and the obtained leachate.
[0027]
[Table 1]
Figure 0003602329
(2) Removal of Cu and the like NaSH was added to the leached slurry obtained in the above leaching step until Eh became 300 mV (using an Ag / AgCl electrode) to carry out a sulfurization reaction. The reaction time was 2 hours, and the reaction temperature was 60 ° C. After the completion of the reaction, the obtained slurry was filtered, the cake was used as a copper residue, and the filtrate was used as a copper-free solution. Table 2 shows the results of each analysis.
[0028]
[Table 2]
Figure 0003602329
(3) Sulfurization Precipitation While the copper removal solution (In-containing aqueous solution) was stirred with a stirrer, the pH was maintained at a constant level of 0.8 with sulfuric acid, and NaSH was maintained until Eh became -20 mV (using an Ag / AgCl electrode). Was added to precipitate In as sulfide. The reaction was performed at a temperature of 60 ° C. for 5 hours. After the completion of the reaction, the obtained slurry was filtered, the cake was used as a sulfurization residue, and the filtrate was used as a post-sulfurization liquid. Table 3 shows the results of the analysis and the material balance.
[0029]
[Table 3]
Figure 0003602329
(4) SO 2 Leaching The sulfurized residue obtained by repeating the above steps (1) to (3) is collected to 417.7 g, and water is added thereto to obtain a pulp having a solid concentration of 119 g / l, and the mixture is stirred with a stirrer. Sulfuric acid was added with stirring to adjust the sulfuric acid concentration to 51 g / l, and SO 2 gas was blown in so that the dissolved SO 2 concentration became 8 g / l. The reaction was performed at a temperature of 80 ° C. for 2 hours. After completion of the reaction, the obtained slurry was filtered, the cake was used as a sulfur residue, and the filtrate was used as an SO 2 leachate. Table 4 shows the results of the analysis and the material balance.
[0030]
[Table 4]
Figure 0003602329
(5) Substitution precipitation Air was blown into the above SO 2 leachate to degas until the dissolved SO 2 concentration became 0.2 g / l, and NaOH was added to neutralize the solution to a pH of 2.5 to obtain a substitution source. Liquid. 1.8 equivalents of zinc powder with respect to In were added to 3000 ml of the obtained substitution source liquid, and In sponge was substituted and precipitated. The reaction temperature was 60 ° C, and the reaction time was 1 hour. Table 5 shows the analysis results and the material balance of each product.
[0031]
[Table 5]
Figure 0003602329
(6) Hydrochloric acid leaching step Water was added to 238.1 g of sponge In collected by repeating the above-mentioned steps to obtain a pulp having a solid concentration of 144 g / l, and while being stirred with a stirrer, the pH was 1, and the Eh was -480 mV (Ag). / AgCl electrode), and indium was leached by adding hydrochloric acid. The reaction temperature was 65 ° C., and the reaction time was 3 hours. Table 6 shows the analysis results and the material balance of each product.
[0032]
[Table 6]
Figure 0003602329
(7) Step of removing Cd etc. NaOH was added to 1500 ml of the hydrochloric acid leaching solution obtained in the above hydrochloric acid leaching step to neutralize the solution to pH 1.5, and then 1.5 L of H 2 S gas was blown into this solution to remove impurities such as Cd. Was precipitated as sulfide. The reaction temperature was 40 ° C, and the reaction time was 0.5 hours.
The suspension after the reaction was filtered, the cake was a cadmium residue, and the filtrate was a Cd-free solution. Table 7 shows the analysis results and the material balance of each product.
[0033]
[Table 7]
Figure 0003602329
(8) Electrolysis sampling step Electrolysis was sampled at a temperature of 40 ° C. and a current density of 150 A / m 2 for 48 hours using the Cd-removed solution obtained in the above step (7) as an electrolysis source solution. DSA was used for the anode, and a Ti plate was used for the cathode. Table 8 shows the analysis results and the material balance of the electrolysis source solution, the obtained indium and the electrolysis tail solution.
[0034]
[Table 8]
Figure 0003602329
[0035]
【The invention's effect】
According to the method of the present invention, high-purity indium having a purity of 5N or more can be efficiently recovered from indium-containing substances containing various and various metal impurities in a simple step that does not require electrolytic purification. .
[Brief description of the drawings]
FIG. 1 is a process chart showing an outline of a method of the present invention.

Claims (3)

(1)インジウム含有物を酸で浸出処理し、Inと共に酸に可溶な金属を溶解する酸浸出工程と、
(2)前記(1)の工程で得られた浸出液にAg/AgCl電極使用で酸化還元電位を50〜320mVに調整しながら硫化剤を添加し、Cu等のIn以外の金属を沈殿除去するCu等除去工程と、
(3)前記(2)の工程で得られたインジウム含有水溶液に硫酸と硫化剤を添加してInを硫化物として沈殿濃縮する硫化沈殿工程と、
(4)前記(3)の工程で得られたインジウム硫化物に硫酸酸性下でSO2ガスを吹き込むことによりInを選択的に浸出するSO2浸出工程と、
(5)前記(4)の工程で得られたインジウム含有浸出液のpHを1〜3 . 5の範囲内に調整し、空気吹き込みによって該インジウム含有浸出液中に溶存するSO 2 の濃度を0 . 05〜0 . 3g/lに調整した後、金属粉を添加し、インジウムスポンジを置換析出させる置換析出工程と、
(6)浸出液のpHが0 . 5〜1 . 5の範囲内かつAg/AgCl電極使用で酸化還元電位が−400〜−500mVの範囲内にあるように塩酸を添加して前記(5)の工程で得られたインジウムスポンジを浸出する塩酸浸出工程と、
(7)前記(6)の工程で得られたインジウム浸出液に硫化剤を添加し、Cd等の残留金属イオンを沈殿除去して電解元液を得るCd等除去工程と、
(8)前記(7)の工程で得られた電解元液を電解して高純度の金属インジウムを得る電解採取工程、
とからなることを特徴とするインジウム含有物からインジウムを回収する方法。
(1) an acid leaching step of leaching an indium-containing substance with an acid to dissolve an acid-soluble metal together with In;
(2) A sulfurizing agent is added to the leachate obtained in the step (1) while adjusting the oxidation-reduction potential to 50 to 320 mV using an Ag / AgCl electrode to precipitate and remove metals other than In such as Cu. Etc. removal process,
(3) a sulfide precipitation step of adding sulfuric acid and a sulfide agent to the indium-containing aqueous solution obtained in the step (2) to precipitate and concentrate In as sulfide;
(4) an SO 2 leaching step of selectively leaching In by blowing SO 2 gas under sulfuric acid into the indium sulfide obtained in the step (3);
(5) the (4) the pH of the indium-containing leachate obtained in the step 1-3. Adjust the range of 5, 0 the concentration of SO 2 dissolved in the said indium-containing leaching solution by blowing air. 05 and 0. after adjusting to 3 g / l, by adding a metal powder, a displacement deposition step of displacement deposition indium sponge,
(6) pH of the leaching solution is from 0.5 to 1. 5 range and the hydrochloric acid was added to to be within the scope of the Ag / AgCl electrode used in redox potential -400 to-500 mV (5) Hydrochloric acid leaching step of leaching the indium sponge obtained in the step,
(7) a step of adding a sulfide agent to the indium leachate obtained in the step (6) to precipitate and remove residual metal ions such as Cd to obtain an electrolytic solution;
(8) an electrowinning step of electrolyzing the electrolysis solution obtained in the step (7) to obtain high-purity metal indium;
A method for recovering indium from an indium-containing material, comprising:
前記(2)の工程において、使用する硫化剤がH2SとNaSHの少なくとも1種である、請求項1記載のインジウムを回収する方法。In step (2), a method of sulfurizing agent to be used is at least one of H 2 S and NaSH, recovering indium according to claim 1, wherein. 前記(5)の工程において、置換に使用する金属粉が亜鉛末である、請求項1記載のインジウムを回収する方法。The method for recovering indium according to claim 1, wherein in the step (5), the metal powder used for substitution is zinc powder .
JP9239498A 1998-03-20 1998-03-20 Method for recovering indium from indium-containing material Expired - Lifetime JP3602329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9239498A JP3602329B2 (en) 1998-03-20 1998-03-20 Method for recovering indium from indium-containing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9239498A JP3602329B2 (en) 1998-03-20 1998-03-20 Method for recovering indium from indium-containing material

Publications (2)

Publication Number Publication Date
JPH11269570A JPH11269570A (en) 1999-10-05
JP3602329B2 true JP3602329B2 (en) 2004-12-15

Family

ID=14053211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9239498A Expired - Lifetime JP3602329B2 (en) 1998-03-20 1998-03-20 Method for recovering indium from indium-containing material

Country Status (1)

Country Link
JP (1) JP3602329B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4519294B2 (en) * 2000-08-28 2010-08-04 日鉱金属株式会社 Indium recovery method
JP4549527B2 (en) * 2000-12-28 2010-09-22 日鉱金属株式会社 Indium recovery method
JP5071700B2 (en) * 2005-01-31 2012-11-14 Dowaメタルマイン株式会社 Indium recovery method
JP4734603B2 (en) * 2005-02-09 2011-07-27 Dowaメタルマイン株式会社 Indium recovery method
JP2006348340A (en) * 2005-06-15 2006-12-28 Mitsui Kushikino Mining Co Ltd Method for manufacturing metal containing indium/tin
KR20080031661A (en) * 2005-08-04 2008-04-10 가부시키가이샤 신꼬오 간쿄우 솔루션 Method and apparatus for recovering indium from waste liquid crystal display
JP4806820B2 (en) * 2005-09-26 2011-11-02 Dowaメタルマイン株式会社 Method for indium sulfide from indium-containing material and method for recovering indium
JP4914975B2 (en) * 2005-09-29 2012-04-11 Dowaメタルマイン株式会社 Manufacturing method of high purity indium metal
JP4817005B2 (en) 2005-09-29 2011-11-16 Jx日鉱日石金属株式会社 Copper converter dust treatment method
KR100919171B1 (en) * 2006-03-08 2009-09-28 미쓰이 긴조꾸 고교 가부시키가이샤 Process for producing indium-containing metal
CN101198710B (en) * 2006-03-08 2010-09-08 三井金属矿业株式会社 Indium containing metal producing method
JP4852720B2 (en) * 2006-03-31 2012-01-11 Dowaメタルマイン株式会社 Indium recovery method
JP4952899B2 (en) * 2006-08-31 2012-06-13 三菱マテリアル株式会社 Indium recovery method
JP5177471B2 (en) * 2006-09-26 2013-04-03 Jx日鉱日石金属株式会社 Method for recovering indium hydroxide or indium
JP4999058B2 (en) 2006-09-28 2012-08-15 Dowaメタルマイン株式会社 Method for recovering indium from indium-containing material
BRPI0701919B1 (en) * 2007-05-23 2016-10-11 Votorantim Metais Zinco S A pure metal indium production process from zinc oxide and / or metal-containing solution
FI122099B (en) * 2010-04-30 2011-08-31 Outotec Oyj A method for recovering precious metals
KR101249327B1 (en) 2012-09-12 2013-04-02 주식회사 엔코 Indium hydrate cake and copper sulfide cake extraction method from spent acids of the ito sputtering process
KR101220933B1 (en) * 2012-09-14 2013-01-11 주식회사 엔코 Extraction method of indium sponge, copper sponge, tin sponge and zinc oxide from mixed metal sponge
CN106987720B (en) * 2016-01-21 2018-07-13 汉能联创移动能源投资有限公司 A kind of recovery method of copper indium gallium selenide material

Also Published As

Publication number Publication date
JPH11269570A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
JP3602329B2 (en) Method for recovering indium from indium-containing material
WO2006080742A1 (en) Method for recovering high purity indium
KR20090055651A (en) Method for collection of valuable metal from ito scrap
WO2003078670A1 (en) Method for separating platinum group element
JP4999058B2 (en) Method for recovering indium from indium-containing material
KR20090057456A (en) Method for collection of valuable metal from ito scrap
JP4852720B2 (en) Indium recovery method
JP4734603B2 (en) Indium recovery method
JP5760954B2 (en) Method for recovering copper from sulfide minerals containing copper and iron
JP2738192B2 (en) Recovery method of crude indium for electrolysis
CN101500735A (en) Method for the production of metal powder
JP5628610B2 (en) Indium recovery method
JP5156992B2 (en) Method for recovering indium from indium-containing material
JP6256491B2 (en) Scandium recovery method
JP5028563B2 (en) Indium recovery method
JP2015086436A (en) Method for recovering valuable material
CN117568624A (en) Bismuth purification method
JP5482461B2 (en) Method for recovering copper from copper electrolysis waste liquid
WO2004050927A1 (en) Method for separating platinum group element
JP4914975B2 (en) Manufacturing method of high purity indium metal
JP4806820B2 (en) Method for indium sulfide from indium-containing material and method for recovering indium
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
JP3762060B2 (en) Method for recovering antimony from sulfides
US3293026A (en) Tin purification process
JP4967155B2 (en) Method for treating indium-containing solution

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071001

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term