JP3601596B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP3601596B2
JP3601596B2 JP2001077457A JP2001077457A JP3601596B2 JP 3601596 B2 JP3601596 B2 JP 3601596B2 JP 2001077457 A JP2001077457 A JP 2001077457A JP 2001077457 A JP2001077457 A JP 2001077457A JP 3601596 B2 JP3601596 B2 JP 3601596B2
Authority
JP
Japan
Prior art keywords
motor
variable
air conditioner
rotation speed
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001077457A
Other languages
Japanese (ja)
Other versions
JP2002277023A (en
Inventor
裕康 米山
良次 佐藤
秀司 尾原
進 中山
寛 竹中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001077457A priority Critical patent/JP3601596B2/en
Publication of JP2002277023A publication Critical patent/JP2002277023A/en
Application granted granted Critical
Publication of JP3601596B2 publication Critical patent/JP3601596B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0294Control issues related to the outdoor fan, e.g. controlling speed

Landscapes

  • Air Conditioning Control Device (AREA)
  • Brushless Motors (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍サイクルを用いる空気調和装置に係り、特に空気調和装置室外機における送風機の消費電力を低減し、これによって冷凍サイクルの効率を向上するのに好適な空気調和装置に関するものである。
【0002】
【従来の技術】
ブラシレス直流モータのモータ効率は、従来用いられてきた誘導モータに比べ低速から高速までの全モータ回転数領域に亘って全体的に高く、特にモータ回転数の小さい低速領域では両者の差は大きい。また、ブラシレス直流モータのモータ回転数に対するモータ消費電力は誘導モータに比べて低く、かつその減少率は、誘導モータに比べて大きい。
【0003】
例えば、空気調和装置室外機の送風機にブラシレス直流モータを用いて低速運転する場合には、室外送風機モータの回転数を下げることによって、大幅に室外送風機モータの消費電力を低減することができる。したがって、室外送風機モータの回転数が制御できる場合には、室外送風機モータの消費電力を抑えることができ、高効率な空気調和装置が得られることになる。
【0004】
そこで、空気調和装置の消費電力低減を図る従来技術として、例えば特開平11−311436号公報に記載されているように、空気調和装置における送風機モータにブラシレス直流モータを使用しているものがある。
【0005】
【発明が解決しようとする課題】
しかしながら、上記従来技術において、空気調和装置における送風機が複数台ある場合、すべてをブラシレス直流モータにすると、ブラシレス直流モータの駆動回路が送風機の台数分だけ必要になり、コストアップにつながる。また、1台だけブラシレス直流モータを使用して他のモータは誘導モータを使用し、誘導モータ側の送風機をオンオフし、ブラシレス直流モータ側の送風機は可変にし両者で所要の風量を得る方法もあるが、これは誘導モータの効率が低いため消費電力が増大するという問題点の解決にはつながらない。
【0006】
そこで、始動時に誘導モータとして働き、モータ回転数が同期速度付近になった時に同期モータとして働く、消費電力が少なく、高効率で商用電源駆動が可能なマグネットシンクロナスモータ(以下、MSモータと略記する)を誘導モータの替りに用いるという方法が考えられる。
【0007】
しかしながら、MSモータを使用した場合、MSモータの回転数は、地域による商用電源周波数50Hzと60Hzの違いにより同期運転時の回転数が変化し、室外機側の送風機の風量が変わり所要の風量が得られないという問題点が生じる。
【0008】
さらに、空気調和装置の室外機には電気箱に収納された駆動・制御回路を冷却するための放熱フィンが取り付けられているが、室外機側の送風機が停止すると該駆動・制御回路を冷却できなくなるという問題点もあった。
【0009】
本発明の目的は、上記のような従来技術の問題点を解決し、複数の送風機を駆動するモータを効率の良いモータで構成し、消費電力を低減すると共に、商用電源周波数の違いによるモータの回転数変化を補償することができ、また、電気箱に収納された駆動・制御回路を冷却するための放熱フィンに常に風を送り冷却することのできる空気調和装置を提供することにある。
【0010】
【課題を解決するための手段】
前記の目的を達成するため、本発明による空気調和装置は、特許請求の範囲の各請求項に記載されたところを特徴とするものであるが、独立発明としての請求項1に係る空気調和装置は、冷媒圧縮機、熱源側熱交換器、膨張弁及び商用電源を電力源としている前記機器の駆動・制御回路を収納した電気箱等を有する室外機と、利用側熱交換器及び膨張弁を有する室内機と、を配管接続して冷凍サイクルを構成し、前記熱源側熱交換器には複数の送風機を設けてなる空気調和装置において、前記複数の送風機のうち、少なくとも一台の送風機モータには、回転数可変モータを、他の送風機モータには、回転子の鉄心に、かご形導体及び同期モータとして機能させるための永久磁石を設け、始動時は誘導モータとして働き、同期速度付近になった時同期モータとして働くMSモータを用いると共に、前記駆動・制御回路中に、前記商用電源の周波数検知手段及び前記回転数可変モータの回転数調整手段を設け、前記回転数可変モータと前記MSモータとを併用運転する場合に、検知された商用電源周波数の相違に応じて、所要の風量が確保できるように、前記回転数可変モータの回転数を調整するようにしたことを特徴とするものである。
【0011】
【作用】
上記目的を達成するため本発明は、複数の送風機のうち1 台が回転数可変モータ駆動で、他の送風機がMSモータ駆動の送風機で構成する。MSモータは商用電源で駆動できるので、複数の送風機を回転数可変モータだけで構成したときより回転数可変モータの駆動回路分だけコスト低減が図れる。また、MSモータは定格時同期モータとして働くことから消費電力を低減できる。
【0012】
さらに、商用電源周波数を検知する手段を設け、回転数可変モータの回転数を商用電源周波数別に調整する手段を設けた。
【0013】
また、回転数可変モータをブラシレス直流モータにすることでさらに消費電力を低減できる。
【0014】
なお、回転数可変モータ駆動の送風機を空気調和装置の室外機の電気箱に収納された駆動・制御回路を冷却する放熱フィン側に取り付けることにより、風量調整のためにMSモータが停止した場合でも、回転数可変モータは圧縮機稼働中は常時運転しているので放熱フィンに風を送り前記駆動・制御回路を冷却することができる。
【0015】
【発明の実施の形態】
以下、本発明の空気調和装置に係わる実施例を図1ないし図6を参照して説明する。
【0016】
図1に、室外機1と室内機20とが液管17とガス管18とで結合された冷凍サイクルを用いた空気調和装置の実施例を示す。
【0017】
室外機1は、アキュムレータ14、圧縮機9、四方弁11、熱源側熱交換器としての室外熱交換器5、膨張弁12、2つの室外送風機2a,2bを有し、室外送風機2a,2bは、それぞれ回転数可変モータ4a及びMSモータ4bで駆動される。MSモータ4bは、回転子内に永久磁石を備えると共に、該回転子外周部近傍に複数のスロットを設け、該複数のスロット内に導電性材料を埋設してかご型巻線を形成し、始動時は誘導モータとして働き、モータ回転数が同期速度付近になった時同期モータとして働くモータである。
【0018】
電気箱10には、室外送風機2aを駆動するための回転数可変モータ4aの商用電源の周波数の違いを調整する回転数調整手段を含む駆動回路10a、周波数検知手段としての周波数検知回路10b、圧縮機9、四方弁11及び膨張弁12の制御回路などが納められている。
【0019】
室内機20は、膨張弁21、利用側熱交換器としての室内熱交換器25、室内送風機22及び室内送風機モータ24を備えている。
【0020】
つぎに、各部の動作について説明する。
【0021】
冷房運転する場合、冷媒は、図1の実線矢印の向きに流れる。圧縮機9から吐出された高圧ガス冷媒は、四方弁11を通って室外熱交換器5へ流れ、それぞれ回転数可変モータ4a及びMSモータ4bで駆動される室外送風機2a,2 bによって室外空気と熱交換され凝縮し液冷媒となる。液冷媒は、開度を大きくした膨張弁12を通って液管17内を流れ、室内機20へ送られる。
【0022】
室内機20では、液冷媒は、開度を絞った膨張弁21で減圧され、室内熱交換器25に入り、室内送風機モータ24で駆動される室内送風機22によって室内空気と熱交換される。このとき、室内空気は、冷却され、冷媒は、蒸発し低圧ガス冷媒となってガス管18内を通って、室外機1へ戻る。室外機1へ戻った低圧ガス冷媒は、四方弁11及びアキュムレータ14を通って圧縮機9に吸入される。
【0023】
冷房運転で、外気温度が低くなると冷媒の凝縮温度が下がり、室内負荷が変わらなければ冷媒の蒸発温度も下がり、圧縮機の吸入圧力が低下し、それに伴って吐出圧力が低下する。この際、圧縮機の吐出圧力が許容圧力以下にならないように回転数可変モータの回転数を下げて室外風量を低下させ、圧縮機の吐出圧力が上昇するように制御する。さらに外気が低下したときはMSモータをオフしてさらに風量を下げて吐出圧力が上昇するように制御する。
【0024】
暖房運転する場合、冷媒は、破線矢印の向きに流れ、圧縮機9から吐出された高圧ガス冷媒は、四方弁11を通ってガス管18内を流れ、室内機20へ入る。室内機20では、室内熱交換器25で、室内送風機モータ24で駆動される室内送風機22によって室内空気と熱交換され、室内空気は、暖められ、冷媒は、凝縮して液冷媒となる。液冷媒は、開度を大きくした膨張弁21を通って、液管17内を流れ室外機1へ送られる。
【0025】
室外機1では、液冷媒は、開度を絞った膨張弁12で減圧され、室外熱交換器5へ入り、それぞれ回転数可変モータ4a及びMSモータ4bで駆動される室外送風機2a,2 bによって、室外空気と熱交換され、冷媒は、蒸発して低圧ガス冷媒となって、四方弁11及びアキュムレータ14 を通って圧縮機9に吸入される。
【0026】
暖房運転で、外気温度が高くなると圧縮機の吸入圧力が上昇し、それに伴って吐出圧力が上昇する。この際、圧縮機の吐出圧力が許容圧力以上とならないように回転数可変モータの回転数を下げて室外風量を低下させ、圧縮機の吸入圧力を低下させて、吐出圧力が許容圧力以下になるように制御する。さらに外気が上昇したときはMSモータをオフしてさらに風量を下げて吐出圧力が低下するように制御する。
【0027】
なお、従来技術に少なくとも1 台だけ回転数可変モータ4aを使用してその他のモータは誘導モータを使用し、誘導モータに駆動される側の送風機をオンオフし、回転数可変モータ4a側の送風機は可変にし、両者で所要の風量を得る方法があるが、これは誘導モータの効率が低いため消費電力が増大する。そこで、オンオフ制御を行う誘導モータの替りにMSモータにすることで消費電力を低減する。
【0028】
図2及び図3は、当該空気調和装置に対して与えられている外的所与の条件を横軸にとり、当該空気調和装置の室外機送風機用回転数可変モータ4a及びMSモータ4bの一台もしくは二台運転時における上記所与の条件に対応して必要とされる風量を縦軸にとったグラフである。
【0029】
図2に示すように、風量の少なくても良い時には、回転数可変モータ4aだけを働かせ、所要の風量をモータの回転数を制御することで得る。しかし、より風量を多く必要とする時に、回転数可変モータ4aだけでは風量が不足する場合には、MSモータ4bを起動し、その最高回転数で定速回転し、回転数可変モータ4aと共に両者で所要の風量を得る。
【0030】
しかし、商用電源周波数が60Hzの地域を対象とした空気調和装置のMSモータ4bは、60Hzの地域では100%の最高回転数で働くが、本空気調和装置を商用電源周波数が50Hzの地域で使用すると、83%の最高回転数にしかならず、風量もその分少なくなる。図2の右のグラフに示されるように、MSモータ4bを起動した時点で回転数可変モータ4aは、一旦最低の回転数で運転するので両者を合わせた風量は、回転数可変モータ4aだけがMSモータ4bの100%の最高回転数に相当する風量の回転数で回転していた時よりも17%低下してしまう。その後、MSモータ4bを使用している時は常に風量の低下を生じることになる。
【0031】
そこで、上記の不具合を解決するため、商用電源の周波数を60Hzか50Hzか検知する周波数検知回路10bを用い、検知した周波数をもとに駆動回路10aに含まれる回転数調整手段により、50HzでMSモータ4bを駆動している時は、上記のような風量の低下が起きないように調整する。
【0032】
調整方法は、二つの実施例が考えられる。第一実施例による調整方法では、60Hzに相当する回転数による風量が要求されてMSモータ4bの運転を開始する場合、商用電源周波数が60Hzの地域は、図3の左のグラフのようにMSモータ4bが60Hzの最高回転数で運転され100%の風量を満足させることができる。
【0033】
一方、商用電源周波数が50Hzの地域では、図3の右のグラフのように60Hzに相当する回転数による風量が要求された時にMSモータ4bが50Hzの最高回転数で運転され、要求された風量の83%の風量しか得られない。この不足分の17%の風量は、別途補償する必要があり、この17%の風量の補償は、回転数可変モータ4aの運転に負うことになる。
【0034】
第二実施例による調整方法では、商用電源周波数が60Hzの地域では、上記と同様MSモータ4bが60Hzの最高回転数で運転され100%の風量を満足させることができる。
【0035】
一方、商用電源周波数が50Hzの地域では、50Hzに相当する回転数による風量が要求された時にMSモータ4bの運転を開始させ、MSモータ4bが50Hzの最高回転数で運転され83%の風量を満足させることができる。その後さらに風量が要求されれば、回転数可変モータ4aで対応すればよい。
【0036】
図4は室外機1の側面方向の断面を示したもので、回転数可変モータ4a及びMSモータ4bは、モータクランプ6で支持されている。室外送風機2a,2bの吹き出し側には、吹き出し網3a,3bが設けられていて、室外送風機2a,2bの保護カバーの役目も果たしている。一方、室外送風機2a,2bの吸い込み側には、室外熱交換器5が配設されている。
【0037】
図5は、室外機1の水平方向の断面図である。圧縮機9がある機械室と室外送風機2a,2b側とは仕切り板8で仕切られており、室外熱交換器5に多量の風が流れるようになっている。また、仕切り板8には、電気箱10内の冷却を行なう放熱フィン7が取り付けられている。
【0038】
図6は、正面から見たときの断面図である。回転数可変モータ4aで駆動される室外送風機2aは、放熱フィン7に近い方に設置されて、電気箱10に収納された駆動・制御回路は常に室外送風機2aで冷却されるようになっている。
【0039】
なお、回転数可変モータとしては、消費電力の少ないブラシレス直流モータが適している。
【0040】
【発明の効果】
以上述べたように、本発明によれば、熱源側熱交換器に設けられた複数の送風機モータを少なくとも一台のブラシレス直流モータ及びMSモータにすることによって送風機モータの消費電力の低減ができ、風量の任意の設定ができる。また、複数の送風機モータをMSモータとブラシレス直流モータとを組み合わせた場合、ブラシレス直流モータ駆動送風機を電気箱の放熱フィン側に設置することによって、電気箱に収納された駆動・制御回路の冷却が常に行え、駆動・制御回路の信頼性向上が図れる。
【図面の簡単な説明】
【図1】本発明の空気調和装置の冷凍サイクル系統図である。
【図2】本発明の室外送風機のモータによる調整前の風量制御方法の概念図である。
【図3】本発明の室外送風機のモータによる調整後の風量制御方法の概念図である。
【図4】本発明の室外機の側方断面図である。
【図5】本発明の室外機の水平断面図である。
【図6】本発明の室外機の正面断面図である。
【符号の説明】
1…室外機
2a,2b…室外送風機
3a,3b…吹き出し網
4a…回転数可変モータ
4b…MSモータ
5…室外熱交換器
6…モータクランプ
7…放熱フィン
8…仕切り板
9…圧縮機
10…電気箱
10a…駆動回路
10b…周波数検知回路
11…四方弁
12,21…膨張弁
14…アキュムレータ
17…液管
18…ガス管
20…室内機
22…室内送風機
24…室内送風機モータ
25…室内熱交換器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an air conditioner using a refrigeration cycle, and more particularly to an air conditioner suitable for reducing the power consumption of a blower in an outdoor unit of an air conditioner, thereby improving the efficiency of the refrigeration cycle.
[0002]
[Prior art]
The motor efficiency of the brushless DC motor is generally higher over the entire motor speed range from low speed to high speed as compared with the conventionally used induction motor, and the difference between the two is particularly large in the low speed region where the motor speed is small. In addition, the motor power consumption of the brushless DC motor with respect to the motor speed is lower than that of the induction motor, and the reduction rate is larger than that of the induction motor.
[0003]
For example, when the air conditioner outdoor unit is operated at a low speed using a brushless DC motor as a blower, the power consumption of the outdoor blower motor can be significantly reduced by reducing the rotation speed of the outdoor blower motor. Therefore, when the rotation speed of the outdoor blower motor can be controlled, the power consumption of the outdoor blower motor can be suppressed, and a highly efficient air conditioner can be obtained.
[0004]
Therefore, as a conventional technique for reducing the power consumption of an air conditioner, there is a conventional technique using a brushless DC motor as a blower motor in an air conditioner as described in Japanese Patent Application Laid-Open No. H11-31436.
[0005]
[Problems to be solved by the invention]
However, in the above-mentioned conventional technology, when there are a plurality of blowers in the air conditioner, if all of them are brushless DC motors, the drive circuits of the brushless DC motors are required by the number of blowers, which leads to an increase in cost. There is also a method of using only one brushless DC motor, using an induction motor for the other motor, turning on and off the blower on the induction motor side, and changing the blower on the brushless DC motor side to obtain a required air volume with both. However, this does not solve the problem of increased power consumption due to the low efficiency of the induction motor.
[0006]
Accordingly, a magnet synchronous motor (hereinafter abbreviated as MS motor) that operates as an induction motor at start-up and operates as a synchronous motor when the motor rotation speed is close to the synchronous speed, which consumes less power and can drive a commercial power supply with high efficiency. Is used instead of an induction motor.
[0007]
However, when the MS motor is used, the rotation speed of the MS motor changes during synchronous operation due to the difference between the commercial power frequency of 50 Hz and 60 Hz depending on the region, and the air flow of the blower on the outdoor unit side changes to reduce the required air flow. There is a problem that it cannot be obtained.
[0008]
Furthermore, the outdoor unit of the air conditioner is provided with radiating fins for cooling the drive / control circuit housed in the electric box. However, when the blower on the outdoor unit stops, the drive / control circuit can be cooled. There was also a problem that it disappeared.
[0009]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-described problems of the prior art, to configure a motor for driving a plurality of blowers with an efficient motor, to reduce power consumption, and to reduce the power consumption of the motor due to a difference in commercial power frequency. It is an object of the present invention to provide an air conditioner capable of compensating for a change in the number of revolutions and constantly sending air to cooling fins for cooling a drive / control circuit housed in an electric box.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, an air conditioner according to the present invention is characterized by what is described in each claim of the claims, but an air conditioner according to claim 1 as an independent invention. The outdoor unit having a refrigerant compressor, a heat source side heat exchanger, an expansion valve and an electric box or the like containing a drive / control circuit of the device using a commercial power source as a power source, and a use side heat exchanger and an expansion valve. And an indoor unit having a refrigeration cycle by pipe connection, wherein the heat source side heat exchanger is provided with a plurality of blowers in an air conditioner, wherein at least one of the plurality of blowers has a blower motor. For the variable speed motor, the other blower motor is provided with a cage-shaped conductor and a permanent magnet for functioning as a synchronous motor on the iron core of the rotor. Was While using an MS motor acting as a synchronous motor, a frequency detecting means for the commercial power supply and a rotational speed adjusting means for the variable speed motor are provided in the drive / control circuit, and the variable speed motor and the MS motor are provided. When combined operation is performed, the rotation speed of the rotation speed variable motor is adjusted so that a required air volume can be secured in accordance with the difference in the detected commercial power supply frequency.
[0011]
[Action]
In order to achieve the above object, according to the present invention, one of a plurality of blowers is driven by a variable speed motor, and the other blowers are driven by an MS motor. Since the MS motor can be driven by a commercial power supply, the cost can be reduced by the drive circuit of the variable speed motor as compared with a case where a plurality of blowers are constituted only by the variable speed motor. Further, since the MS motor works as a synchronous motor at rated time, power consumption can be reduced.
[0012]
Further, means for detecting the frequency of the commercial power supply is provided, and means for adjusting the number of rotations of the variable speed motor for each frequency of the commercial power supply are provided.
[0013]
Further, the power consumption can be further reduced by using a brushless DC motor as the variable rotation speed motor.
[0014]
In addition, even if the MS motor is stopped to adjust the air volume, the blower driven by the variable speed motor is attached to the radiator fin side that cools the drive / control circuit housed in the electric box of the outdoor unit of the air conditioner. Since the variable speed motor is always operating while the compressor is operating, it can send air to the radiation fins to cool the drive / control circuit.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment according to an air conditioner of the present invention will be described with reference to FIGS.
[0016]
FIG. 1 shows an embodiment of an air conditioner using a refrigeration cycle in which an outdoor unit 1 and an indoor unit 20 are connected by a liquid pipe 17 and a gas pipe 18.
[0017]
The outdoor unit 1 has an accumulator 14, a compressor 9, a four-way valve 11, an outdoor heat exchanger 5 as a heat source side heat exchanger, an expansion valve 12, and two outdoor blowers 2a and 2b, and the outdoor blowers 2a and 2b , And are driven by a variable speed motor 4a and an MS motor 4b, respectively. The MS motor 4b includes a permanent magnet in the rotor, a plurality of slots near the outer periphery of the rotor, and embeds a conductive material in the plurality of slots to form a cage winding. At the time, the motor acts as an induction motor, and acts as a synchronous motor when the motor rotation speed is near the synchronous speed.
[0018]
The electric box 10 includes a driving circuit 10a including a rotation speed adjusting unit for adjusting a difference in the frequency of a commercial power supply of a rotation speed variable motor 4a for driving the outdoor blower 2a, a frequency detecting circuit 10b as a frequency detecting unit, The control circuit for the machine 9, the four-way valve 11 and the expansion valve 12, and the like are housed therein.
[0019]
The indoor unit 20 includes an expansion valve 21, an indoor heat exchanger 25 as a use-side heat exchanger, an indoor blower 22, and an indoor blower motor 24.
[0020]
Next, the operation of each unit will be described.
[0021]
In the cooling operation, the refrigerant flows in the direction of the solid arrow in FIG. The high-pressure gas refrigerant discharged from the compressor 9 flows through the four-way valve 11 to the outdoor heat exchanger 5, where it is separated from the outdoor air by the outdoor blowers 2a and 2b driven by the variable speed motor 4a and the MS motor 4b, respectively. Heat is exchanged and condensed to form a liquid refrigerant. The liquid refrigerant flows through the liquid pipe 17 through the expansion valve 12 whose opening degree is increased, and is sent to the indoor unit 20.
[0022]
In the indoor unit 20, the liquid refrigerant is decompressed by the expansion valve 21 having a reduced opening, enters the indoor heat exchanger 25, and exchanges heat with the indoor air by the indoor blower 22 driven by the indoor blower motor 24. At this time, the indoor air is cooled, and the refrigerant evaporates to become a low-pressure gas refrigerant, passes through the gas pipe 18, and returns to the outdoor unit 1. The low-pressure gas refrigerant returned to the outdoor unit 1 is drawn into the compressor 9 through the four-way valve 11 and the accumulator 14.
[0023]
In the cooling operation, when the outside air temperature decreases, the condensation temperature of the refrigerant decreases, and when the indoor load does not change, the evaporation temperature of the refrigerant also decreases, so that the suction pressure of the compressor decreases, and the discharge pressure decreases accordingly. At this time, control is performed so that the rotation speed of the rotation speed variable motor is reduced to reduce the outdoor air flow and the discharge pressure of the compressor is increased so that the discharge pressure of the compressor does not fall below the allowable pressure. When the outside air further decreases, the MS motor is turned off to further reduce the air volume and control the discharge pressure to increase.
[0024]
In the heating operation, the refrigerant flows in the direction of the dashed arrow, and the high-pressure gas refrigerant discharged from the compressor 9 flows in the gas pipe 18 through the four-way valve 11 and enters the indoor unit 20. In the indoor unit 20, in the indoor heat exchanger 25, heat is exchanged with indoor air by the indoor blower 22 driven by the indoor blower motor 24, the indoor air is warmed, and the refrigerant is condensed into a liquid refrigerant. The liquid refrigerant flows through the liquid pipe 17 through the expansion valve 21 whose opening degree is increased, and is sent to the outdoor unit 1.
[0025]
In the outdoor unit 1, the liquid refrigerant is decompressed by the expansion valve 12 having a reduced opening, enters the outdoor heat exchanger 5, and is driven by the outdoor blowers 2a and 2b driven by the variable speed motor 4a and the MS motor 4b, respectively. The refrigerant exchanges heat with outdoor air, and the refrigerant evaporates to become a low-pressure gas refrigerant, which is sucked into the compressor 9 through the four-way valve 11 and the accumulator 14.
[0026]
In the heating operation, when the outside air temperature increases, the suction pressure of the compressor increases, and the discharge pressure increases accordingly. At this time, the rotation speed of the variable speed motor is reduced to reduce the outdoor air flow so that the discharge pressure of the compressor does not exceed the allowable pressure, and the suction pressure of the compressor is reduced, so that the discharge pressure becomes equal to or lower than the allowable pressure. Control. When the outside air rises further, the MS motor is turned off and the air volume is further decreased to control the discharge pressure to decrease.
[0027]
In the prior art, at least one variable-speed motor 4a is used, and the other motors use an induction motor, and the blower driven by the induction motor is turned on and off. There is a method in which the required air volume is obtained by making both variable, but this method increases power consumption because the efficiency of the induction motor is low. Therefore, power consumption is reduced by using an MS motor instead of an induction motor that performs on / off control.
[0028]
FIGS. 2 and 3 each show an external given condition given to the air conditioner on the horizontal axis, and show one of an outdoor unit blower rotation speed variable motor 4a and an MS motor 4b of the air conditioner. Alternatively, it is a graph in which the vertical axis represents the air volume required corresponding to the above given conditions during the two-unit operation.
[0029]
As shown in FIG. 2, when the air volume is small, a required air volume can be obtained by controlling only the rotation speed of the motor by operating only the rotation speed variable motor 4a. However, when a larger air volume is required, if the air volume is insufficient with only the rotation speed variable motor 4a, the MS motor 4b is started, and the MS motor 4b is rotated at a constant speed at the maximum rotation speed. To obtain the required airflow.
[0030]
However, the MS motor 4b of the air conditioner for the area where the commercial power frequency is 60 Hz operates at the maximum rotation speed of 100% in the area of 60 Hz, but the air conditioner is used in the area where the commercial power frequency is 50 Hz. Then, the maximum number of revolutions is only 83%, and the air volume is reduced accordingly. As shown in the right graph of FIG. 2, when the MS motor 4b is started, the variable speed motor 4a once operates at the lowest rotational speed, so that the combined airflow is only the variable speed motor 4a. This is 17% lower than when the MS motor 4b is rotating at the rotation speed of the air flow amount corresponding to the 100% maximum rotation speed. Thereafter, when the MS motor 4b is used, the air volume always decreases.
[0031]
Therefore, in order to solve the above problem, a frequency detection circuit 10b for detecting whether the frequency of the commercial power supply is 60 Hz or 50 Hz is used. When the motor 4b is being driven, the adjustment is made so that the air volume does not decrease as described above.
[0032]
As the adjustment method, two embodiments can be considered. In the adjustment method according to the first embodiment, when the operation of the MS motor 4b is started by requesting the air flow at the rotation speed corresponding to 60 Hz, the area where the commercial power frequency is 60 Hz is set as shown in the left graph of FIG. The motor 4b is operated at the maximum rotation speed of 60 Hz, and can satisfy the air volume of 100%.
[0033]
On the other hand, in an area where the commercial power frequency is 50 Hz, as shown in the graph on the right side of FIG. 3, when the air flow at a rotation speed corresponding to 60 Hz is requested, the MS motor 4b is operated at the maximum rotation speed of 50 Hz, and the requested air flow. Only 83% of the air volume. It is necessary to separately compensate for the shortage of 17% of the air flow, and the compensation of the 17% of air flow depends on the operation of the rotation speed variable motor 4a.
[0034]
In the adjustment method according to the second embodiment, in a region where the commercial power supply frequency is 60 Hz, the MS motor 4b is operated at the maximum rotation speed of 60 Hz as described above, and can satisfy the air volume of 100%.
[0035]
On the other hand, in a region where the commercial power supply frequency is 50 Hz, the operation of the MS motor 4b is started when the air volume at a rotation speed equivalent to 50 Hz is requested, and the MS motor 4b is operated at the maximum rotation speed of 50 Hz to reduce the air volume of 83%. Can be satisfied. Thereafter, if a further air volume is required, it may be handled by the rotation speed variable motor 4a.
[0036]
FIG. 4 shows a cross section in the side direction of the outdoor unit 1. The variable rotation speed motor 4 a and the MS motor 4 b are supported by a motor clamp 6. Blowing nets 3a, 3b are provided on the blowing side of the outdoor blowers 2a, 2b, and also serve as protective covers for the outdoor blowers 2a, 2b. On the other hand, an outdoor heat exchanger 5 is disposed on the suction side of the outdoor blowers 2a and 2b.
[0037]
FIG. 5 is a horizontal sectional view of the outdoor unit 1. The machine room in which the compressor 9 is located is separated from the outdoor blowers 2a and 2b by a partition plate 8, so that a large amount of air flows through the outdoor heat exchanger 5. Further, a radiation fin 7 for cooling the inside of the electric box 10 is attached to the partition plate 8.
[0038]
FIG. 6 is a sectional view when viewed from the front. The outdoor blower 2a driven by the variable rotation speed motor 4a is installed closer to the radiation fins 7, and the drive / control circuit housed in the electric box 10 is always cooled by the outdoor blower 2a. .
[0039]
Note that a brushless DC motor with low power consumption is suitable as the variable rotation speed motor.
[0040]
【The invention's effect】
As described above, according to the present invention, the power consumption of the blower motor can be reduced by using a plurality of blower motors provided in the heat source side heat exchanger as at least one brushless DC motor and MS motor, Arbitrary setting of air volume is possible. Also, when a plurality of blower motors are combined with an MS motor and a brushless DC motor, the drive / control circuit housed in the electric box can be cooled by installing the brushless DC motor drive blower on the radiating fin side of the electric box. This is always possible, and the reliability of the drive / control circuit can be improved.
[Brief description of the drawings]
FIG. 1 is a refrigeration cycle system diagram of an air conditioner of the present invention.
FIG. 2 is a conceptual diagram of an air volume control method before adjustment by a motor of an outdoor blower according to the present invention.
FIG. 3 is a conceptual diagram of an air flow control method after adjustment by a motor of an outdoor blower according to the present invention.
FIG. 4 is a side sectional view of the outdoor unit of the present invention.
FIG. 5 is a horizontal sectional view of the outdoor unit of the present invention.
FIG. 6 is a front sectional view of the outdoor unit of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Outdoor unit 2a, 2b ... Outdoor blower 3a, 3b ... Blow net 4a ... Rotation speed variable motor 4b ... MS motor 5 ... Outdoor heat exchanger 6 ... Motor clamp 7 ... Radiation fin 8 ... Partition plate 9 ... Compressor 10 ... Electric box 10a Drive circuit 10b Frequency detection circuit 11 Four-way valve 12, 21 Expansion valve 14 Accumulator 17 Liquid pipe 18 Gas pipe 20 Indoor unit 22 Indoor blower 24 Indoor blower motor 25 Indoor heat exchange vessel

Claims (4)

冷媒圧縮機、熱源側熱交換器、膨張弁及び商用電源を電力源としている前記機器の駆動・制御回路を収納した電気箱等を有する室外機と、利用側熱交換器及び膨張弁を有する室内機と、を配管接続して冷凍サイクルを構成し、前記熱源側熱交換器には複数の送風機を設けてなる空気調和装置において、
前記複数の送風機のうち、少なくとも一台の送風機モータには、回転数可変モータを、他の送風機モータには、回転子の鉄心に、かご形導体及び同期モータとして機能させるための永久磁石を設け、始動時は誘導モータとして働き、同期速度付近になった時同期モータとして働くマグネットシンクロナスモータを用いると共に、前記駆動・制御回路中に、前記商用電源の周波数検知手段及び前記回転数可変モータの回転数調整手段を設け、前記回転数可変モータと前記マグネットシンクロナスモータとを併用運転する場合に、検知された商用電源周波数の相違に応じて、所要の風量が確保できるように、前記回転数可変モータの回転数を調整するようにしたことを特徴とする空気調和装置。
An outdoor unit having a refrigerant compressor, a heat source-side heat exchanger, an expansion valve, and an electric box or the like containing a drive / control circuit of the above-described device using a commercial power supply as a power source, and an indoor unit having a use-side heat exchanger and an expansion valve In the air conditioner comprising a plurality of blowers provided on the heat source side heat exchanger, a refrigeration cycle is configured by pipe connection of the
Among the plurality of blowers, at least one blower motor is provided with a rotation speed variable motor, and the other blower motors are provided with a cage-shaped conductor and a permanent magnet for functioning as a synchronous motor on an iron core of a rotor. At the time of starting, a magnet synchronous motor which functions as an induction motor and which functions as a synchronous motor when the speed is near the synchronous speed is used, and in the drive / control circuit, the frequency detection means of the commercial power supply and the rotational speed variable motor are used. When a rotational speed adjusting means is provided and the variable rotational speed motor and the magnet synchronous motor are operated in combination, the rotational speed is controlled so that a required air volume can be secured according to a difference in the detected commercial power supply frequency. An air conditioner, wherein the rotation speed of a variable motor is adjusted.
少なくとも前記回転数可変モータは、空気調和装置の前記冷媒圧縮機の稼働中は常時運転するものであることを特徴とする請求項1に記載の空気調和装置。2. The air conditioner according to claim 1, wherein at least the variable rotation speed motor operates constantly while the refrigerant compressor of the air conditioner is operating. 3. 前記回転数可変モータは、ブラシレス直流モータであることを特徴とする請求項1に記載の空気調和装置。The air conditioner according to claim 1, wherein the variable rotation speed motor is a brushless DC motor. 前記回転数可変モータにより駆動される送風機は、前記電気箱に収納された前記駆動・制御回路を冷却する放熱フィン側に配設されることを特徴とする請求項2に記載の空気調和装置。The air conditioner according to claim 2, wherein the blower driven by the variable speed motor is disposed on a radiating fin side for cooling the drive / control circuit housed in the electric box.
JP2001077457A 2001-03-19 2001-03-19 Air conditioner Expired - Fee Related JP3601596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001077457A JP3601596B2 (en) 2001-03-19 2001-03-19 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001077457A JP3601596B2 (en) 2001-03-19 2001-03-19 Air conditioner

Publications (2)

Publication Number Publication Date
JP2002277023A JP2002277023A (en) 2002-09-25
JP3601596B2 true JP3601596B2 (en) 2004-12-15

Family

ID=18934211

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001077457A Expired - Fee Related JP3601596B2 (en) 2001-03-19 2001-03-19 Air conditioner

Country Status (1)

Country Link
JP (1) JP3601596B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5077414B2 (en) * 2010-09-30 2012-11-21 ダイキン工業株式会社 Refrigeration unit outdoor unit
JP5677223B2 (en) * 2011-07-26 2015-02-25 日立アプライアンス株式会社 Air conditioner
JP5520900B2 (en) * 2011-08-30 2014-06-11 日立アプライアンス株式会社 Air conditioner
JP2017110853A (en) * 2015-12-16 2017-06-22 株式会社鷺宮製作所 Controller for EC fan motor control
CN115342571B (en) * 2022-06-30 2023-08-04 河北工程大学 Temperature-adjustable ice temperature storage heat preservation equipment

Also Published As

Publication number Publication date
JP2002277023A (en) 2002-09-25

Similar Documents

Publication Publication Date Title
JP3356551B2 (en) Air conditioner
KR100981859B1 (en) Outdoor unit for split type air-conditioner
KR20050099352A (en) Front suction/discharge type outdoor unit for air conditioner
JP6918818B2 (en) Air conditioner
JP2016099029A (en) Air conditioner
KR102441627B1 (en) Drive device, compressor, air conditioner and drive method
JPWO2019021374A1 (en) Driving device, air conditioner, and driving method
JP6710325B2 (en) Air conditioner and operation control method for air conditioner
JP6235381B2 (en) Compressor
JP3601596B2 (en) Air conditioner
JP7407836B2 (en) Heating, ventilation, air conditioning and/or refrigeration systems with compressor motor cooling systems
CN113811723A (en) Outdoor unit, air-conditioning apparatus, and operation control method for air-conditioning apparatus
JP2000111216A (en) Air conditioner
JP3996404B2 (en) Air conditioner
WO2020129246A1 (en) Air-conditioning device and control method therefor
JP4134899B2 (en) Refrigeration air conditioner
KR100710056B1 (en) Air conditioner
JP4430258B2 (en) Air conditioner
JP2989490B2 (en) Air conditioner
JP2002228234A (en) Air conditioner and its control method
JP3480869B2 (en) Air conditioner
JP2006153320A (en) Outdoor unit for air conditioning device
JP4404420B2 (en) Air conditioner control device
JP4190099B2 (en) Control method of air conditioner
JP2002300763A (en) Drive device for induction synchronous motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees