JP3601493B2 - 燃料電池システム及びエゼクタ循環装置 - Google Patents

燃料電池システム及びエゼクタ循環装置 Download PDF

Info

Publication number
JP3601493B2
JP3601493B2 JP2001292175A JP2001292175A JP3601493B2 JP 3601493 B2 JP3601493 B2 JP 3601493B2 JP 2001292175 A JP2001292175 A JP 2001292175A JP 2001292175 A JP2001292175 A JP 2001292175A JP 3601493 B2 JP3601493 B2 JP 3601493B2
Authority
JP
Japan
Prior art keywords
supply port
gas
supplied
mixing chamber
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001292175A
Other languages
English (en)
Other versions
JP2003100335A (ja
Inventor
博史 宮窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2001292175A priority Critical patent/JP3601493B2/ja
Publication of JP2003100335A publication Critical patent/JP2003100335A/ja
Application granted granted Critical
Publication of JP3601493B2 publication Critical patent/JP3601493B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Accessories For Mixers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料電池システム及び燃料電池に好適なエゼクタ循環装置に係り、特に広い運転範囲に亘って排出燃料ガスの循環性能を高めた燃料電池システム及びエゼクタ循環装置に関する。
【0002】
【従来の技術】
燃料電池は、水素を燃料ガスとして燃料極に供給し、酸素を含んだ空気を空気極に供給することにより、水素と酸素を電気化学的に反応させて直接発電するものであり、小規模でも高い発電効率が得られると共に、環境性に優れている。
【0003】
また、近年、電解質として固体高分子イオン交換膜を使用することで、小型高出力化が可能であり、酸水溶液が不要な固体高分子型燃料電池が水素ガスを用いた燃料電池の方式として注目されている。
【0004】
燃料電池において、固体高分子膜を挟んで対向する燃料極と空気極には、水素を含む燃料ガスと酸素を含む空気がそれぞれ供給される。この燃料電池における原燃料ガスの消費量を低減し、並びに水素ガスの利用率を低めて出力特性を改善することを狙いとして、燃料電池の燃料極からの排出ガスを再循環して、外部から新たに供給される水素の濃い燃料ガスと混合させ、燃料電池の燃料極へと供給する再循環方式のものが多く考案されている。
【0005】
燃料電池の発電効率は、再循環させる排出燃料ガス量と、新たに外部から供給される燃料ガス量を、ある一定の比率以上に保つことで良くなることが分かっている。二つの流れを混合させる循環装置としてエゼクタが良く知られているが、循環の原動力として供給燃料ガスの流速による負圧と引きずり込みを利用しているため、供給燃料ガス量と循環ガス流量を広い作動領域で一定以上に保つことが困難となっている。
【0006】
エゼクタ作動領域を広げるための可変容量エゼクタの例として、スライド機構を用いてエゼクタ全体の流路面積可変とした特開平7−185284号公報や、ノズルにニードル形状の調整ロッドを挿入し、調整ロッドの位置を変更することでのノズル面積可変とした特開平8−338398号公報などがあるが、ともにエゼクタ外部から可変機構を制御する構造としているため摺動部にシール構造を付加する必要がある。
【0007】
【発明が解決しようとする課題】
しかしながら燃料電池の作動ガスである水素は、分子の大きさが極めて小さいため、上記従来の可変機構を備えたエゼクタの摺動部にて水素ガスをシールしようとすると、シール部に高い加工精度が要求されるだけでなく、シール部の摩擦が増加して、制御性が損なわれるという問題点があった。
【0008】
以上の問題点に鑑み本発明の目的は、エゼクタに可変機構を設けることなく、ガス流量の広い作動領域で原燃料ガスと排出循環ガスとを一定の混合比で混合することができるエゼクタ循環装置及び該エゼクタ循環装置を用いて燃料ガス循環性能を高めた燃料電池システムを提供することである。
【0009】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の発明は、燃料極と空気極とを有する燃料電池本体と、前記燃料極から排出される排出循環ガスと水素濃度の高い原燃料ガスとを混合して燃料ガスとするエゼクタ循環装置と、該エゼクタ循環装置で混合された燃料ガスを前記燃料極へ供給する流路とを有する燃料電池システムにおいて、前記エゼクタ循環装置は、第1供給口、第2供給口、及び第3供給口の少なくとも2つから供給される流体を混合して排出口から排出するものであり、第1供給口に接続した第1ノズルが第1混合室に向かって開口し、第1混合室に第2供給口が開口するとともに、第1ノズルの噴出方向前方に第1混合室から第2混合室に向かって第1ノズルより断面積が大きい第2ノズルが設けられ、第2混合室に第3供給口が開口するとともに、第2混合室がスロート部、ディフューザ部を順次介して前記排出口に連通し、第1供給口に原燃料ガスを供給し、第2供給口には原燃料ガスおよび排出循環ガスのいずれかを切替可能に供給し、第2供給口に原燃料ガス供給時には第3供給口に排出循環ガスを供給するように制御することを要旨とする。
【0010】
上記目的を達成するため、請求項2記載の発明は、請求項1記載の燃料電池システムにおいて、燃料電池システムの出力が所定値より低い低負荷時には、第1供給口から原燃料ガスを供給し、第2供給口から排出循環ガスを供給し、第3供給口に排出循環ガスを供給する配管を遮断する第1の状態で運転し、燃料電池システムの出力が所定値以上となる高負荷時には、第1供給口、第2供給口の少なくとも一方より原燃料ガスを供給し、第3供給口から排出循環ガスを供給する第2の状態で運転することを要旨とする。
【0011】
上記目的を達成するため、請求項3記載の発明は、請求項2に記載の燃料電池システムにおいて、燃料電池システムの出力が増加する過渡時には第2の状態で運転することを要旨とする。
【0012】
上記目的を達成するため、請求項4記載の発明は、請求項1ないし請求項3のいずれか1項に記載の燃料電池システムにおいて、第1供給口に原燃料ガスを供給する配管に第1の圧力調整弁を設けるとともに、第2供給口に原燃料ガスを供給する配管に第2の圧力調整弁を設け、第1供給口に供給する原燃料ガスの圧力と、第2供給口に供給する原燃料ガスの圧力とを独立に制御可能としたことを要旨とする。
【0013】
上記目的を達成するため、請求項5記載の発明は、第1供給口、第2供給口、及び第3供給口の少なくとも2つから供給される流体を混合して排出口から排出するエゼクタ循環装置であって、第1供給口に接続した第1ノズルが第1混合室に向かって開口し、該第1混合室に第2供給口が開口するとともに、第1混合室から第2混合室に向かって第1ノズルより断面積が大きい第2ノズルが開口し、第2混合室に第3供給口が開口するとともに、第2混合室がスロート部、ディフューザ部を順次介して前記排出口に接続されたことを要旨とする。
【0014】
【発明の効果】
請求項1記載の発明によれば、燃料極と空気極とを有する燃料電池本体と、前記燃料極から排出される排出循環ガスと水素濃度の高い原燃料ガスとを混合して燃料ガスとするエゼクタ循環装置と、該エゼクタ循環装置で混合された燃料ガスを前記燃料極へ供給する流路とを有する燃料電池システムにおいて、前記エゼクタ循環装置は、第1供給口、第2供給口、及び第3供給口の少なくとも2つから供給される流体を混合して排出口から排出するものであり、第1供給口に接続した第1ノズルが第1混合室に向かって開口し、第1混合室に第2供給口が開口するとともに、第1混合室から第2混合室に向かって第1ノズルと略同軸上に第1ノズルより断面積が大きい第2ノズルが設けられ、第2混合室に第3供給口が開口するとともに、第2混合室がスロート部、ディフューザ部を順次介して前記排出口に接続され、第1供給口に原燃料ガスを供給し、第2供給口には原燃料ガスおよび排出循環ガスのいずれかを切替可能に供給し、第2供給口に原燃料ガス供給時には第3供給口に排出循環ガスを供給するように制御するようにしたので、燃料電池の運転状態によってエゼクタ循環装置の第1ノズルまたは第2ノズルの一方を選択的に駆動流源とすることができ、水素ガスの漏れを抑制しつつエゼクタ循環装置の作動領域を拡大することができるという効果がある。
【0015】
請求項2記載の発明によれば、請求項1記載の発明の効果に加えて、燃料電池システムの出力が所定値より低い低負荷時には、第1供給口から原燃料ガスを供給し、第2供給口から排出循環ガスを供給し、第3供給口に排出循環ガスを供給する配管を遮断する第1の状態で運転し、燃料電池システムの出力が所定値以上となる高負荷時には、第1供給口、第2供給口の少なくとも一方より原燃料ガスを供給し、第3供給口から排出循環ガスを供給する第2の状態で運転するようにしたので、燃料電池システムの負荷に応じてノズル径とスロート径を適切に選択できるため、システム作動領域全体に渡り、高い排気循環ガス量を維持することができるという効果がある。
【0016】
請求項3記載の発明によれば、請求項2記載の発明の効果に加えて、燃料電池システムの出力が増加する過渡時には第2の状態で運転するようにしたために、スタックに供給する水素量を速やかに増加でき、スタック燃料極の圧力を増加した発電量に見合うまで速やかに増加させることができるという効果がある。
【0017】
請求項4記載の発明によれば、請求項1ないし請求項3記載の発明の効果に加えて、第1供給口に原燃料ガスを供給する配管に第1の圧力調整弁を設けるとともに、第2供給口に原燃料ガスを供給する配管に第2の圧力調整弁を設け、第1供給口に供給する原燃料ガスの圧力と、第2供給口に供給する原燃料ガスの圧力とを独立に制御可能としたことにより、原燃料ガスの供給量の制御性を良好に維持したまま、広い運転領域において排出循環ガスの循環量を維持することができるという効果がある。
【0018】
請求項5記載の発明によれば、第1供給口、第2供給口、及び第3供給口の少なくとも2つから供給される流体を混合して排出口から排出するエゼクタ循環装置であって、第1供給口に接続した第1ノズルが第1混合室に向かって開口し、第1混合室に第2供給口が開口するとともに、第1ノズルの噴出方向前方に第1混合室から第2混合室に向かって第1ノズルより断面積が大きい第2ノズルが設けられ、第2混合室に第3供給口が開口するとともに、第2混合室がスロート部、ディフューザ部を順次介して前記排出口に連通するようにしたので、第1供給口から第1の流体を供給し第2供給口から第2の流体を供給する場合には第1ノズルが作動し、第2供給口から第1の流体を供給し第3供給口から第2の流体を供給する場合には第1ノズルより断面積が大きい第2ノズルが作動するという2つの異なる特性を有するエゼクタ循環装置として作用するので、エゼクタ循環装置の作動流量領域を拡大することができるという効果がある。
【0019】
【発明の実施の形態】
図1は、本発明に係る燃料電池システムの要部構成を示すシステム構成図であり、特に、アイドル時から高速走行時まで負荷変動の大きい電動車両用の電源として好適なものである。
【0020】
図1において、燃料電池本体(以下、スタックと呼ぶ)1は、燃料極2と空気極3を備える。実際には、スタック1に冷却系の配管、電力取出線、各種センサ等が組み込まれるが、本図ではガス系統のみを示す。
【0021】
燃料極2と空気極3とは、個体高分子による電解質膜を隔ててスタック1の内部で接合されており、燃料極2で水素が電離して水素イオンと電子とに別れる。水素イオンは水分を媒体として電解質膜中を燃料極2側から空気極3側に移動し、電子は燃料極2から外部負荷回路を通って空気極3に戻り、水素イオン、電子、及び酸素が空気極3で結合して水となる電気化学反応により直流発電が行われる。
【0022】
本実施形態では、燃料として水素を直接保有する方式を示している。水素貯蔵タンク4には、水素ガスが圧縮されて高圧状態で保有されている。水素貯蔵タンク4の充填圧力は、高ければ高いほど、1充填当たりの走行可能距離が伸びたり、タンク容積を小型化できるので、通常数10MPa 以上にも達する。このような水素貯蔵タンク4の高圧からスタック1への供給圧を一度に制御することは困難なため、水素貯蔵タンク4の下流には減圧弁5を介して下流圧を実質的に制御可能な一定値に低下させた後、さらに下流に配された圧力調整弁6に原燃料ガスである水素ガスを供給する構成としている。圧力調整弁6の下流には、圧力調整後の水素ガス圧力を測定する圧力センサ19が設けられ、圧力センサ19の下流に2方向に分岐する分岐部8が設けられている。分岐部8の一方の下流には、エゼクタ循環装置(以下、エゼクタと略す)7に設けられた第1供給口9が接続され、圧力調整弁6で圧力が調整された水素ガスが供給される。
【0023】
エゼクタ7には、後述するように第1供給口9に接続する第1ノズルに加えて、第2ノズルが設けられており、第1ノズルの下流側且つ第2ノズルの上流側は第2供給口10に接続され、第2ノズルの下流側は第3供給口11に接続され、これら供給口9,10,11から供給されたガスは混合されて、排出口12から排出されるようになっている。
【0024】
エゼクタ7の第2供給口10には、分岐部8の他方の下流から遮断弁18を介して接続される水素ガス供給管と、スタック1の燃料極2からの排出循環ガスを3方弁16を介して供給する排出循環ガス管とが接続されている。この構成により、遮断弁18と3方弁16を切り替えることで、第2供給口10に供給するガスを水素貯蔵タンクから減圧した水素ガスまたは排出循環ガスの切替えを可能としている。
【0025】
また、エゼクタ7には、3方弁16のもう1方が接続された第3供給口11があり、排出循環ガスを供給できるようになっている。
【0026】
エゼクタ7の排出口12は、加湿器13に接続され、エゼクタ7で混合された燃料ガスがほぼ水蒸気飽和状態まで加湿される。加湿された燃料ガスは、スタック1の燃料極2に供給され、発電により水素の一部が消費される。燃料極2の出口からは、発電に使用されなかった水素を含む排出循環ガスが排出されるが、燃料極出口は、2方向に分岐する分岐部14に接続されている。分岐部14の一方には、3方弁16が接続され、分岐部14の他方にはパージ弁15を介して外部へと開放されている。スタックの電力出力要求が急に小さくなったら、循環管路中の水素がスタックで消費しきれなくなるので、其のときはパージ弁15を開き余剰の水素ガスを外部へ放出する。
【0027】
以上の構成から、エゼクタ7では、水素貯蔵タンク4から来る水素ガスと、スタック1の燃料極2を通過した後の圧力が低い排出循環ガスを混合させて下流に流すようになっており、次いで混合ガスは加湿器13を通過する際にスタック内の電解膜での反応に必要な水蒸気を加湿され、かつ反応に適した温度まで加熱された後、スタック1の燃料極2に流入する。
【0028】
そしてスタック1の燃料極2で水素を消費し、余った残留水素ガスはスタック1から排出され、エゼクタ7へ再度送られる。
【0029】
一方、図では省略しているが、空気極へは、まず、大気を取り込んで圧縮して空気ラインに送り込む圧縮機がスタック上流に設置される。圧縮機で圧縮された空気についても、水素と同様に加湿器を通過し略飽和状態まで加湿された後、スタック1に流入する。そして、スタック1の空気極3で空気中の酸素分を消費して余った空気ガスは、スタック内で反応して出来た水分とともに、空気ラインの圧力制御バルブを通過して大気へ放出する。空気圧力は要求に応じてあらかじめ定められた圧力となるように圧力制御バルブにより制御される。
【0030】
尚、図1には示されていないが空気極で生成した水は、空気ライン途中に設けられた水回収装置にて回収され、回収された水は加圧ポンプにより加湿器13に供給されたり、スタック1の冷却水として再利用される。
【0031】
また、圧力調整弁6はスタックへの供給水素流量を制御する役目をもち、燃料極の水素圧力が発電量に適した値となるように、スタック1の上流に配した圧力センサ20の出力値を測定しながら、要求負荷に応じてあらかじめ定めた所定値となるよう、水素ガス循環系に存在する水素量を調整するとともに、発電により消費した水素量を補充するように圧力調整弁6の分岐部8に設けた圧力センサ19の出力値を測定しながら、発電量に応じて予め定めた所定値となるように圧力調整弁6の開度制御を行う。
【0032】
図2は、本実施形態におけるエゼクタ7の断面構造を示したものである。エゼクタ7は、第1供給口9、第2供給口10、及び第3供給口11の少なくとも2つから供給される流体を混合して排出口12から排出するエゼクタ循環装置であって、第1供給口9に接続した第1ノズル21が第1混合室31に向かって開口し、第1混合室31に第2供給口10が開口するとともに、第1混合室31から隔壁24で隔てられた第2混合室32に向かって第1ノズル21より断面積が大きい第2ノズル25が開口し、第2混合室32に第3供給口11が開口するとともに、第2混合室32がスロート29、ディフューザ30を順次介して排出口12に接続されている。
【0033】
このエゼクタ7を構成する部品は、第1ノズル21と原燃料ガスを供給する第1接続口9とが連通した第1吸気部22と、第1吸気部22をOリング23とともに組み付けることで、隔壁24に一体に設けられた円筒管状の第2ノズル25の上流と原燃料ガスまたは排出循環ガスを供給する第2供給口10とが連通するように構成された第2吸気部26と、第2吸気部26をOリング27とともに組み付けることで、排出循環ガスが循環してくる第3供給口11と排出口12を連通する空間を形成するボディ部28からなる。
【0034】
ボディ部28には原燃料ガスと排出循環ガスが混合するスロート29および混合流の流速を低下させて圧力回復を図るディフューザ30を備えている。
【0035】
第2ノズル25は遮断弁18が閉かつ3方弁16が第2供給口10に連通されるように制御されている第1の状態の場合は、第1ノズル21から注入された原燃料ガス流が第2ノズル25の前で絞られることで流速が増し、第2ノズル25の円筒形状が第1ノズル21に対してスロート部となり、この流速増加により第2供給口10に対して負圧を発生するとともに、第1ノズル21からの流れによって排出循環ガスを吸引し、第2ノズル25内部で混合流が発生する。この混合流はそのままスロート29を通過し、ディフューザ30で圧力を回復しつつ、排出口12から排出される。
【0036】
一方、遮断弁18が開、かつ3方弁16が第3供給口11側に連通されるように制御されている第2の状態の場合では、第2ノズル25から水素ガスが噴出し、実質的にノズル部として作用し、第3供給口11から排出循環ガスを吸引し、スロート29で混合流を発生させて、第一の状態と同様に排出口12から混合流を排出する。
【0037】
図3は、スロート部とノズル部の径が違う小型エゼクタと大型エゼクタとのエゼクタ特性の差異を説明するものであり、図3(a)に供給ガス流量Qinと供給ガス圧力Pinの関係、図3(b)に、供給ガス流量Qinに対する循環比R(循環ガス流量Qsuと供給ガス流量Qinの比)を小型エゼクタの特性を細線で、大型エゼクタの特性を太線でそれぞれ示す。
【0038】
図3(b)は、エゼクタにおける供給ガス流量Qinに対する循環比Rの関係を示した図であるが、小径ノズル及び小径スロートを有する小型エゼクタの場合を細線で、大径ノズル及び大径スロートを有する大型エゼクタの場合を太線で示してある。循環が開始する供給ガス流量Qinは径が細いほど低下するが、供給ガス流量Qinが増加した場合の循環率Rの最大値は径が大きくなるほど高くなる傾向にある。
【0039】
また、図3(a)に示すように、水素ガス供給系の供給圧はシステムにより規定されており、ガス流量を確保しつつ、供給側接続口に供給できる最大圧力はPinmaxの制限を受けることになる。そのため循環開始の供給流量を低流量側にしたいという観点からは径が小さな方が良い特性を示すものの、供給可能ガス量が充分に確保できないことになる。
【0040】
よって、車両停止時等のアイドル状態で必要となるシステムの最小負荷時の供給水素ガス流量Qminから高速走行時や加速時に必要となるシステムの最大負荷時の供給水素ガス流量Qmaxまでの流量範囲が非常に広いような場合は、スタックの良好な発電状態を維持するために必要な循環比Rminを維持することは1つのノズルでは困難となっている。
【0041】
図4には本実施形態で用いたエゼクタの特性を図3と同様に示している。まず、システムの作動最低負荷に当るガス流量Qminからエゼクタ上流に付与できる最大圧力Pinmaxで第1ノズル21から循環系に供給できるガス流量Q1までの間は、第1の状態として、図4の破線で示した循環比Rを確保している。
【0042】
発電要求量が増加し、原燃料ガスの必要供給量がQ1を超えると、第2の状態として、第2供給口10に原燃料ガスの供給を行い、第2供給口10のガス圧力を制御することで、第1ノズル21では不足する原燃料ガスを大径のノズルとして作用する第2ノズル25から供給する。このとき、第2ノズル25は第1供給口9および第2供給口10の圧力がともにPinmaxとなった場合に、最大発電要求時に必要となる原燃料ガス量Qmaxを供給できる径としている。
【0043】
第2の状態の場合の循環比Rは一点鎖線で示した値となるため、システムの要求負荷に応じて、第1、第2の状態を切替えることで、全てのスタック作動領域において必要となる循環比Rminを確保することができる。
【0044】
次に、図5、図6を参照して、本実施形態における流路切替弁及び圧力調整弁の制御フローを説明する。図5は諸々の車両条件から与えられた燃料電池の発電電力目標値tPWRを実現するために、どのように圧力調整弁6の弁下流圧tPrsHe、及び流路切替えの状態を制御するかを示した制御フローチャートであり、図6は、制御フロー中で参照する各種テーブルの例をグラフで示すものである。
【0045】
まず、ステップS10において、要求負荷に基づいて別途算出された発電電力目標値tPWRを読み込み、圧力センサ19の測定値tPrsHO,及び圧力センサ20の測定値tPrsHeOを読み込む。次いで、ステップS12では、燃料電池の発電電力目標値tPWRに基づいて燃料電池の燃料極における燃料ガス圧力目標値tPrsHを演算する。この演算は、図6(a)に示すような発電電力目標値tPWRに対する燃料ガス圧力目標値tPrsHがテーブルで与えられ、燃料電池の発電目標値すなわち負荷が大きくなればなるほど燃料極での燃料ガス圧力が大きくなるように設定している。
【0046】
次いでステップS14では、ステップS12で得られた燃料極2での燃料ガス圧力目標値tPrsHと圧力センサ20から得られた現在の燃料極2での燃料ガス圧力tPrsHOのと差圧tPrsHd=tPrsH−tPrsHOを算出し、圧力調整弁6の制御の基本的なパターンを判定する条件値とする。
【0047】
ステップS16は、燃料電池に対する負荷要求が急激増えたか否かを判定するステップであり、差圧tPrsHdが予め定めた値tPrsHdH以上の場合は急加速状態として、ステップS18へ進み、圧力調整弁6の目標開度tArVを設定可能な最大値tArVmaxに設定し、次いでステップS20で遮断弁18の開閉制御を行う信号tSVを開指令となる状態値とし、かつ3方弁16の切替え指令値t3WVをエゼクタ7の第3供給口11側へ連通する指令となる状態値として、第2の状態となるように流路切替えシーケンスに情報を発信する。
【0048】
ステップS16でtPrsHd<tPrsHdHと判断された場合は、ステップS22へ進み、負荷要求が減少し、パージ弁15を開制御する必要があるか否かを判定する。tPrsHdが予め定めた負の値であるtPrsHdL以下の場合はステップS24へ進み、圧力調整弁6の目標開度tArVを設定可能な最小値tArVminに設定するとともに、パージ弁15の制御シーケンスに開制御の情報を発信し、次いでステップS26で遮断弁18の開閉制御を行う信号tSVを閉指令となる状態値とし、かつ3方弁16の切替え指令値t3WVをエゼクタ7の第2供給口10側へ連通する指令となる状態値として、第1の状態となるように流路切替えシーケンスに情報を発信する。
【0049】
ステップS22でtPrsHd>tPrsHdLと判断された場合は、通常制御状態と判断し、ステップS28へ進み、流路切替え状態が第1の状態とするか否かを判定する。tPrsHが予め定めた切替え圧力tPrsH1より小さく、かつ圧力センサ19で測定された第1供給口9における原燃料ガス圧力の値tPrsHeOが供給可能最高圧であるtPrsHemaxより小さな場合は、ガス流路を第1の状態にすると判定し、ステップS30へ進む。
【0050】
ステップS30では発電電力目標値tPWRを実現するために必要な燃料極での圧力目標値tPrsHとなるように、第1供給口9での圧力目標値tPrsHeを演算している。圧力目標値tPrsHeは、圧力調整弁6からスタック1の燃料極2電池までの燃料ガス流路中の圧力損失を流量に応じてあらかじめ計算しておき、その圧力損失を目標とする燃料電池燃料極ガス圧力に加えた値として演算する必要があり、図6(b)のようにあらかじめ計算してテーブル値として参照する形式の方が良い。
【0051】
次いでステップS32にて、燃料負荷に応じた燃料ガス流量が得られるように基本となる圧力調整弁6の絞り面積tArVmをtPrsHeに応じて演算する。この演算は、図6(c)に示すようなテーブルで与えられ、圧力目標値tPrsHeが増えるに従い絞り面積tArVmも増加する。
【0052】
次いでステップS34で、遮断弁18の開閉制御を行う信号tSVを閉指令となる状態値とし、かつ3方弁16の切替え指令値t3WVをエゼクタ7の第2供給口10側へ連通する指令となる状態値として、第1の状態となるように流路切替えシーケンスに情報を発信して、後述するステップS42へ進む。
【0053】
一方、ステップS28で、tPrsHがtPrsH1以上、またはtPrsHOがtPrsHemaxとなっていると判断された場合は、流路切替え状態を第2の状態とすると判断し、ステップS36へ進む。
【0054】
ステップS36ではステップS30と同様に、tPrsHの演算をマップを用いてtPrsHeの演算を行うが、ここで使用するマップは図6(c)に示すように水素ガス供給ノズル径が大きくなったことに対応したものとなっている。次いで、ステップS38ではステップS32と同様に、燃料負荷に応じた燃料ガス流量が得られるように基本となる圧力調整弁6の絞り面積tArVmをtPrsHeに応じて演算する。ここで参照するテーブルは、ノズル径が大きくなったことに対応した図6(e)のようなテーブルである。
【0055】
ステップS40では、ステップS20と同様に、遮断弁18の開閉制御を行う信号tSVを開指令となる状態値とし、かつ3方弁16の切替え指令値t3WVをエゼクタ7の第3供給口11側へ連通する指令となる状態値として、第2の状態となるように流路切替えシーケンスに情報を発信して、ステップS42へ進む。
【0056】
ステップS42では、ステップS32またはステップS36で演算されたtArVmに対し、圧力センサ19で測定した実際の第1供給口9の圧力tPrsHeOと、圧力センサ20の測定値とステップS12で定めた目標値tPrsHとの乖離から定まる補正項αを加えて、第1供給口9の圧力が目標値となるように最終的な絞り面積tArVを算出する。
【0057】
以上、ステップS18、ステップS24、ステップS42のいずれかにより、圧力調整弁6の絞り面積が決定され、ステップS44で圧力調整弁6の制御情報を圧力調整機構制御装置に送信し、制御フローが終了する。
【0058】
なお、本実施形態では弁18は遮断弁としていたが、これを圧力調整弁とすると請求項4の第2の圧力調整弁として作用し、第1ノズル部と第2ノズル部の原燃料ガス圧力を個別に制御可能となり、原燃料ガスの供給量の制御性を良好に維持したまま、広い運転領域において排出循環ガス量を維持することが可能となる。
【0059】
次に、本発明における第2実施形態について、図7を用いて説明する。第1実施形態においては、第2供給口10へ原燃料ガスと排出循環ガスの供給切替えを遮断弁18と3方弁16を用いたものに対し、第2実施形態では、1つの切替え弁39を用いることで、第1実施形態と同様な流路切替えを可能にしたものであり、流路切替え制御を簡便に行うことが可能となる。
【0060】
切替え弁39には、4つの接続口を持つボディ部40と、内部に2つの流路42および43が形成され、ボディ部40の内部に回転可能に包括されたボール部41からなる。
【0061】
ボディ部40の4つの接続口は、分岐部8と接続された原燃料ガス供給用の接続口44aと、燃料極2の下流にある分岐部14と接続された排出循環ガス供給用の接続口44bと、エゼクタ7の第2供給口10と接続されたガス排出用の接続口45aと、エゼクタ7の第3供給口11と接続されたガス排出用の接続口45bとが設けられている。
【0062】
第1の状態では、図7(a)に示されているように、ボール部41の流路42が接続口44bと接続口45aを連通せしめ、エゼクタ7の第2供給口10に排出循環ガスを供給する。そのとき、流路43はボディ部40の残りの接続口44aと接続口45bを閉鎖するような位置に配置されている。
【0063】
一方、第2の状態では、図7(b)に示されているように、ボール部41が90°左に回転した状態となるように制御する。この時、流路42は接続口44aと接続口45aを連通せしめ、エゼクタ7の第2供給口10に水素ガスを供給するとともに、流路43は接続口44bと接続口45bを連通せしめて、エゼクタ7の第3供給口11に排出循環ガスを供給することが可能となる。
【0064】
以上の構成で、ボール部41のボディ部40に対する回転位置を制御するのみで、第1実施形態と同様な流路切替えを1つの動作で行えるようになる。
【0065】
以上説明したように本発明によれば、広い負荷範囲に対応した供給ガス流量に対し必要な排気ガス循環量が確保でき、安定した燃料電池の運転が可能となる。
【図面の簡単な説明】
【図1】本発明に係る燃料電池システムの第1の実施形態の構成を説明するシステム構成図である。
【図2】本実施形態におけるエゼクタの内部構造を示す断面図である。
【図3】(a)小型エゼクタおよび大型エゼクタの供給ガス流量に対する供給ガス圧力特性を説明する図である。(b)小型エゼクタおよび大型エゼクタの供給ガス流量に対する循環比特性を説明する図である。
【図4】(a)実施形態のエゼクタにおける供給ガス流量に対する供給ガス圧力特性を説明する図である。(b)実施形態のエゼクタにおける供給ガス流量に対する循環比特性を説明する図である。
【図5】第1の実施形態における圧力調整弁及びガス流路の第1状態、第2状態切替制御を説明するフローチャートである。
【図6】制御フロー中で参照する各種テーブルの例をグラフで示すものである。
【図7】(a)第2の実施形態における第1状態の要部を説明する構成図である。(b)第2の実施形態における第2状態の要部を説明する構成図である。
【符号の説明】
1…燃料電池本体(スタック)
2…燃料極
3…空気極
4…水素貯蔵タンク
5…減圧弁
6…圧力調整弁
7…エゼクタ循環装置
9…第1供給口
10…第2供給口
11…第3供給口
12…排出口
13…加湿器
14…分岐部
15…パージ弁
16…3方弁
17…分岐部
18…遮断弁
19…圧力センサ
20…圧力センサ

Claims (5)

  1. 燃料極と空気極とを有する燃料電池本体と、前記燃料極から排出される排出循環ガスと水素濃度の高い原燃料ガスとを混合して燃料ガスとするエゼクタ循環装置と、該エゼクタ循環装置で混合された燃料ガスを前記燃料極へ供給する流路とを有する燃料電池システムにおいて、
    前記エゼクタ循環装置は、第1供給口、第2供給口、及び第3供給口の少なくとも2つから供給される流体を混合して排出口から排出するものであり、
    第1供給口に接続した第1ノズルが第1混合室に向かって開口し、
    第1混合室に第2供給口が開口するとともに、第1ノズルの噴出方向前方に第1混合室から第2混合室に向かって第1ノズルより断面積が大きい第2ノズルが設けられ、
    第2混合室に第3供給口が開口するとともに、第2混合室がスロート部、ディフューザ部を順次介して前記排出口に連通し、
    第1供給口に原燃料ガスを供給し、第2供給口には原燃料ガスおよび排出循環ガスのいずれかを切替可能に供給し、第2供給口に原燃料ガス供給時には第3供給口に排出循環ガスを供給するように制御することを特徴とする燃料電池システム。
  2. 燃料電池システムの出力が所定値より低い低負荷時には、第1供給口から原燃料ガスを供給し、第2供給口から排出循環ガスを供給し、第3供給口に排出循環ガスを供給する配管を遮断する第1の状態で運転し、
    燃料電池システムの出力が所定値以上となる高負荷時には、第1供給口、第2供給口の少なくとも一方より原燃料ガスを供給し、第3供給口から排出循環ガスを供給する第2の状態で運転することを特徴とする請求項1記載の燃料電池システム。
  3. 燃料電池システムの出力が増加する過渡時には第2の状態で運転することを特徴とする請求項2に記載の燃料電池システム。
  4. 第1供給口に原燃料ガスを供給する配管に第1の圧力調整弁を設けるとともに、第2供給口に原燃料ガスを供給する配管に第2の圧力調整弁を設け、第1供給口に供給する原燃料ガスの圧力と、第2供給口に供給する原燃料ガスの圧力とを独立に制御可能としたことを特徴とする請求項1ないし請求項3のいずれか1項に記載の燃料電池システム。
  5. 第1供給口、第2供給口、及び第3供給口の少なくとも2つから供給される流体を混合して排出口から排出するエゼクタ循環装置であって、
    第1供給口に接続した第1ノズルが第1混合室に向かって開口し、
    該第1混合室に第2供給口が開口するとともに、第1混合室から第2混合室に向かって第1ノズルより断面積が大きい第2ノズルが開口し、
    第2混合室に第3供給口が開口するとともに、第2混合室がスロート部、ディフューザ部を順次介して前記排出口に接続されたことを特徴とするエゼクタ循環装置。
JP2001292175A 2001-09-25 2001-09-25 燃料電池システム及びエゼクタ循環装置 Expired - Fee Related JP3601493B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001292175A JP3601493B2 (ja) 2001-09-25 2001-09-25 燃料電池システム及びエゼクタ循環装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001292175A JP3601493B2 (ja) 2001-09-25 2001-09-25 燃料電池システム及びエゼクタ循環装置

Publications (2)

Publication Number Publication Date
JP2003100335A JP2003100335A (ja) 2003-04-04
JP3601493B2 true JP3601493B2 (ja) 2004-12-15

Family

ID=19114189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001292175A Expired - Fee Related JP3601493B2 (ja) 2001-09-25 2001-09-25 燃料電池システム及びエゼクタ循環装置

Country Status (1)

Country Link
JP (1) JP3601493B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761181B2 (ja) * 2004-05-28 2011-08-31 トヨタ自動車株式会社 燃料電池システム
WO2008043377A1 (de) * 2006-10-11 2008-04-17 Daimler Ag Brennstoffkreis eines brennstoffzellensystems
DE102011012154A1 (de) * 2011-02-24 2012-08-30 Linde Ag Vorrichtung zur Druckreduzierung
DE102011114735A1 (de) * 2011-10-01 2013-04-04 Daimler Ag Gasstrahlpumpe zur Förderung eines Hauptgasstroms
GB201411986D0 (en) * 2014-07-04 2014-08-20 Lg Fuel Cell Systems Inc Fuel cell system
DE102016125165A1 (de) * 2016-12-21 2018-06-21 Proton Motor Fuel Cell Gmbh Brennstoffzuführanordnung für ein Brennstoffzellensystem und Brennstoffzellensystem
JP6803610B2 (ja) * 2017-01-05 2020-12-23 鈴健興業株式会社 粉塵抑制システム
CN110323470B (zh) * 2019-07-18 2024-03-15 中山大洋电机股份有限公司 燃料电池进氢调节装置及其应用的燃料电池***

Also Published As

Publication number Publication date
JP2003100335A (ja) 2003-04-04

Similar Documents

Publication Publication Date Title
US8211579B2 (en) Fuel cell start-up control system
JP3608541B2 (ja) 燃料電池システム
US7037609B2 (en) Fuel circuit of the fuel cell system
JP4679701B2 (ja) 燃料電池の流体供給装置と燃料供給システム
US7824815B2 (en) Fuel cell system
US6979508B2 (en) Fuel cell with integrated feedback control
US6815103B2 (en) Start control device for fuel cell system
US6844094B2 (en) Gas-supplying apparatus for fuel cell
WO2008092545A1 (en) Gas supply arrangement in a fuel cell apparatus
US9450257B2 (en) Fuel cell system and its control method
JP2002227799A (ja) 可変流量エゼクタおよび該可変流量エゼクタを備えた燃料電池システム
JP2001266922A (ja) 燃料電池の燃料供給装置
JP3995870B2 (ja) 燃料電池の流体供給装置
JP3601493B2 (ja) 燃料電池システム及びエゼクタ循環装置
JP2002056868A (ja) 燃料電池の流体供給装置
JP4338914B2 (ja) 燃料循環式燃料電池システム
JP2004071349A (ja) 燃料循環式燃料電池システム
JP3729150B2 (ja) エゼクタ及び燃料電池システムの燃料循環装置
JP2002280029A (ja) 燃料電池システムの制御装置
JP2002231277A (ja) 燃料電池システム
JP3879409B2 (ja) 燃料電池システム
JP2007188666A (ja) 燃料電池運転システム
JP2003317758A (ja) 燃料電池システムの燃料循環制御装置
JP2005209610A (ja) 燃料電池の制御方法及びその装置
JP2006134670A (ja) 燃料電池システム

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees