JP3601138B2 - Fatigue testing machine - Google Patents

Fatigue testing machine Download PDF

Info

Publication number
JP3601138B2
JP3601138B2 JP29708795A JP29708795A JP3601138B2 JP 3601138 B2 JP3601138 B2 JP 3601138B2 JP 29708795 A JP29708795 A JP 29708795A JP 29708795 A JP29708795 A JP 29708795A JP 3601138 B2 JP3601138 B2 JP 3601138B2
Authority
JP
Japan
Prior art keywords
load
waveform
specimen
sine wave
wave signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29708795A
Other languages
Japanese (ja)
Other versions
JPH09138189A (en
Inventor
善一 安田
公利 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP29708795A priority Critical patent/JP3601138B2/en
Publication of JPH09138189A publication Critical patent/JPH09138189A/en
Application granted granted Critical
Publication of JP3601138B2 publication Critical patent/JP3601138B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、供試体に周期的に荷重を付与したときに、供試体に働く実荷重または供試体の変位量をフィードバックして供試体の引張試験や圧縮試験等を行う疲労試験機に関する。
【0002】
【従来の技術】
疲労試験には、図3(a)のように荷重平均値をゼロにして正負の方向に周期的に荷重を付与する両振り試験(引張圧縮試験)と、図3(b),3(c)のように荷重平均値を正または負の値にして正方向または負方向のみに荷重を付与する片振り試験(引張試験または圧縮試験)がある。
【0003】
これらの試験を行う際に、供試体に働く実荷重をロードセル等により検出し、検出された実荷重に基づいて供試体に付与する荷重をフィードバック制御する電気油圧サーボ式の疲労試験機が知られている。この種の電気油圧サーボ式の疲労試験機では、波形出力手段から出力されゲイン調整された荷重信号に基づいてサーボ弁を流れる油量を調節し、油圧力によってアクチュエータを駆動して供試体に荷重を付与する。
【0004】
【発明が解決しようとする課題】
しかしながら、疲労試験の開始直後は、サーボ弁を流れる油量が急激に増えることからアクチュエータが必要以上に駆動され、予め設定した荷重最大値以上の荷重が供試体に付与されるおそれがある。供試体の種類によっては、荷重制限が厳しいものがあり、予め設定した荷重最大値以上の荷重を1回でも付与すると、供試体の特性が変化するおそれがある。
【0005】
本発明の目的は、疲労試験の開始直後に必要以上の荷重が供試体に付与されないようにした疲労試験機を提供することにある。
【0006】
【課題を解決するための手段】
発明の一実施の形態を示す図1に対応づけて本発明を説明すると、本発明は、周期的な正弦波信号を出力する波形出力手段1と、正弦波信号に応じた荷重を供試体に付与する負荷手段8〜10と、供試体に働く実荷重または供試体の変位量に基づいて負荷手段8〜10から供試体に付与される荷重をフィードバック制御するフィードバック制御手段4〜6とを備えた疲労試験機に適用され、負荷手段8〜10が供試体に荷重を付与し始めてから所定時間の間、波形出力手段1から出力された正弦波信号の立ち上がり波形領域を緩やかな曲線に変形する波形変形手段3を備え、所定時間の間は波形変形手段3により変形された信号に応じた荷重を供試体に付与するように負荷手段8〜10を構成することにより、上記目的は達成される。
請求項1に記載の発明では、疲労試験を開始してから所定時間の間、図2(b)に示すように波形出力手段1から出力された正弦波信号の立ち上がり波形領域を緩やかにし、負荷手段8〜10から供試体に対して急激に荷重が付与されないようにする。
【0007】
なお、本発明の構成を説明する上記課題を解決するための手段の項では、本発明を分かり易くするために本発明の一実施の形態の図を用いたが、これにより本発明が一実施の形態に限定されるものではない。
【0008】
【発明の実施の形態】
以下、図1,2を用いて本発明に係る疲労試験機の一実施の形態を説明する。
図1は疲労試験機の一実施の形態の概略構成図である。図1の符号1は波形発生回路であり、操作部2から入力される荷重平均値と振幅と周波数とで決定される正弦波形の荷重信号を出力する。3は波形発生回路1から出力された正弦波信号の最初の1周期目の信号波形を変形する波形変形回路である。4は供試体に働く実荷重を検出するロードセル、5はロードセル4により検出された実荷重を増幅するロードアンプである。6は、波形発生回路1から出力される正弦波信号と、ロードアンプ5から出力される実荷重信号との偏差を演算する偏差器である。7は偏差器6の出力信号にゲインを掛けてPID(Pro−portional Integral Differencial)制御を行う増幅器である。8は油圧源9からアクチュエータ10に供給される油量を増幅器7の出力信号に基づいて調整するサーボ弁である。
【0009】
次に、図1のように構成された疲労試験機の動作を説明する。操作部2により試験開始が指示されると、操作部2により設定された荷重平均値と振幅と周波数とに応じた正弦波信号が波形発生回路1から出力されて波形変形回路3に入力される。
【0010】
波形変形回路3は、波形発生回路1から出力された正弦波信号の第1周期目の信号波形を変形する。具体的には、波形発生回路1から出力された正弦波信号VOUTが(1)式で表される場合、波形変形回路3は(2)式のようにsinωtに時間tの関数であるC(t)を乗じる演算処理を行う。
【0011】
【数1】
OUT=A・sinωt+B …(1)
ただし、Aは振幅値、Bは荷重平均値を示す。
【数2】
V’OUT=C(t)・sinωt+B …(2)
【0012】
(2)式の関数C(t)は、例えば図2(a)に示すように、正弦波信号VOUTの1/4周期までは線形に増加し、1/4周期を超えると一定値になる関数である。このような関数C(t)をsinωtに乗じると、波形変形回路3の出力V’OUTは図2(B)に示す実線波形のようになる。すなわち、波形発生回路1から出力された正弦波信号の第1周期目は、通常のsinカーブ(図2(b)の点線)よりも立ち上がりカーブが緩やかになる。
【0013】
このように、本実施の形態では、フィードバック制御される正弦波信号に基づいてアクチュエータ10を駆動して供試体に荷重を付与する疲労試験機において、正弦波信号の第1周期目の信号波形の立ち上がりカーブを第2周期目以降よりも緩やかにするため、疲労試験の開始直後にアクチュエータ10が滑らかに駆動するようになり、アクチュエータ10のオーバーシュート動作を防止できる。したがって、予め定めた最大荷重以上の荷重が供試体に付与されなくなり、荷重制限の厳しい供試体であっても、問題なく疲労試験を行える。
【0014】
なお、図1に示す波形変形回路3は、ハードウェアで構成しても、あるいはCPUによるソフトウェア処理で構成してもよい。ソフトウェア処理による場合、波形発生回路1から出力された正弦波信号をいったんデジタル信号に変換してからCPUに入力し、CPU内部で上述した(2)式に従って波形を変形するとともに、ロードセル4からの実荷重信号に基づいて荷重信号の振幅を調整し、調整したデジタル信号をアナログ信号に変換して増幅器7に供給すればよい。
【0015】
上記実施の形態では、ロードセル4で検出された供試体に働く実荷重に基づいてフィードバック制御を行う例を説明したが、供試体の変位量に基づいてフィードバック制御を行ってもよい。また、上記実施の形態では、疲労試験の開始直後の正弦波信号の第1周期目だけを変形する例を説明したが、疲労試験を開始してから所定時間の間、すなわち最初の複数周期だけ信号波形を変形してもよい。なお、上述した(2)式の関数C(t)の信号波形は図2(a)に限定されず、正弦波信号の立ち上がり波形領域の曲線が緩やかになるような波形であればよい。
【0016】
このように構成した一実施の形態にあっては、波形発生回路1が波形出力手段に、サーボ弁8、油圧源9およびアクチュエータ10が負荷手段に、ロードセル4、ロードアンプ5および偏差器6がフィードバック制御手段に、波形変形回路3が波形変形手段に、それぞれ対応する。
【0017】
【発明の効果】
以上詳細に説明したように、本発明によれば、正弦波信号に基づいて供試体に周期的に荷重を付与する場合に、疲労試験の開始直後は正弦波信号の立ち上がり波形領域の曲線を緩やかにするため、負荷手段から供試体に対して急激に荷重が付与されるおそれはなくなる。したがって、予め設定した荷重最大値以上の荷重が供試体に付与されなくなり、荷重制限の厳しい供試体であっても何ら問題なく疲労試験を行える。
【図面の簡単な説明】
【図1】本発明に係る疲労試験機の一実施の形態の概略構成図。
【図2】(a)は(2)式の関数C(t)の一例を示す図、(b)は波形変形回路の出力の一例を示す図。
【図3】従来の疲労試験機の荷重信号の一例を示す図。
【符号の説明】
1 波形発生回路
2 操作部
3 波形変形回路
4 ロードセル
5 ロードアンプ
6 偏差器
7 増幅器
8 サーボ弁
9 油圧弁
10 アクチュエータ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fatigue tester that performs a tensile test, a compression test, and the like on a specimen by feeding back an actual load acting on the specimen or an amount of displacement of the specimen when a load is periodically applied to the specimen.
[0002]
[Prior art]
The fatigue test includes a swing test (tensile compression test) in which the load average value is set to zero and a load is periodically applied in the positive and negative directions as shown in FIG. 3 (a), and FIGS. 3 (b) and 3 (c). ), There is a swing test (tensile test or compression test) in which the load average value is set to a positive or negative value and a load is applied only in the positive or negative direction.
[0003]
When performing these tests, there is known an electrohydraulic servo-type fatigue tester that detects an actual load acting on a specimen by a load cell or the like and performs feedback control of a load applied to the specimen based on the detected actual load. ing. In this type of electrohydraulic servo-type fatigue tester, the amount of oil flowing through the servo valve is adjusted based on the load signal output from the waveform output means and gain-adjusted, and the actuator is driven by the oil pressure to load the specimen. Is given.
[0004]
[Problems to be solved by the invention]
However, immediately after the start of the fatigue test, the amount of oil flowing through the servo valve suddenly increases, so that the actuator is driven more than necessary, and a load equal to or more than a preset maximum load may be applied to the specimen. Some types of test specimens have severe load restrictions, and if a load equal to or greater than a preset load maximum value is applied even once, the characteristics of the test specimen may change.
[0005]
An object of the present invention is to provide a fatigue test machine in which an excessive load is not applied to a specimen immediately after the start of a fatigue test.
[0006]
[Means for Solving the Problems]
The present invention will be described with reference to FIG. 1 showing an embodiment of the present invention. The present invention provides a waveform output means 1 for outputting a periodic sine wave signal, and a load corresponding to the sine wave signal applied to a specimen. Load means 8 to 10 to be applied, and feedback control means 4 to 6 for feedback-controlling the load applied from the load means 8 to 10 to the specimen based on the actual load acting on the specimen or the amount of displacement of the specimen. The rising waveform region of the sine wave signal output from the waveform output means 1 is deformed into a gentle curve for a predetermined time after the loading means 8 to 10 start to apply a load to the test piece. The above object is achieved by providing the waveform deforming means 3 and configuring the load means 8 to 10 to apply a load corresponding to the signal deformed by the waveform deforming means 3 to the specimen for a predetermined time. .
According to the first aspect of the present invention, as shown in FIG. 2B, the rising waveform region of the sine wave signal output from the waveform output means 1 is moderated for a predetermined time after the start of the fatigue test, and the load is reduced. The load is not suddenly applied to the specimen from the means 8 to 10.
[0007]
Note that, in the section of the means for solving the above-described problems, which explains the configuration of the present invention, a diagram of one embodiment of the present invention is used for easy understanding of the present invention. However, the present invention is not limited to this.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a fatigue tester according to the present invention will be described with reference to FIGS.
FIG. 1 is a schematic configuration diagram of an embodiment of a fatigue tester. Reference numeral 1 in FIG. 1 denotes a waveform generation circuit, which outputs a load signal having a sine waveform determined by the load average value, amplitude, and frequency input from the operation unit 2. Reference numeral 3 denotes a waveform modification circuit for modifying the signal waveform of the first cycle of the sine wave signal output from the waveform generation circuit 1. Reference numeral 4 denotes a load cell for detecting the actual load acting on the test specimen, and reference numeral 5 denotes a load amplifier for amplifying the actual load detected by the load cell 4. Reference numeral 6 denotes a deviation unit that calculates a deviation between the sine wave signal output from the waveform generation circuit 1 and the actual load signal output from the load amplifier 5. Reference numeral 7 denotes an amplifier that multiplies the output signal of the deviator 6 by a gain to perform PID (Pro-Portal Integrated Differential) control. Reference numeral 8 denotes a servo valve that adjusts the amount of oil supplied from the hydraulic pressure source 9 to the actuator 10 based on the output signal of the amplifier 7.
[0009]
Next, the operation of the fatigue tester configured as shown in FIG. 1 will be described. When a test start is instructed by the operation unit 2, a sine wave signal corresponding to the load average value, the amplitude, and the frequency set by the operation unit 2 is output from the waveform generation circuit 1 and input to the waveform transformation circuit 3. .
[0010]
The waveform transformation circuit 3 transforms the signal waveform of the first cycle of the sine wave signal output from the waveform generation circuit 1. Specifically, when the sine wave signal V OUT output from the waveform generation circuit 1 is represented by the equation (1), the waveform transformation circuit 3 sets the sinωt as a function of the time t as sinωt as shown in the equation (2). (T) is multiplied.
[0011]
(Equation 1)
V OUT = A · sin ωt + B (1)
Here, A indicates an amplitude value, and B indicates a load average value.
(Equation 2)
V ′ OUT = C (t) · sin ωt + B (2)
[0012]
The function C (t) of the equation (2) increases linearly up to 1/4 cycle of the sine wave signal VOUT as shown in FIG. Function. When such a function C (t) is multiplied by sinωt, the output V ′ OUT of the waveform transformation circuit 3 becomes a solid line waveform shown in FIG. That is, in the first cycle of the sine wave signal output from the waveform generation circuit 1, the rising curve becomes gentler than the normal sin curve (dotted line in FIG. 2B).
[0013]
As described above, in the present embodiment, in the fatigue tester that applies a load to the specimen by driving the actuator 10 based on the sine wave signal that is feedback-controlled, the signal waveform of the first cycle of the sine wave signal Since the rising curve is made gentler than the second and subsequent cycles, the actuator 10 can be driven smoothly immediately after the start of the fatigue test, and the overshoot operation of the actuator 10 can be prevented. Therefore, a load equal to or greater than the predetermined maximum load is not applied to the specimen, and even if the specimen has a severe load limitation, the fatigue test can be performed without any problem.
[0014]
Note that the waveform transformation circuit 3 shown in FIG. 1 may be configured by hardware or may be configured by software processing by a CPU. In the case of software processing, the sine wave signal output from the waveform generation circuit 1 is once converted into a digital signal and then input to the CPU, where the waveform is deformed inside the CPU according to the above equation (2), What is necessary is just to adjust the amplitude of the load signal based on the actual load signal, convert the adjusted digital signal into an analog signal, and supply the analog signal to the amplifier 7.
[0015]
In the above-described embodiment, an example has been described in which feedback control is performed based on the actual load acting on the specimen detected by the load cell 4, but feedback control may be performed based on the amount of displacement of the specimen. Further, in the above-described embodiment, an example in which only the first cycle of the sine wave signal immediately after the start of the fatigue test is described. The signal waveform may be modified. Note that the signal waveform of the function C (t) in the above equation (2) is not limited to FIG. 2A, and may be any waveform as long as the curve in the rising waveform region of the sine wave signal becomes gentle.
[0016]
In one embodiment configured in this manner, the waveform generating circuit 1 serves as a waveform output means, the servo valve 8, the hydraulic source 9 and the actuator 10 serve as load means, and the load cell 4, the load amplifier 5 and the deviation device 6 serve as load means. The waveform deformation circuit 3 corresponds to the feedback control means, and corresponds to the waveform deformation means.
[0017]
【The invention's effect】
As described above in detail, according to the present invention, when a load is periodically applied to a test specimen based on a sine wave signal, the curve of the rising waveform region of the sine wave signal is gradual immediately after the start of the fatigue test. Therefore, there is no possibility that the load is suddenly applied to the specimen from the load means. Therefore, a load equal to or greater than the preset load maximum value is not applied to the specimen, and the fatigue test can be performed without any problem even with a severely restricted load.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an embodiment of a fatigue tester according to the present invention.
2A is a diagram illustrating an example of a function C (t) of the expression (2), and FIG. 2B is a diagram illustrating an example of an output of a waveform transformation circuit.
FIG. 3 is a diagram showing an example of a load signal of a conventional fatigue tester.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Waveform generation circuit 2 Operation part 3 Waveform transformation circuit 4 Load cell 5 Load amplifier 6 Deflector 7 Amplifier 8 Servo valve 9 Hydraulic valve 10 Actuator

Claims (1)

周期的な正弦波信号を出力する波形出力手段と、
前記正弦波信号に応じた荷重を供試体に付与する負荷手段と、
前記供試体に働く実荷重または前記供試体の変位量に基づいて前記負荷手段から前記供試体に付与される荷重をフィードバック制御するフィードバック制御手段とを備えた疲労試験機において、
前記負荷手段が前記供試体に荷重を付与し始めてから所定時間の間、前記波形出力手段から出力された前記正弦波信号の立ち上がり波形領域を緩やかな曲線に変形する波形変形手段を備え、
前記負荷手段は、前記所定時間の間は前記波形変形手段により変形された信号に応じた荷重を前記供試体に付与することを特徴とする疲労試験機。
Waveform output means for outputting a periodic sine wave signal;
Loading means for applying a load according to the sine wave signal to the specimen,
A fatigue test machine comprising feedback control means for feedback-controlling the load applied to the test piece from the load means based on the actual load acting on the test piece or the displacement amount of the test piece,
For a predetermined time after the loading means starts applying a load to the specimen, for a predetermined time, comprises a waveform deformation means for deforming a rising waveform area of the sine wave signal output from the waveform output means into a gentle curve,
The fatigue tester, wherein the load means applies a load to the specimen during the predetermined time according to a signal deformed by the waveform deforming means.
JP29708795A 1995-11-15 1995-11-15 Fatigue testing machine Expired - Fee Related JP3601138B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29708795A JP3601138B2 (en) 1995-11-15 1995-11-15 Fatigue testing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29708795A JP3601138B2 (en) 1995-11-15 1995-11-15 Fatigue testing machine

Publications (2)

Publication Number Publication Date
JPH09138189A JPH09138189A (en) 1997-05-27
JP3601138B2 true JP3601138B2 (en) 2004-12-15

Family

ID=17842041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29708795A Expired - Fee Related JP3601138B2 (en) 1995-11-15 1995-11-15 Fatigue testing machine

Country Status (1)

Country Link
JP (1) JP3601138B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4765759B2 (en) * 2006-05-10 2011-09-07 株式会社島津製作所 Fatigue testing machine
JP5353805B2 (en) * 2010-04-20 2013-11-27 株式会社島津製作所 testing machine
JP6543019B2 (en) * 2013-03-19 2019-07-10 日立金属株式会社 Evaluation method of corrosion fatigue life of steel

Also Published As

Publication number Publication date
JPH09138189A (en) 1997-05-27

Similar Documents

Publication Publication Date Title
JP3601138B2 (en) Fatigue testing machine
JP3570056B2 (en) Material testing machine
JP5146401B2 (en) Material testing machine
KR20210068290A (en) Apparatus of suprressing torque ripple caused by misalignment of multi-stage gearbox using harmonic current injectioon method
JPH03294630A (en) Control device for throttle valve
JP3608302B2 (en) Fatigue testing machine
JP3340057B2 (en) Material testing machine
JP3119610U (en) Fatigue testing machine and inverse transfer function computing device
JP2001165832A (en) Test apparatus
JPS62267643A (en) Fatigue testing machine
JP2001033370A (en) Method for controlling material-testing device and material-testing device
JPH1147691A (en) Controller for hydraulic vibration exciter
CN109404148B (en) Air pressure control method and device and automobile
SU639699A2 (en) Apparatus for remote control of manipulator
JPS6031038A (en) Structure testing machine
JPH06123686A (en) Material testing machine
JPH07190910A (en) Digital controller and control method for material tester
KR19990060991A (en) Servo valve control system using digital control device and its control method
JP2002039001A (en) Electronic throttle control unit and its input processing unit
JPH02111273A (en) Drive for piezo-actuator
JP2000075901A (en) Loop gain adjusting method for feedback control system
JPH10197394A (en) Liquid-operated vibration testing machine
SU399608A1 (en) AUTOMATIC POWER SUPPLY REGULATOR
JPS63167680A (en) Driving device for ultrasonic motor
JPH1068686A (en) Material testing machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040913

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081001

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091001

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101001

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111001

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121001

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees