JP3600312B2 - Energy consumption measuring device - Google Patents

Energy consumption measuring device Download PDF

Info

Publication number
JP3600312B2
JP3600312B2 JP13030795A JP13030795A JP3600312B2 JP 3600312 B2 JP3600312 B2 JP 3600312B2 JP 13030795 A JP13030795 A JP 13030795A JP 13030795 A JP13030795 A JP 13030795A JP 3600312 B2 JP3600312 B2 JP 3600312B2
Authority
JP
Japan
Prior art keywords
energy consumption
acceleration
movement
heart rate
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13030795A
Other languages
Japanese (ja)
Other versions
JPH08317920A (en
Inventor
田中  宏暁
進藤  宗洋
加津男 福井
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuda Denshi Co Ltd
Original Assignee
Fukuda Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuda Denshi Co Ltd filed Critical Fukuda Denshi Co Ltd
Priority to JP13030795A priority Critical patent/JP3600312B2/en
Publication of JPH08317920A publication Critical patent/JPH08317920A/en
Application granted granted Critical
Publication of JP3600312B2 publication Critical patent/JP3600312B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Description

【0001】
【産業上の利用分野】
本発明は運動に伴うエネルギー消費量を正確に算出することができるエネルギー消費量測定装置及び方法に関するものである。
【0002】
【従来の技術】
従来より、エネルギー消費量の評価方法として、体の重心に近い部分の垂直加速度の積分値とエネルギー消費量との間に高い相関関係があることが認められている。このため、これを利用した小型で携帯に便利な加速度センサーを用いたエネルギー消費量を推定する機器が開発されている。しかしながら、この従来の機器では、平地における運動量を基準としたエネルギー消費量を求める機能があるのみであった。
【0003】
【発明が解決しようとしている課題】
しかしながら、階段昇降や坂道歩行のような垂直方向への重心移動を伴う運動は、平地における運動に比し、実際のエネルギー消費量の増加に対する加速度の積分値の変化が少なくなっているため、係る場合、例えば階段昇降や坂道歩行及び走行時のエネルギー消費量を過小評価してしまうものであった。このため、正確なエネルギー消費量が求められず、運動環境によっては心臓などに過負荷がかかることにもなっていた。
【0004】
【課題を解決するための手段】
本発明は上述の問題点を解決することを目的として成されたもので、上述の問題点を解決する一手段として以下の構成を備える。
【0005】
即ち、被検者の心拍数を所定間隔で測定する心拍数測定手段と、被検者の移動加速度を検出する加速度検出手段と、前記加速度検出手段の検出加速度の前記所定間隔毎の積分値と前記心拍数測定手段で測定した心拍数より被検者の運動状態が平坦地での移動か、階段もしくは傾斜地での移動かを特定する運動状態特定手段と、前記運動状態特定手段で特定した運動状態に対応した条件と、前記検出加速度の前記所定間隔毎の積分値とに従ってエネルギー消費量を算出する算出手段とを備えることを特徴とする。
【0006】
そして例えば、前記運動状態特定手段は、前記検出加速度の積分値の増加に対する前記心拍数の測定値の増加が所定の値よりも大きい場合には前記階段もしくは傾斜地での移動であり、前記所定の値よりも小さい場合には前記平坦地での移動であると運動状態を特定することを特徴とする。
【0007】
あるいはまた、例えば、前記算出手段は、予め登録した運動状態毎の算出式に前記検出加速度の積分値を代入してエネルギー消費量を算出することを特徴とする。そして、例えば前記運動状態毎の算出式が、前記平坦地での移動状態については、
Y=0.307X+0.002(Kcal/kg/min)
前記階段もしくは傾斜地での移動状態については、
Y=1.472X+0.015(Kcal/kg/min)
ただし、Y=エネルギー消費量;X=検出加速度の積分値(G)
であることを特徴とする。
また、上述の問題点を解決する別の手段として、所定間隔で測定された被検者の心拍数と、前記被検者の移動加速度から求められた前記所定間隔毎の前記被検者の移動加速度の積分値とを取得する取得手段と、前記移動加速度の積分値と前記心拍数とから、前記被検者の運動状態が平坦地での移動か、階段もしくは傾斜地での移動かを特定する運動状態特定手段と、前記運動状態特定手段で特定した運動状態に対応した条件と、前記移動加速度の積分値とに従ってエネルギー消費量を算出する算出手段とを備えることを特徴とする。
【0008】
【作用】
以上の構成において、エネルギー消費量の増加と心拍数の変化に密接な関係があることに着目し、心拍数と加速度とを同時に測定し、被検者の運動状態を区別可能とし、各運動状態毎に夫々用意された検出加速度に対応する正確で高精度のエネルギー消費量が測定できる。
【0009】
【実施例】
以下、図面を参照して本発明に係る一実施例を詳細に説明する。
【0010】
【第1実施例】
図1は本発明に係る一実施例のブロツク構成図である。
【0011】
図1において、1はROM2に格納されたプログラムに従い、本実施例装置の全体制御を司るCPU、2は上述のCPU1のプログラム等を記憶するROM、3はCPU1の処理経過等を一時記憶するためのRAM、4は心拍数を測定するための心電図電極、5はその心電図電極よりの測定信号を増幅すると共に対応するデジタル信号に変換するECGインタフェースである。
【0012】
6は、被検者の体の重心に近い部分に装着される垂直方向の加速度を測定する加速度センサであり、例えば富士セラミックス製のCR−3を用いることができる。また、7はセンサインタフェースである。8は後述する算術式に従って被検者のエネルギー消費量を算出するエネルギー消費量算出部、9は心電図電極4よりの検出心電図情報より心拍数を算出する心拍数算出部である。
【0013】
さらに、10は被検者の各種処理結果や生体よりの収集データ等を表示するCRT等で構成可能な表示器、11はその表示器10を制御する表示制御部、12はエネルギー消費量や生体よりの収集データ等を印刷出力するプリンタであり、本実施例では感熱式のものを採用している。13はプリンタ12を制御するプリンタ制御部である。
【0014】
また、本実施例装置は、算出データを他の装置で利用可能な様にFDに記録可能なFD装置、15はそのFD装置14を制御するFD制御部を供えている。
【0015】
なお、以上の構成ではすべてを1つの筐体に一体化した形で示しているが、本実施例は以上の例に限定されるものではなく、例えば心電図電極4及びECGインタフェース5、加速度センサ6、センサインタフェース7のみを一体化して携帯型生体情報収集部として構成し、この部分と他の構成とを別筐体として筐体間を有線ケーブル、あるいは無線で互いに情報の授受可能に構成してもよい。これにより被検者に過度の負担をかけることなく運動負荷をかけた状態でのエネルギー消費量の測定ができる。
【0016】
そして、本実施例では、この構成を備え、心拍数算出部では心電図情報中の例えばR波ピーク間隔を測定して心拍数を算出する。以上の例では心電波形より心拍数を測定する例について説明したが、本発明は以上の例に限定されるものではなく、例えば心音マイクを装着し、このマイクより収集した心音より心拍数を求めても、あるいは、脈波センサを装着してこの脈波センサにより脈波を検出し、この脈波より心拍数を求めてもよく、その心拍数の検出方法としたは任意の方法を適用できる。
【0017】
更に、本実施例のエネルギー消費量算出部8は、本実施例のもっとも特徴的な構成であって、本件発明者がエネルギー消費量の増加と心拍数の変化に密接な関係がある点に着目し、係る点を考慮することにより、従来は不可能であった運動状態の検知が可能とならないか実際に多数の被検者に実験を繰り返して運動状態と心拍数との間に一定の相関関係を見出した事に基づいて設けられたものであり、心拍数と被検者の身体の重心に近い部分の垂直加速度を同時に測定することにより、後述する判別関数により運動状態、例えば平地と傾斜地での移動運動を区別し、運動状態に応じて登録されている測定加速度の積分値からのエネルギー消費量推定式により運動状態に応じてエネルギー消費量を算出する回路である。
【0018】
本実施例においては、上記判別関数を求めるために、複数の被検者の平坦地における歩行、走行時における加速度の積分値及び心拍数とエネルギー消費量との関係、及び傾斜地としての階段昇降における加速度の積分値及び心拍数とエネルギー消費量との関係を測定した。
【0019】
この測定方法を図2及び図3に示す。図2が平坦地移動時、図3が階段昇降時である。図の心拍数及び加速度マーク欄に示す上矢印が夫々心拍数及び加速度の積分値のデータ収集タイミングである。
【0020】
まず、図2及び図3に示す様に、平坦地歩行、走行時及び階段昇降時における、「ゆっくり」、「普通」、「早く」の各移動直前の心拍数を測定し、続いて運動開始後所定時間が経過する毎に心拍数と加速度の積分値を同時に測定し、呼吸気を採気してこの採気に基づいて公知の検知方法により運動に伴うエネルギー消費量を測定する。そして、各場合における心拍数と加速度の積分値との関係、及び各場合の加速度の積分値とエネルギー消費量との関係を夫々測定する。
【0021】
このようにして測定した異なる運動中における加速度の積分値と心拍数との関係例を図4に示す。図4においては、4名の代表的な測定者における実験結果を示している。白丸で示すのが平坦地歩行時、白四角で示すのが平坦地走行時、白三角で示すのが階段走行時である。
【0022】
各被験者により多少のばらつきは認められるものの、平坦地の移動時の心拍数の増加と加速度の積分値の増加との間に一定の関係があり、階段昇降時においても心拍数の増加と加速度の積分値の増加との間に一定の関係がみられる。そして、明らかに、平坦地を移動した時における関係と、階段を昇降した時における関係とは異なっている。各運動時ごとの測定結果より導き出した判別関数を図中に示している。
【0023】
従って、以上の結果をふまえれば、例えば、予め所定の閾値を定めて、この閾値以上であれば傾斜地の移動、閾値以下であれば平坦地の移動の様に、容易に運動状態を識別することができる。
【0024】
更に、予め被検者毎にこの判別関数を求めておき、これをFD装置14などより装置内に取り込み可能としておけば、非常な高精度で平坦地移動時と傾斜地移動時の区別が可能となる。この場合には、傾斜ごとの判別関数を求めることも可能であり、よりきめ細かな分別ができる。ただし、このような被検者ごとの判別関数を予め定めなくとも、加速度の積分値の変化に比べて心拍数の変化が大きくなる様に変化したこと、あるいは変化が少なく変化したことを検知した場合にそのいずれかで運動状態の変化を検知する様にしても良い。
【0025】
また、図4に例示した代表的な被験者における各運動ごとの採気結果に基づく算出エネルギー消費量と加速度の積分値との関係を図5に示す。
【0026】
図5に示す様に各被検者ごとの多少のばらつきはあるが、所定の範囲内に治まっており、各運動ごとに測定した加速度の積分値に対して一定の関係式をもってエネルギー消費量が算出できる。この場合のエネルギー消費量(Y)と測定した加速度の積分値(X)との関係式を図中に示している。
【0027】
本件の発明者は、以上の結果に鑑み、異なる運動毎における体の重心に近い部分の垂直加速度の積分値よりエネルギー消費量を求める推定式を特定した。この異なる運動毎における体の重心に近い部分の垂直加速度の積分値とエネルギー消費量の関係および加速度の積分値よりエネルギー消費量を求める推定式の例を図6に示す。
即ち、略平坦地状態では以下の計算式(1)を用い、
Y=0.307X+0.002(Kcal/kg/min)・・(1)
階段移動状態では、以下の計算式(2)を用いる。
【0028】
Y=1.472X+0.015(Kcal/kg/min)・・(2)
ただし、Y=エネルギー消費量;X=検出加速度の積分値(G)
本実施例のエネルギー消費量算出部8は、予めこの推定式(1)および(2)を保持していると共に、上述した運動状態を判別する判別関数に関するデータを保持している。あるいは、エネルギー消費量算出部8ではなく、これらをパラメータとしてRAM2あるいはROM2に保持している様に構成し、エネルギー消費量算出部8でエネルギー消費量を算出する際に読み出してきて利用する様に構成しても同様の効果が達成できる。
【0029】
次に、以上の構成を備え、上述した推定式を保持する本実施例装置におけるエネルギー消費量測定処理を図7のフローチャートを参照して以下に説明する。
【0030】
まず、ステップS1で、被検者の皮膚表面の所定部位に心電図電極4を装着すると共に、体の重心に近い部分に垂直加速度の加速度センサ6を装着する。続いてステップS2でCPU1は、エネルギー消費量算出部8を起動すると共に心拍数算出部9を起動する。その結果、心電図電極4よりECGインタフェース5を介して検出した心電図信号より心拍数が検出可能となると同時に、その時の加速度を算出可能とする。
【0031】
続いてステップS3で所定間隔で心拍数と加速度の積分値を算出する。そして、続くステップS4で上述した心拍数と加速度の積分値との判別関数に従って、測定時点での運動状態を判別する。例えば、平坦地の移動であるか、あるいは階段の昇降(傾斜地の移動)であるかを判別する。ここで、平坦地の移動であると判別した場合にはステップS5でエネルギー消費量の推定式の(1)を選択し、ステップS7に進む。
【0032】
一方、ステップS4で階段の昇降等の傾斜地の移動であると判別した場合にはステップS6に進み、エネルギー消費量の推定式の(2)を選択し、ステップS7に進む。
【0033】
ステップS7においては、ステップS5またはステップS6選択した推定式に、ステップS3で算出した加速度の積分値を代入してエネルギー消費量を算出する。そして必要に応じてRAM3中に記憶したり、あるいはFD装置14に記憶する処理を行う。同時に、表示器10よりその結果を表示させたり、不図示の操作部よりの指示に従って測定結果をその都度、あるいはまとめてプリンタ12より印刷出力させるなどの処理を行う。続くステップS8で測定が終了したか否かを調べ、測定が終了していない場合には再びステップS3に戻って次の所定サンプリング時間でのエネルギー消費量の測定処理を続行する。
【0034】
なお、以上の説明は、本実施例単独で処理結果を保持する例について説明したが、本発明は以上の例に限定されるものではなく、例えば更に通信媒体を介して他の装置、例えばホストコンピュータ等との通信を可能に構成し、測定結果をこのホストコンピュータに転送可能に構成してもよい。これにより、他の測定結果を合わせた総合的な判断等が可能となる。
【0035】
また、以上の推定式(1)、(2)において特定した計算式の係数については、一例として上記例を示したが、この係数は年齢や性別、あるいは過去の運動経験等により夫々微妙に異なっており、上記各被験者の個人データに基づく更に細分化された推定式の係数を特定することも勿論本発明の範囲に含まれる。更に、将来の運動能力や心肺能力等の変化によっても最適係数がことなることも考えられ、上記推定式の係数は以上の例に限定されるものではなく、適時被検者によって最適の係数を選択すればよい。
【0036】
以上説明したように本実施例によれば、エネルギー消費量の増加と心拍数の変化に密接な関係があることに着目し、心拍数と加速度とを同時に測定し、被検者の運動状態を区別可能とし、更に、各運動状態毎に加速度の積分値よりのエネルギー消費量推定式を備えることにより、各運動状態毎に高精度のエネルギー消費量推定式を選択でき、正確で高精度のエネルギー消費量が測定できる。
【0037】
なお、以上の説明では階段昇降と、平坦地歩行(走行)との2つの運動状態に分けた例を説明したが、本発明は以上の例に限定されるものではなく、傾斜角度に応じて更に細分化した判別関数および推定式を備える構成とすれば、更に高精度のエネルギー消費量の測定が可能となる。
【発明の効果】
以上説明した様に本発明によれば、運動状態にかかわらず検出加速度に対応した正確で高精度のエネルギー消費量が測定できる。
【0038】
【図面の簡単な説明】
【図1】本発明に係る一実施例のエネルギー消費量測定装置のブロツク構成図である。
【図2】本実施例の運動状態判別関数の特定および加速度の積分値よりのエネルギー消費量推定式の特定のための実験方法を示す図である。
【図3】本実施例の運動状態判別関数の特定および加速度の積分値よりのエネルギー消費量推定式の特定のための実験方法を示す図である。
【図4】運動中における加速度の積分値と心拍数との関係を説明するための図であ
【図5】各運動時における加速度の積分値とエネルギー消費量との関係を説明するための図である。
【図6】本実施例の異なる運動中の加速度の積分値とエネルギー消費量との関係を説明するための図である。
【図7】本実施例のエネルギー消費量測定処理を説明するためのフローチャート図である。
【符号の説明】
1 CPU
2 ROM
3 RAM
4 心電図電極
5 ECGインタフェース
6 加速度センサ
7 センサインタフェース
8 エネルギー消費量算出部
9 心拍数算出部
10 表示器
11 表示制御部
12 プリンタ
13 プリンタ制御部
14 FD制御部
15 FD装置
[0001]
[Industrial applications]
The present invention relates to an energy consumption measuring device and method capable of accurately calculating energy consumption accompanying exercise.
[0002]
[Prior art]
Conventionally, as a method of evaluating energy consumption, it has been recognized that there is a high correlation between the integrated value of the vertical acceleration near the center of gravity of the body and the energy consumption. For this reason, a device for estimating energy consumption using a small and portable acceleration sensor using the device has been developed. However, this conventional device only has a function of calculating the amount of energy consumption based on the amount of exercise on level ground.
[0003]
[Problems to be solved by the invention]
However, movements involving vertical movement of the center of gravity, such as stair climbing and hill-walking, have less change in the integrated value of acceleration with respect to the actual increase in energy consumption, compared to movement on level ground. In such a case, for example, the energy consumption at the time of going up and down stairs, walking on a slope, and running is underestimated. For this reason, accurate energy consumption is not required, and depending on the exercise environment, the heart or the like may be overloaded.
[0004]
[Means for Solving the Problems]
The present invention has been made for the purpose of solving the above problems, and has the following configuration as one means for solving the above problems.
[0005]
That is, a heart rate measuring means for measuring the heart rate of the subject at predetermined intervals, an acceleration detecting means for detecting the moving acceleration of the subject, and an integral value of the acceleration detected by the acceleration detecting means at each of the predetermined intervals. from the heart rate measured by the heart rate measuring means, the state of motion of the subject or movement of the flat land, and motion state specifying means for specifying whether the movement of the stairs or slopes, specified in the motion state specifying means It is characterized by comprising calculating means for calculating energy consumption according to a condition corresponding to a motion state and an integrated value of the detected acceleration at each of the predetermined intervals .
[0006]
And, for example, when the increase in the measured value of the heart rate with respect to the increase in the integrated value of the detected acceleration is larger than a predetermined value, the exercise state specifying means is movement on the stairs or on a slope, and When the value is smaller than the value , the movement state is identified as the movement on the flat ground.
[0007]
Alternatively, for example, the calculating means, and calculates the energy consumption by substituting the integrated value of the detected acceleration to the previously registered calculation formula for each motion state. Then, for example, the calculation formula for each of the exercise states is, for the movement state on the flat ground,
Y = 0.307X + 0.002 (Kcal / kg / min)
Regarding the moving state on the stairs or sloping ground,
Y = 1.472X + 0.015 (Kcal / kg / min)
Here, Y = energy consumption; X = integral value of detected acceleration (G)
It is characterized by being.
Further, as another means for solving the above-described problems, the subject's heart rate measured at a predetermined interval and the movement of the subject at the predetermined interval obtained from the moving acceleration of the subject are described. Acquiring means for acquiring an integral value of acceleration, and from the integral value of the moving acceleration and the heart rate, determine whether the subject's motion state is moving on a flat ground, or moving on stairs or a slope. It is characterized by comprising a movement state specifying means, and a calculation means for calculating an energy consumption according to a condition corresponding to the movement state specified by the movement state specifying means and an integral value of the movement acceleration.
[0008]
[Action]
In the above configuration, focusing on the fact that there is a close relationship between the increase in energy consumption and the change in heart rate, the heart rate and acceleration are simultaneously measured, and the exercise state of the subject can be distinguished. Accurate and highly accurate energy consumption corresponding to the detected acceleration prepared for each case can be measured.
[0009]
【Example】
Hereinafter, an embodiment according to the present invention will be described in detail with reference to the drawings.
[0010]
[First embodiment]
FIG. 1 is a block diagram of an embodiment according to the present invention.
[0011]
In FIG. 1, reference numeral 1 denotes a CPU which controls the overall control of the apparatus according to the embodiment according to a program stored in a ROM 2, reference numeral 2 denotes a ROM which stores the above-mentioned program of the CPU 1, and reference numeral 3 denotes a temporary storage of the processing progress of the CPU 1. RAM 4 is an ECG electrode for measuring a heart rate, and 5 is an ECG interface for amplifying a measurement signal from the ECG electrode and converting it into a corresponding digital signal.
[0012]
Reference numeral 6 denotes an acceleration sensor mounted on a portion near the center of gravity of the subject's body for measuring acceleration in a vertical direction. For example, CR-3 made by Fuji Ceramics can be used. Reference numeral 7 denotes a sensor interface. Reference numeral 8 denotes an energy consumption calculator that calculates the energy consumption of the subject according to an arithmetic expression described later, and 9 denotes a heart rate calculator that calculates a heart rate from electrocardiogram information detected from the electrocardiogram electrode 4.
[0013]
Further, reference numeral 10 denotes a display which can be constituted by a CRT or the like which displays various processing results of the subject and collected data from the living body, etc., 11 denotes a display control unit for controlling the display 10, and 12 denotes an energy consumption and a living body. This printer prints and outputs collected data and the like. In the present embodiment, a heat-sensitive printer is used. Reference numeral 13 denotes a printer control unit that controls the printer 12.
[0014]
Further, the apparatus of this embodiment is provided with an FD device capable of recording the calculation data on the FD so that the calculated data can be used by another device, and the FD control unit 15 controls the FD device 14.
[0015]
In the above configuration, everything is shown as being integrated into one housing. However, the present embodiment is not limited to the above example. For example, the electrocardiogram electrode 4, the ECG interface 5, the acceleration sensor 6 Only the sensor interface 7 is integrated to constitute a portable biological information collecting unit, and this part and another configuration are configured as separate housings so that information can be mutually transmitted and received between the housings by a wired cable or wirelessly. Is also good. Thereby, it is possible to measure the energy consumption in a state where the exercise load is applied without imposing an excessive burden on the subject.
[0016]
In this embodiment, this configuration is provided, and the heart rate calculator calculates the heart rate by measuring, for example, the peak interval of the R wave in the electrocardiogram information. In the above example, an example in which a heart rate is measured from an electrocardiographic waveform has been described.However, the present invention is not limited to the above example.For example, a heart sound microphone is attached, and the heart rate is measured based on heart sounds collected from the microphone. Or a pulse wave sensor is attached and the pulse wave is detected by this pulse wave sensor, and the heart rate may be calculated from the pulse wave. it can.
[0017]
Further, the energy consumption calculating section 8 of the present embodiment is the most characteristic configuration of the present embodiment, and the present inventor pays attention to the fact that there is a close relationship between the increase in energy consumption and the change in heart rate. However, by considering such points, it is possible to detect the exercise state, which was impossible in the past. It is provided based on the finding of the relationship, and by simultaneously measuring the heart rate and the vertical acceleration of the part near the center of gravity of the subject's body, the exercise state, for example, a flat ground and a slope Is a circuit that distinguishes the moving motion in the above and calculates the energy consumption according to the motion state by the energy consumption estimation formula from the integrated value of the measured acceleration registered according to the motion state.
[0018]
In this embodiment, in order to obtain the discriminant function, a plurality of subjects walk on a flat ground, the relationship between the integrated value of acceleration during running and the heart rate and energy consumption, and the stairs ascending and descending as a slope. The relationship between the integrated value of acceleration and the heart rate and energy consumption was measured.
[0019]
This measuring method is shown in FIGS. FIG. 2 shows a time when moving on a flat ground, and FIG. 3 shows a time when moving up and down stairs. The upward arrows shown in the heart rate and acceleration mark columns in the figure are the data collection timings of the integrated values of heart rate and acceleration, respectively.
[0020]
First, as shown in FIGS. 2 and 3, the heart rate immediately before each of the “slow”, “normal”, and “early” movements during walking on a flat ground, running, and going up and down stairs is measured. Every time after the elapse of a predetermined time, the integrated value of the heart rate and the acceleration is simultaneously measured, the breathing air is sampled, and the energy consumption accompanying exercise is measured by a known detection method based on the sampling. Then, the relationship between the heart rate and the integrated value of acceleration in each case, and the relationship between the integrated value of acceleration and the energy consumption in each case are measured.
[0021]
FIG. 4 shows an example of the relationship between the integrated value of acceleration and the heart rate during different exercises measured in this way. FIG. 4 shows experimental results of four representative measurers. White circles indicate walking on flat ground, white squares indicate running on flat ground, and white triangles indicate running on stairs.
[0022]
Although there is some variation among subjects, there is a certain relationship between the increase in heart rate when moving on a flat ground and the increase in the integrated value of acceleration . There is a certain relationship between the increase of the integral value . Obviously, the relationship when moving on a flat ground is different from the relationship when moving up and down stairs. The discriminant functions derived from the measurement results for each exercise are shown in the figure.
[0023]
Therefore, based on the above results, for example, a predetermined threshold value is determined in advance, and the motion state is easily identified, such as movement of a sloped land if the threshold value is equal to or more than the threshold value, and movement of a flat ground if the threshold value or less. be able to.
[0024]
Furthermore, if this discriminant function is obtained in advance for each subject and can be taken into the apparatus from the FD device 14 or the like, it is possible to distinguish between moving on a flat ground and moving on an inclined ground with extremely high accuracy. Become. In this case, it is also possible to obtain a discriminant function for each inclination, and finer classification can be performed. However, even if such a discriminant function for each subject was not determined in advance, it was detected that the change in the heart rate was larger than the change in the integral value of the acceleration, or that the change was smaller. In such a case, a change in the exercise state may be detected in one of the cases.
[0025]
FIG. 5 shows the relationship between the calculated energy consumption based on the result of gas sampling for each exercise and the integral value of acceleration in the representative test subject illustrated in FIG.
[0026]
As shown in FIG. 5, although there is some variation for each subject, it falls within a predetermined range, and the energy consumption is determined by a constant relational expression with respect to the integrated value of the acceleration measured for each exercise. Can be calculated. The relational expression between the energy consumption (Y) in this case and the integrated value (X) of the measured acceleration is shown in the figure.
[0027]
In view of the above results, the inventor of the present invention has specified an estimation formula for calculating the energy consumption from the integrated value of the vertical acceleration of the portion near the center of gravity of the body for each different exercise. FIG. 6 shows an example of a relation between the integral value of the vertical acceleration and the energy consumption of the portion close to the center of gravity of the body in each of the different exercises, and an estimation formula for calculating the energy consumption from the integral value of the acceleration .
That is, in a substantially flat ground state, the following calculation formula (1) is used.
Y = 0.307X + 0.002 (Kcal / kg / min) (1)
In the staircase moving state, the following formula (2) is used.
[0028]
Y = 1.472X + 0.015 (Kcal / kg / min) (2)
Here, Y = energy consumption; X = integral value of detected acceleration (G)
The energy consumption calculating section 8 of the present embodiment holds the estimation formulas (1) and (2) in advance and also holds data on the discriminant function for discriminating the above-described exercise state. Alternatively, instead of the energy consumption calculation unit 8, these are stored as parameters in the RAM 2 or the ROM 2, and are read out and used when the energy consumption calculation unit 8 calculates the energy consumption. The same effect can be achieved even with the configuration.
[0029]
Next, an energy consumption measurement process in the apparatus of the present embodiment having the above configuration and holding the above-described estimation formula will be described below with reference to the flowchart of FIG.
[0030]
First, in step S1, the electrocardiogram electrode 4 is attached to a predetermined portion of the subject's skin surface, and the vertical acceleration sensor 6 is attached to a portion near the center of gravity of the body. Subsequently, in step S2, the CPU 1 activates the energy consumption calculating unit 8 and also activates the heart rate calculating unit 9. As a result, the heart rate can be detected from the electrocardiogram signal detected from the electrocardiogram electrode 4 via the ECG interface 5, and the acceleration at that time can be calculated.
[0031]
Subsequently, at step S3, the integral values of the heart rate and the acceleration are calculated at predetermined intervals. Then, in the subsequent step S4, the exercise state at the time of measurement is determined according to the above-described determination function of the integrated value of the heart rate and the acceleration. For example, it is determined whether the movement is a movement on a flat ground or a movement up and down a stair (movement on a sloped land). Here, when it is determined that the movement is on a flat ground, the energy consumption estimation formula (1) is selected in step S5, and the process proceeds to step S7.
[0032]
On the other hand, if it is determined in step S4 that the movement is on a slope such as ascending or descending a stair, the process proceeds to step S6, where the energy consumption estimation formula (2) is selected, and the process proceeds to step S7.
[0033]
In step S7, the estimation equation selected in step S5 or step S6, the calculated energy consumption by substituting the integral value of the acceleration calculated in step S3. Then , a process of storing in the RAM 3 or storing in the FD device 14 is performed as necessary. At the same time, processing is performed such as displaying the result on the display 10 or printing out the measurement result from the printer 12 each time or collectively according to an instruction from an operation unit (not shown). In step S8, it is determined whether or not the measurement has been completed. If the measurement has not been completed, the process returns to step S3 to continue the energy consumption measurement process at the next predetermined sampling time.
[0034]
In the above description, the example in which the processing result is held in the present embodiment alone has been described. However, the present invention is not limited to the above example, and may be, for example, another device such as a host via a communication medium. Communication with a computer or the like may be configured to be possible, and measurement results may be transferred to the host computer. This makes it possible to make a comprehensive judgment or the like combining other measurement results.
[0035]
The coefficients of the calculation formulas specified in the above estimation formulas (1) and (2) are described above as an example. However, the coefficients slightly differ depending on age, gender, past exercise experience, and the like. Therefore, it is a matter of course that specifying the coefficients of the estimation formula further subdivided based on the personal data of each subject is included in the scope of the present invention. Furthermore, it is also conceivable that the optimal coefficient may vary depending on future changes in exercise capacity, cardiopulmonary capacity, etc., and the coefficients in the above estimation formula are not limited to the above examples, and the optimal coefficient may be set by the subject at appropriate times. Just select.
[0036]
As described above, according to the present embodiment, focusing on the fact that there is a close relationship between the increase in energy consumption and the change in heart rate, the heart rate and the acceleration are simultaneously measured, and the exercise state of the subject is measured. By making it possible to distinguish them, and by providing an energy consumption estimation formula from the integrated value of acceleration for each exercise state, a highly accurate energy consumption estimation equation can be selected for each exercise state, and an accurate and high-precision energy consumption equation can be selected. The consumption can be measured.
[0037]
Note that, in the above description, an example was described in which the exercise state was divided into two motion states, stair climbing and descending and walking on a flat ground (running). If the configuration is provided with the discriminant function and the estimation formula that are further subdivided, it is possible to measure the energy consumption with higher accuracy.
【The invention's effect】
As described above, according to the present invention, accurate and highly accurate energy consumption corresponding to the detected acceleration can be measured regardless of the motion state.
[0038]
[Brief description of the drawings]
FIG. 1 is a block diagram of an energy consumption measuring device according to an embodiment of the present invention.
FIG. 2 is a diagram illustrating an experimental method for specifying a motion state discriminant function and specifying an energy consumption estimation formula from an integrated value of acceleration according to the present embodiment.
FIG. 3 is a diagram illustrating an experimental method for specifying a motion state discriminant function and specifying an energy consumption estimation formula from an integrated value of acceleration according to the present embodiment.
[4] Ru FIG der for explaining the relationship between the integral value of the acceleration and heart rate during the exercise.
FIG. 5 is a diagram for explaining a relationship between an integral value of acceleration and energy consumption during each exercise.
FIG. 6 is a diagram for explaining a relationship between an integral value of acceleration during different exercises and energy consumption according to the embodiment.
FIG. 7 is a flowchart illustrating an energy consumption measurement process according to the present embodiment.
[Explanation of symbols]
1 CPU
2 ROM
3 RAM
4 ECG electrode 5 ECG interface 6 Accelerometer 7 Sensor interface 8 Energy consumption calculator 9 Heart rate calculator 10 Display 11 Display controller 12 Printer 13 Printer controller 14 FD controller 15 FD device

Claims (5)

被検者の心拍数を所定間隔で測定する心拍数測定手段と、
被検者の移動加速度を検出する加速度検出手段と、
前記加速度検出手段の検出加速度の前記所定間隔毎の積分値と前記心拍数測定手段で測定した心拍数より被検者の運動状態が平坦地での移動か、階段もしくは傾斜地での移動かを特定する運動状態特定手段と、
前記運動状態特定手段で特定した運動状態に対応した条件と、前記検出加速度の前記所定間隔毎の積分値とに従ってエネルギー消費量を算出する算出手段とを備えることを特徴とするエネルギー消費量測定装置。
Heart rate measuring means for measuring the subject's heart rate at predetermined intervals ;
Acceleration detection means for detecting the movement acceleration of the subject;
From the heart rate measured by the integral value and the heart rate measuring means for each of the predetermined intervals of the acceleration detected by the said acceleration detecting means, the state of motion of the subject or movement of the flat land, whether movement of the stairs or slopes Exercise state specifying means for specifying;
An energy consumption measuring device comprising: a calculating means for calculating an energy consumption according to a condition corresponding to the exercise state specified by the exercise state specifying means and an integral value of the detected acceleration at each of the predetermined intervals. .
前記運動状態特定手段は、前記検出加速度の積分値の増加に対する前記心拍数の測定値の増加が所定の値よりも大きい場合には前記階段もしくは傾斜地での移動であり、前記所定の値よりも小さい場合には前記平坦地での移動であると運動状態を特定することを特徴とする請求項1記載のエネルギー消費量測定装置。When the increase in the measured value of the heart rate with respect to the increase in the integral value of the detected acceleration is greater than a predetermined value, the exercise state specifying means is movement on the stairs or on a slope, and the movement is more than the predetermined value. The energy consumption measuring device according to claim 1, wherein when the distance is small , the movement state is identified as the movement on the flat ground. 前記算出手段は、予め登録した運動状態毎の算出式に前記検出加速度の積分値を代入してエネルギー消費量を算出することを特徴とする請求項1又は2のいずれかに記載のエネルギー消費量測定装置。3. The energy consumption according to claim 1, wherein the calculation unit calculates the energy consumption by substituting the integrated value of the detected acceleration into a calculation formula for each exercise state registered in advance. 4. Quantity measuring device. 前記運動状態毎の算出式が、
前記平坦地での移動状態については、
Y=0.307X+0.002(Kcal/kg/min)
前記階段もしくは傾斜地での移動状態については、
Y=1.472X+0.015(Kcal/kg/min)
ただし、Y=エネルギー消費量;X=検出加速度の積分値(G)
であることを特徴とする請求項3記載のエネルギー消費量測定装置。
The calculation formula for each exercise state is
Regarding the moving state on the flat ground,
Y = 0.307X + 0.002 (Kcal / kg / min)
Regarding the moving state on the stairs or sloping ground,
Y = 1.472X + 0.015 (Kcal / kg / min)
Here, Y = energy consumption; X = integral value of detected acceleration (G)
Energy consumption measurement device according to claim 3, characterized in that.
所定間隔で測定された被検者の心拍数と、前記被検者の移動加速度から求められた前記所定間隔毎の前記被検者の移動加速度の積分値とを取得する取得手段と、Obtaining means for obtaining the heart rate of the subject measured at predetermined intervals, and an integrated value of the moving acceleration of the subject for each of the predetermined intervals obtained from the moving acceleration of the subject,
前記移動加速度の積分値と前記心拍数とから、前記被検者の運動状態が平坦地での移動か、階段もしくは傾斜地での移動かを特定する運動状態特定手段と、From the integrated value of the movement acceleration and the heart rate, the movement state of the subject is a movement on a flat ground, or a movement state specifying means for specifying whether the movement on a stair or a slope,
前記運動状態特定手段で特定した運動状態に対応した条件と、前記移動加速度の積分値とに従ってエネルギー消費量を算出する算出手段とを備えることを特徴とするエネルギー消費量測定装置。An energy consumption measuring device comprising: a calculating unit that calculates an energy consumption according to a condition corresponding to the exercise state specified by the exercise state specifying unit and an integrated value of the movement acceleration.
JP13030795A 1995-05-29 1995-05-29 Energy consumption measuring device Expired - Lifetime JP3600312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13030795A JP3600312B2 (en) 1995-05-29 1995-05-29 Energy consumption measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13030795A JP3600312B2 (en) 1995-05-29 1995-05-29 Energy consumption measuring device

Publications (2)

Publication Number Publication Date
JPH08317920A JPH08317920A (en) 1996-12-03
JP3600312B2 true JP3600312B2 (en) 2004-12-15

Family

ID=15031196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13030795A Expired - Lifetime JP3600312B2 (en) 1995-05-29 1995-05-29 Energy consumption measuring device

Country Status (1)

Country Link
JP (1) JP3600312B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3806290B2 (en) * 2000-07-18 2006-08-09 株式会社アシックス Footwear selection system
JP4549758B2 (en) * 2004-06-30 2010-09-22 本田技研工業株式会社 Exercise measurement method, exercise measurement device, and exercise measurement program
US20110131005A1 (en) * 2007-12-18 2011-06-02 Hiromu Ueshima Mobile recording apparatus, body movement measuring apparatus, information processing apparatus, movement pattern determining apparatus, activity amount calculating apparatus, recording method, body movement measuring method, information processing method, movement pattern determining method, activity amount calculating met
EP2326241B1 (en) 2008-08-19 2017-10-11 Koninklijke Philips N.V. Monitoring the blood pressure of a patient
EP2210557A1 (en) * 2009-01-21 2010-07-28 Koninklijke Philips Electronics N.V. Determining energy expenditure of a user
JP6480112B2 (en) * 2013-07-12 2019-03-06 セイコーインスツル株式会社 Activity amount detection device
US20210282708A1 (en) * 2017-03-21 2021-09-16 Sony Corporation Information processing apparatus, information processing method, and program

Also Published As

Publication number Publication date
JPH08317920A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
JP4547537B2 (en) BODY STATE DETECTION DEVICE, DETECTION METHOD AND DETECTION PROGRAM
JP6444309B2 (en) Method and apparatus for identifying transitions between sitting and standing positions
JP3978700B2 (en) Calorie consumption calculation device
RU2535615C2 (en) Determining user energy consumption
JP5332292B2 (en) Walking analysis and exercise menu suggestion system
US7328612B2 (en) Method and apparatus for detecting types of exercise
KR100601981B1 (en) Method and apparatus for monitoring human activity pattern
US20050107723A1 (en) Methods and apparatus for determining work performed by an individual from measured physiological parameters
JP3984253B2 (en) Health care equipment
KR102107379B1 (en) Method for Prediction Frailty Using Triple Axis Motion Meter, Prediction Frailty System using Triple Axis Motion Meter and Wearable Prediction Frailty Device
JP2006204742A (en) Method and system for evaluating sleep, its operation program, pulse oxymeter, and system for supporting sleep
KR101125672B1 (en) Method for measuring exercise pattern and apparatus for measuring exercise quantity using the method
JP6829988B2 (en) Momentum estimation device, momentum estimation program, and momentum estimation system
JP2010005033A (en) Walking motion analyzer
JP3600312B2 (en) Energy consumption measuring device
JP2007075428A (en) Motion measuring apparatus
CN111905333B (en) Force measuring running machine for exercise training
JP2011030643A (en) Moving form discrimination method, moving form discrimination apparatus, and calorie consumption calculating method
JP2009285269A (en) Physical observation and analysis method of human body structure abnormality state, and measurement apparatus using the method
JP2007275260A (en) Degree of activities measurement arithmetic system
JPH07178073A (en) Body movement analyzing device
KR101553236B1 (en) The Classifying and Counting Algorithm for Real-time Walk/Run Exercise based on An Acceleration Sensor
JP2020141744A (en) Estimation device of physique index of human
KR101174729B1 (en) Ubiquitous healthcare system and multi-functional shoes having the same
JP2020137801A (en) Device for estimating posture of human or the like

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040916

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term