JP3599481B2 - Manufacturing method of prepreg - Google Patents

Manufacturing method of prepreg Download PDF

Info

Publication number
JP3599481B2
JP3599481B2 JP12633496A JP12633496A JP3599481B2 JP 3599481 B2 JP3599481 B2 JP 3599481B2 JP 12633496 A JP12633496 A JP 12633496A JP 12633496 A JP12633496 A JP 12633496A JP 3599481 B2 JP3599481 B2 JP 3599481B2
Authority
JP
Japan
Prior art keywords
resin
prepreg
water
glass cloth
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12633496A
Other languages
Japanese (ja)
Other versions
JPH09291161A (en
Inventor
康之 木村
実 佐藤
大祐 松出
Original Assignee
旭シュエーベル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭シュエーベル株式会社 filed Critical 旭シュエーベル株式会社
Priority to JP12633496A priority Critical patent/JP3599481B2/en
Publication of JPH09291161A publication Critical patent/JPH09291161A/en
Application granted granted Critical
Publication of JP3599481B2 publication Critical patent/JP3599481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、特にガラスクロス補強樹脂積層板用に使用される、ガラスクロス樹脂含浸プリプレグ製造方法の改良に関するものである。
より詳細には、本発明は、ガラスクロスに予めシラン化合物処理と、次いでコロナ放電加工を行った後、特定量の水を含む樹脂ワニスを用いたので樹脂未含浸部の少ないプルプレグが得られると言う、ガラスクロス樹脂含浸プリプレグ製造方法を提供する。
【0002】
【従来の技術】
従来から、プリント配線基板等に加工されるガラスクロス補強樹脂積層板は、常温では高粘度、または固形のエポキシ樹脂組成物等を有機溶剤に溶解させて低粘度化した樹脂溶液(以下樹脂ワニス)をガラスクロスに含浸させ、その有機溶媒を乾燥し、樹脂を半硬化(Bステ−ジ)状態にしたガラスクロス樹脂含浸プリプレグ(以下プリプレグ)を製造するプリプレグ製造工程、そのプリプレグを積層し、加熱、加圧成形を行い、樹脂を硬化させてガラスクロス強化樹脂積層板(以下積層板)を得る積層板成形工程で製造されている。
【0003】
しかし、プリプレグ中のガラスクロスの糸束内部に樹脂未含浸部分が発生すると、積層板成形工程後もその樹脂未含浸部が残留して、積層板中に樹脂未含浸部分が発生するという課題がある。この樹脂未含浸部分の発生は、樹脂ワニスの粘度が高いためガラスクロスの糸束内部に樹脂ワニスが十分浸透しないことと、樹脂ワニス中の有機溶剤の粘度、及び表面張力が樹脂にくらべて極めて低いため、ガラスクロスの糸束内部に有機溶剤のみが選択的に浸透し、その結果有機溶剤が乾燥した後その部分が樹脂未含浸部になることが原因であると考えられる。
【0004】
この樹脂未含浸部を起こさないプリプレグを製造するため、また、近年、地球環境保護、作業環境の改善の面から、有機溶剤の使用を減らすことが検討されており、従来の樹脂組成物を有機溶剤で溶解希釈して低粘度化した樹脂ワニスから、低有機溶剤樹脂ワニスまたは無溶剤樹脂組成物への樹脂組成物自体の変更が試みられている。
しかしながら、樹脂の粘度が高いことにより、プリプレグ製造工程でガラスクロスの糸束内に十分樹脂ワニスが浸透しないために、プリプレグ中に樹脂未含浸部分が発生し、それが積層成形工程後も残留して、積層板中に樹脂未含浸部分が発生するという問題がある。
【0005】
上記の課題に対するガラスクロス補強樹脂積層板の製造法の改良としては、プリプレグの製造工程、若しくは積層板成形工程にその工程を真空状態にして対応する方法、また積層板成形工程の高圧成形化等が試みられているが、省資源、省エネルギ−の観点から好ましくない。また、高圧成型による積層板の寸法安定性低下といった積層板性能面での問題が生じる。
また、樹脂組成物の改良としては、不飽和ポリエステル樹脂のように、スチレンのような低粘度の反応性モノマ−を混合して無溶剤で低粘度化した樹脂等が応用されているが、揮発性が高いモノマ−を使用するため、揮発蒸気の発生という問題があり、地球環境保護、作業環境の改善という面では効果が不十分である。
【0006】
【発明が解決しようとする課題】
本発明の目的は、上記の問題を解決することにある。すなわち、樹脂未含浸部の少ないプリプレグ、及び環境に悪影響を及ぼす有機溶剤を使用せずに、樹脂未含浸部のないプリプレグを製造する製造方法の改良を提供することにある。
【0007】
【問題を解決するための手段】
本発明者は上記課題を解決するために鋭意検討を重ねた結果、ガラスクロスに予めシラン化合物処理と、次いでコロナ放電加工を行った後、ガラスクロスに含浸させる樹脂ワニスの溶剤構成が水90重量%以上含む樹脂ワニスによるプリプレグをプリント配線基板に適用した場合に、樹脂未含浸部の少ないプルプレグが得られることを見出し本発明を完成するに至った。
すなわち、本発明は:
) 熱硬化性樹脂ワニスをガラスクロスに含浸させてなるプリプレグの製造方法において、ガラスクロスに予めシラン化合物処理を行い、コロナ放電加工を行った後、溶剤構成が水90重量%以上含む樹脂ワニスをガラスクロスに含浸させてなるプリプレグの製造方法を提供する。
【0008】
以下、本発明を詳細に説明する。
(A)樹脂ワニス
ここでいう樹脂ワニスとは、ガラスクロスの糸束内に熱硬化性樹脂を含浸させる目的で、熱硬化性樹脂を低粘度化させるために、プリプレグを乾燥、硬化時に乾燥除去される、溶剤を樹脂に混合した樹脂と溶剤の混合液体のことを指す。
本発明における熱硬化性樹脂(以下樹脂)としては、樹脂成分の分子骨格内に親水性基を有する水溶性樹脂や、親水基を持たない樹脂に乳化剤を加え強制的に乳化した水分散性樹脂のいずれかの熱硬化性樹脂も使用できる。
【0009】
例えば、水溶性及び/または水分散性エポキシ基を有する化合物を水溶性及び/または水分散性、及び/また又は粉体のアミン化合物、ブロックイソシアネ−ト化合物、フェノ−ル化合物、イミダゾ−ル化合物、ジシアンジアミド、ヒドラジド基を有する化合物、カルボキシル基を有する化合物、カルボジイミド基を有する化合物等で硬化させるエポキシ樹脂;水溶性及び/または水分散性エポキシアクリレ−トや不飽和ポリエステルを、熱重合及び/またはベンゾイルパ−オキサイド等の過酸化物で硬化させる樹脂;水溶性及び/または水分散性の水酸基及び/またはアミノ基を有する化合物を水溶性及び/または水分散性ブロックイソシアネ−トにより硬化させるウレタン樹脂、メラミン樹脂等が挙げられる。
【0010】
また、樹脂の硬化物のガラス転移温度は100℃以上、好ましくは120℃以上である。
樹脂のガラス転移温度とは、樹脂の含有量が35.0〜45.0重量%のガラスクロス強化積層板を、RDAII(レオメトリックス(株)製)で粘弾性挙動を測定したtanδのピ−クの示す温度を意味する。
ガラス転移温度が100℃未満の樹脂では、ガラスクロス使い樹脂プリント回路基板の基本的性能である吸湿耐熱性、電食性の低下が生じるため、樹脂のガラス転移温度は100℃以上であることが必要であり、120℃以上であることが好ましい。
【0011】
また、樹脂の脆さを補うため、水溶性及び/または水分散性及び/または粉体の熱可塑性樹脂や;難燃性を与えるため水溶性及び/または水分散性の臭素含有有機物、塩素含有有機物、燐含有有機物等の難燃性を付与する化合物、及び臭素含有有機物、塩素含有有機物、燐含有有機物、金属酸化物、金属酸化物の水和物、燐等の難燃性を付与する粉体や;積層板の強度を向上させるために、金属酸化物、有機化合物等の粉体を樹脂ワニスに混合しても良い。
また、水溶液状及び/または水分散液状の樹脂ワニスの粘度を調節する目的で、エアロジル、ポリアクリル酸、アルギン酸ナトリウム、アルギン酸プロピレングリコ−ルエステル、アラビアゴム、メチルセルロ−ス等の増粘安定剤を混合しても良い。
【0012】
上記粉体を樹脂ワニスに混合する場合、粉体の平均粒子経は100μm未満、好ましくは60μm未満である。粒子径の下限については細かければ良いが、樹脂ワニス中での粒子の分散性の観点から0.1μm程度で構わない。
粉体の平均粒子経が100μm以上であると、ガラスクロスの糸束内への樹脂ワニスの浸透が妨げられプリプレグの樹脂未含浸部が発生するために100μm未満が好ましい。
【0013】
樹脂を樹脂ワニス化するための溶剤は水から構成される必要がある。もちろん、水溶液又は水分散液のワニスにできるならば10重量%未満の他の有機溶剤が含まれていても良い。すなわち、その樹脂ワニス中の溶剤の組成は水90重量%以上、ましくは水95重量%以上含む必要がある。
熱硬化性樹脂の樹脂ワニスの溶剤の構成を水90重量%以上にすることにより、ガラスクロスの糸束内への樹脂ワニスの浸透に必要な粘度の樹脂ワニスが水希釈により得られ、かつ、水は有機溶剤よりも高い表面張力を有するため、ガラスクロスの糸束内への溶剤の選択的な浸透が有機溶剤に比較して少なく、樹脂未含浸部の発生を抑制する相乗効果もあり、樹脂未含浸部分の少ないプリプレグが得られる。
【0014】
さらに、溶剤に水を使用することはプリプレグ製造時の乾燥、加熱工程における排気物も水蒸気のみであることから、有機溶剤で溶解又は分散させた熱硬化性樹脂とは異なり、有機溶剤の大気放出による地球環境への悪影響、作業環境の有機溶剤の濃度上昇による慢性、急性中毒の危険性、可燃性有機溶剤による爆発の危険性等がなくなる。また、有機溶剤の悪影響、危険性を低減させるための、防爆装置、有機溶剤回収装置等の大がかりな設備を必要としない。
【0015】
(B)プリプレグの製造法
本発明に関するプリプレグの製造方法としては、まず、溶剤組成が水90重量%以上の溶剤(以下溶剤)に熱硬化性樹脂(以下樹脂)を溶解させた樹脂ワニス(以下樹脂ワニス)をガラスクロスに含浸する。
本発明に使用できる水としては、水道水、蒸留水、イオン交換水、軟水、硬水のいずれも使用でき、水以外に若干(10重量%未満)の有機溶剤を使用することができる。
樹脂ワニス中の固形分は20.0〜80.0%(重量%以下同じ)、好ましくは30.0〜80.0%である。
【0016】
また、粘度は樹脂ワニスの状態で25℃において、20cP〜2000cP、好ましくは50cP〜1000cPである。
樹脂溶液の粘度が20cP未満であるとガラス繊維織物に含浸させた樹脂が流れすぎてしまうためプリプレグのレジンコンテントの安定化が困難になり、また、1000cPを越えるととガラス繊維織物の糸束内部への樹脂液の含浸が不十分で、その結果プリプレグの樹脂未含浸部分の増加、及び積層板の樹脂未含浸部分の発生が生じる。
【0017】
また、プリプレグの状態でプリプレグ中のガラスクロスの含有量(以下ガラスコンテント)は少なくとも70%以下、好ましくは65%以下である。その下限は積層板の寸法安定性の観点から制限され、通常には20%程度が良い。
プリプレグのガラスコンテントが70%を越えるとガラス繊維織物の糸束部分にしか樹脂が存在しないプリプレグとなり積層板にすることができなくなる。
【0018】
また、樹脂をガラスクロスに含浸させる前にコロナ放電処理ガラスクロスに行うと、ガラス表面が活性化され、ガラスクロスの糸束内部への樹脂ワニスの浸透が改善され、その結果樹脂未含浸部の少ないプリプレグが得られる。
例えば、コロナ放電処理の場合、印加電力が0.1kW〜40.0kW、好ましくは0.3kW〜20.0kW、周波数が1kHz〜120kHz、好ましくは5kHz〜50kHz、処理時間は好ましくは0.05秒以上、より好ましくは0.1秒以上である。
【0019】
ガラスクロスに該樹脂ワニスを含浸させた後、溶剤を乾燥、樹脂を半硬化させる。その方法としては、熱風、電磁波、等公知の方法が可能であり、加熱により溶剤の乾燥と樹脂を半硬化する方法、加熱により溶剤乾燥後、紫外線又は電子線により樹脂を半硬化する方法等、特に適用方法が限定されるものではない。
樹脂ワニスからプリプレグを作成するには、乾燥機中で100〜200℃、好ましくは120〜180℃の温度で、1〜25分、好ましくは3分〜20分間乾燥、硬化することにより、半硬化状態(Bステ−ジ)化させたプリプレグを作成する。
【0020】
半硬化させた状態とは、プリプレグの樹脂をメチルエチルケトンで溶解抽出し、メチルエチルケトンを30℃以下の温度で除去した後、その樹脂を170℃で測定した樹脂のゲルタイムが、10〜300秒、好ましくは20〜200秒である状態を意味する。
ゲルタイムが10秒未満であると積層板成形工程時に樹脂の流動が小さくプリプレグ層間の接着性が低下するし、また300秒を越えると積層板成形工程時に樹脂の流動が大きく積層板の安定な生産が困難になる。
【0021】
また、樹脂とガラスとの接着性を向上させるため、樹脂ワニスをガラスクロスに含浸させる前にガラスクロスに予めシラン化合物処理を施す必要がある
使用できるシラン化合物としては、例えば、γ−(2−アミノエチル)アミノプロピルトリメトキシシラン、
γ−(2−アミノエチル)アミノプロピルメチルジメトキシシラン、
3−アミノプロピルトリエトキシシラン、
3−アミノプロピルメチルジエトキシシラン、
γ−メタクリロキシプロピルトリメトキシシラン、
γ−メタクリロキシプロピルメチルジメトキシシラン、
N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン及びその塩酸塩、
N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルメチルジメトキシシラン及びその塩酸塩、
N−β−(N−ベンジルアミノエチルアミノプロピル)トリメトキシシラン及びその塩酸塩、
N−β−(N−ベンジルアミノエチルアミノプロピル)メチルジメトキシシラン及びその塩酸塩、
γ−グリシドキシプロピルトリメトキシシラン、
γ−グリシドキシプロピルジメトキシシラン等のシラン化合物が使用できる。
【0022】
さらに、本発明に適用するガラスクロスは、Eガラス、Aガラス、Dガラス、Sガラス等のいずれのガラスクロスでも良い。また、ガラスクロスとしては、織り密度は10〜200本/25mm、好ましくは15〜100本/25mmであり、質量は5〜400g/m2 、好ましくは10〜300g/m2であり、織り方は平織り、朱子織り、綾織り、ななこ織り等が使用できる。また、双方またはいっぽうがテクスチャ−ド加工を施されたガラス糸で製織されたガラスクロスであっても良い。また、柱状流、高周波振動法によるよる水流で開繊等の物理加工を施したしたガラスクロスであっても良い。
【0023】
(C)プリプレグから積層板の製造
更に、以上のように製造された本発明のプリプレグを所定枚数重ね、加熱、加圧成形することにより積層板を得ることができる。また、この際に金属箔を所定枚数重ねたプリプレグの片側、または両側に重ね、プリプレグと金属箔をともに加熱、加圧することにより、プリント配線基板用ガラス繊維織物強化樹脂金属箔張り積層板を製造することができる。
この金属箔としては、銅箔、アルミニウム箔、ステンレス箔等が使用することができる。
【0024】
また、本発明のプリプレグから製造された積層板の金属箔をエッチング加工等して回路形成することによってプリント配線板を得ることができる。
更に、本発明のプリプレグから製造された積層板より得られたプリント配線板を内層プリント配線板とし、本発明のプリプレグ、及び/または本発明以外の他のプリプレグを間に介して複数枚重ねるとともに、その最外層に金属箔を重ねたものを加熱加圧成形することによって、多層プリント配線基板を作成することができる。
【0025】
また、本発明以外のプリプレグから製造された積層板により得られた内層プリント配線板に、本発明のプリプレグを間に介して複数枚重ねるとともに、その最外層に金属箔を重ねたものを加熱加圧成形することによって、多層プリント配線基板を作成することもできる。
銅張り多層プリント配線基板の場合に、一般的に内層となる銅箔の表面を化学的に処理して酸化銅にする(黒化処理)。その際に、一般的には、成形中の最高加熱温度は120〜250℃、好ましくは150℃〜200℃で、最高加圧圧力は3〜50kgf/cm2 、好ましくは5〜40kgf/cm2 で、加熱・加圧時間は少なくとも10分、好ましくは20分以上である。
加熱加圧終了後に圧力開放下で150〜250℃の温度で再加熱して、樹脂の硬化をより進めることもできる(後硬化)。
【0026】
【実施例】
以下、実施例及び比較例により本発明を具体的に説明する。なお、本発明は以下の実施例に限定されるものではない。
樹脂としては下記の6種類の樹脂を表1、表2、表3に示す割合で配合して使用した。
例によっては2種類以上の樹脂を併用したので、表1、表2、表3には第1樹脂、第2樹脂として示した。尚、樹脂を予め溶剤で希釈しているものについては、表1、表2、表3の樹脂の配合量にはその固形分を示し、溶剤量は樹脂ワニス化に使用した溶剤量に足して溶剤配合量として示した。
【0027】
樹脂「A」:水分散用ビスフェノ−ルA型エポキシ樹脂(東都化成(株)製
アクアト−ト510、固形分:100%、エポキシ当量:200)
樹脂「B」:水分散型ノボラックエポキシ樹脂(東都化成(株)製 アクアト−ト5003、固形分:55%、溶剤:45%水、固形分エポキシ当量:205、)
樹脂「C」:水分散型ビスフェノ−ルA型エポキシアクリレ−ト(昭和高分子(株)製 リポキシEM−203、固形分:50%、溶剤:50%水)
樹脂「D」:ビスフェノ−ルA型エポキシ樹脂(油化シェルエポキシ(株)製 エピコ−ト819、固形分:100%、エポキシ当量:200)
樹脂「E」:ノボラック型エポキシ樹脂(油化シェルエポキシ(株)製 エピコ−ト180S65B70、固形分:70%、溶剤:30%メチルエチルケトン、エポキシ当量:205)
樹脂「F」:臭素化ビスフェノ−ルA型エポキシ樹脂(油化シェルエポキシ(株)製 エピコ−ト5046B80、固形分:80%、メチルエチルケトン:20%、エポキシ当量:475)
【0028】
樹脂を硬化させるための硬化剤、硬化触媒としては下記の4種類の硬化剤、及び2種類の硬化触媒を表1、表2、表3に示す割合で配合して使用した。
例によっては2種類以上の硬化剤、硬化触媒を併用したので、表1、表2、表3には、第1硬化剤、第2硬化剤、「2E4MZ」、「BPO」として示した。 硬化剤「a」:ジシアンジアミド(JIS規格の目の開き38μの篩で篩分け、38μの篩を通過するジシアンジアミドを使用した。)
硬化剤「b」:テトラブロモビスフェノ−ルA(JIS規格の目の開き38μmの篩で篩分け、38μmの篩を通過するテトラブロモビスフェノ−ルAを使用した。)
硬化剤「c」:変性ノボラック型フェノ−ルホルムアルデヒド樹脂(大日本インキ(株)製 バ−カム VH−4290を粉砕器により粉砕し、JIS規格の目の開きが38μmの篩で粒子を篩分け、38μの篩を通過する変性ノボラック型フェノ−ルホルムアルデヒド樹脂粒子を使用した。)
硬化剤「d」:1,3−ビス(ヒドラジドカルボエチル)−5−イソプロピルヒダントイン(味の素(株)製 アミキュアVDH)
硬化触媒「2E4MZ」:2−エチル−4−メチルイミダゾ−ル
硬化触媒「BPO」:ベンゾイルパ−オキサイド(日本油脂(株)製 ナイパ−BMTK40)
【0029】
樹脂ワニス化するための溶剤としては、下記の4種類の溶剤を表1、表2、表3に示す割合で配合して使用した。
例によっては2種類以上の溶剤を併用したので、表1、表2、表3には、「水」、「DMF」、「MCS」、「MEK」として示した。
溶剤「水」:蒸留水、及び/または既希釈樹脂の水
溶剤「DMF」:ジメチルホルムアミド
溶剤「MCS」:2−メトキシエタノ−ル
溶剤「MEK」:メチルエチルケトン及び/または既希釈樹脂のメチルエチルケトン
無機粉体としては水酸化アルミニウム(住友化学(株)製 C−308 平均粒子経:8μm)を、表1、表3に示す配合で使用した。
【0030】
(1)ガラスクロス
ヒ−トクリ−ニングにより脱油した7628(旭シュエ−ベル(株)製)を使用した。
(2)ガラスクロス前処理
N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシラン・塩酸塩(商品名:SZ6032、東レダウコ−ニングシリコ−ン(株)製)を0.5重量%溶解したシランカップリング剤溶液に、ガラス繊維織物を浸漬し、スクイズロ−ルで絞り、これを120℃のオ−ブン内で乾燥させた。(3)コロナ放電処理
表1、表2に示すコロナ放電処理としては、(2)のガラスクロスに、コロナ表面処理装置(ワイヤ−電極2本タイプ、春日電機(株)製)を用いて、印可電力1.5kW、周波数40kHz、処理時間1.0秒の条件でコロナ放電処理を施した。
【0031】
(4)樹脂ワニスの作成
表1、表2、表3に示す溶剤に、硬化剤、硬化触媒を加え、1時間攪拌して分散状態及び/または溶解状態とし、表1、表2、表3に示す樹脂、及び無機粉体を加えて再度2時間攪拌し、樹脂ワニスを作成した。
上記の方法で作成した樹脂ワニスの粘度、プリプレグの樹脂未含浸部の量、かつプリプレグを使用した積層板を作成し、ガラス転移温度、ハンダ耐熱性について下記の方法で評価した。
【0032】
(i) (ワニスの粘度測定)
ワニスを25℃の恒温水槽で10時間調温後、B形粘度計(芝浦システム(株)製 ビスメトロン)で、ロ−タ−No.1を使用し、回転数6rpm〜30rpmの条件で粘度を測定した。
(ii) (プリプレグの樹脂未含浸部分の評価)
プリプレグの、樹脂が含浸されたガラスクロスのタテ糸方向の断面及びヨコ糸方向の断面を、電子顕微鏡を用いて各方向で糸束100個を観察し、樹脂未含浸部分の発生している糸束の数を数え、その樹脂未含浸部分発生糸束の発生率を評価した。
【0033】
(iii) (積層板の作成)
プリプレグを4枚重ね、その両表層に厚さ18μmの銅箔を重ねて、175℃、35kgf/cm2 の条件で60分間加圧加熱成形し、厚さ0.8mmの両面銅張り積層板を得た。
(iv) (積層板の樹脂のガラス転移温度の測定)
両面銅張り積層板の銅箔をエッチングにより除去し、水洗、風乾し、RDA
II(レオメトリックス(株)製)で、昇温速度3℃/分で粘弾性挙動を測定し、tanδのピ−クの現れる温度をガラス転移温度とした。
(v) (積層板の吸湿耐熱性試験)
両面銅張り積層板の銅箔をエッチングにより除去し、水洗、風乾し、50mm×50mmに切断し、蒸留水で一定時間煮沸後、260℃の溶融ハンダに20秒間浸漬し、発生する欠点を観察した。
実施例1〜9、比較例1〜6について試験結果を表1に示した。
【0034】
【表1】

Figure 0003599481
【0035】
【表2】
Figure 0003599481
【0036】
【表3】
Figure 0003599481
但し、上記表1〜3において、コロナ放電処理:あり○、なし×であり、溶剤中の水含有率:90重量%以上○、90重量%未満×である。
【0037】
表1、表2、表3から明らかなように、実施例1〜で得られた、表面を予めシラン化合物処理を行い、次いでコロナ放電処理したガラスクロスを用いて溶剤中の水の含有量が90%以上の樹脂ワニスにより作成したプリプレグは、コロナ放電処理を施さず及び/又 は溶剤中の水の含有量が90%未満の樹脂ワニスにより作成したプリプレグを示す比較例1〜と比較して、樹脂未含浸部分が少なく、優れた樹脂未含浸部分抑制力を有していることが分かる。
また、プリプレグとしての諸特性にも優れていることが分かる。
【0038】
【発明の効果】
以上説明したように、本発明のガラスクロスに予めシラン化合物処理と、次いでコロナ放電加工を行った後、溶剤構成が水90重量%以上含む樹脂ワニスをガラスクロスに含浸させると言う特定の製造方法により得られたプリプレグは、樹脂未含浸部分が少ない特徴を有する。
特に本発明のプリプレグを使用すれば、樹脂未含浸部分がない積層板を得ることが可能であり、かつ地球環境、作業環境へ悪影響を与えることなく、優れた特性の積層板を得ること可能となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is particularly used for glass cloth reinforced resin laminates, to an improved manufacturing method of a glass cloth impregnated prepreg.
More particularly, the present invention includes a pre-silane compound treated glass cloth, and then was subjected to corona discharge machining, when the Purupuregu less resin non-impregnated portions so using a resin varnish containing a specific amount of water to obtain say, to provide a method of manufacturing a glass cloth resin-impregnated prepreg.
[0002]
[Prior art]
Conventionally, a glass cloth reinforced resin laminate processed into a printed wiring board or the like is a resin solution (hereinafter referred to as a resin varnish) having a high viscosity at room temperature or a viscosity reduced by dissolving a solid epoxy resin composition or the like in an organic solvent. Is impregnated into a glass cloth, the organic solvent is dried, and a resin-impregnated prepreg (hereinafter referred to as prepreg) in which the resin is in a semi-cured (B stage) state is produced. The prepreg is laminated and heated. It is manufactured in a laminate forming step of performing pressure molding and curing the resin to obtain a glass cloth reinforced resin laminate (hereinafter referred to as a laminate).
[0003]
However, when a resin non-impregnated portion occurs inside the yarn bundle of the glass cloth in the prepreg, the resin non-impregnated portion remains even after the laminating board forming step, and a resin unimpregnated portion occurs in the laminate. is there. The occurrence of the resin-unimpregnated portion is due to the fact that the viscosity of the resin varnish is so high that the resin varnish does not sufficiently penetrate into the yarn bundle of the glass cloth, and that the viscosity of the organic solvent in the resin varnish and the surface tension are extremely low compared to the resin. It is considered that the reason for this is that only the organic solvent selectively penetrates into the inside of the yarn bundle of the glass cloth, and as a result, the portion becomes a resin-unimpregnated portion after the organic solvent is dried.
[0004]
In order to produce a prepreg that does not cause the resin unimpregnated portion, and in recent years, from the viewpoint of protecting the global environment and improving the working environment, it has been studied to reduce the use of organic solvents. Attempts have been made to change the resin composition itself from a resin varnish reduced in viscosity by dissolution and dilution with a solvent to a low organic solvent resin varnish or a solventless resin composition.
However, due to the high viscosity of the resin, the resin varnish does not sufficiently penetrate into the yarn bundle of the glass cloth in the prepreg manufacturing process, so that a resin-unimpregnated portion occurs in the prepreg, which remains after the lamination molding process. Therefore, there is a problem that a resin-unimpregnated portion is generated in the laminate.
[0005]
Improvements in the method of manufacturing a glass cloth reinforced resin laminate for the above-mentioned problems include a method of responding to the prepreg manufacturing process or the laminate forming process by making the process in a vacuum state, a method of forming a laminate in a high pressure molding process, and the like. However, it is not preferable from the viewpoint of resource saving and energy saving. In addition, there is a problem in the performance of the laminate, such as a decrease in the dimensional stability of the laminate due to the high-pressure molding.
Further, as an improvement of the resin composition, a resin, such as an unsaturated polyester resin, in which a low-viscosity reactive monomer such as styrene is mixed to reduce the viscosity with no solvent has been applied. Since a monomer having high performance is used, there is a problem that volatile vapor is generated, and the effect is insufficient in terms of protecting the global environment and improving the working environment.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to solve the above problem. That is, it is an object of the present invention to provide an improvement in a production method for producing a prepreg having a small amount of resin-unimpregnated portions and a prepreg having no resin-unimpregnated portions without using an organic solvent which adversely affects the environment.
[0007]
[Means to solve the problem]
The inventor of the present invention has conducted intensive studies to solve the above-described problems. As a result, the solvent composition of the resin varnish to be impregnated into the glass cloth after performing the silane compound treatment on the glass cloth in advance, and then performing the corona discharge machining, is as follows. % Of resin varnish was applied to a printed wiring board, and it was found that a pull prepreg with less resin-impregnated portions could be obtained, thereby completing the present invention.
That is, the present invention:
( 1 ) In a method for producing a prepreg in which a thermosetting resin varnish is impregnated into a glass cloth , the glass cloth is preliminarily treated with a silane compound, subjected to corona discharge machining, and then a resin containing 90% by weight or more of water in a solvent composition. Provided is a method for producing a prepreg obtained by impregnating a glass cloth with a varnish.
[0008]
Hereinafter, the present invention will be described in detail.
(A) Resin varnish The resin varnish referred to here is to impregnate the thermosetting resin into the yarn bundle of the glass cloth and to dry the prepreg in order to reduce the viscosity of the thermosetting resin, and to remove it by drying at the time of curing. A mixed liquid of a resin and a solvent in which a solvent is mixed with the resin.
As the thermosetting resin (hereinafter referred to as “resin”) in the present invention, a water-soluble resin having a hydrophilic group in the molecular skeleton of the resin component or a water-dispersible resin obtained by forcibly emulsifying a resin having no hydrophilic group by adding an emulsifier thereto Any of the thermosetting resins can also be used.
[0009]
For example, a compound having a water-soluble and / or water-dispersible epoxy group may be converted to a water-soluble and / or water-dispersible, and / or powdery amine compound, block isocyanate compound, phenol compound, imidazole. Epoxy resin cured with a compound, a compound having a dicyandiamide, a compound having a hydrazide group, a compound having a carboxyl group, a compound having a carbodiimide group; water-soluble and / or water-dispersible epoxy acrylate or unsaturated polyester is subjected to thermal polymerization and And / or a resin cured with a peroxide such as benzoyl peroxide; a compound having a water-soluble and / or water-dispersible hydroxyl group and / or an amino group is cured with a water-soluble and / or water-dispersible block isocyanate. Urethane resins, melamine resins and the like can be mentioned.
[0010]
The glass transition temperature of the cured product of the resin is 100 ° C. or higher, preferably 120 ° C. or higher.
The glass transition temperature of the resin is defined as the tan δ peak of viscoelastic behavior of a glass cloth reinforced laminate having a resin content of 35.0 to 45.0% by weight measured by RDAII (manufactured by Rheometrics). Means the temperature indicated by
In the case of a resin having a glass transition temperature of less than 100 ° C., the glass transition temperature of the resin needs to be 100 ° C. or higher because the moisture absorption heat resistance and the electrolytic corrosion properties, which are the basic performances of a resin printed circuit board using a glass cloth, decrease. And preferably 120 ° C. or higher.
[0011]
In addition, a water-soluble and / or water-dispersible and / or powdered thermoplastic resin for compensating for the brittleness of the resin; a water-soluble and / or water-dispersible bromine-containing organic material for imparting flame retardancy; Compounds that impart flame retardancy such as organic substances and phosphorus-containing organic substances, and powders that impart flame retardancy such as bromine-containing organic substances, chlorine-containing organic substances, phosphorus-containing organic substances, metal oxides, metal oxide hydrates, and phosphorus In order to improve the strength of the body or the laminate, powder of a metal oxide, an organic compound or the like may be mixed with the resin varnish.
For the purpose of adjusting the viscosity of the resin varnish in the form of an aqueous solution and / or an aqueous dispersion, a thickening stabilizer such as aerosil, polyacrylic acid, sodium alginate, propylene glycol alginate, gum arabic, methylcellulose, etc. is mixed. You may.
[0012]
When the above powder is mixed with a resin varnish, the average particle diameter of the powder is less than 100 μm, preferably less than 60 μm. The lower limit of the particle diameter may be fine, but may be about 0.1 μm from the viewpoint of the dispersibility of the particles in the resin varnish.
When the average particle diameter of the powder is 100 μm or more, the penetration of the resin varnish into the yarn bundle of the glass cloth is hindered, and a resin-impregnated portion of the prepreg is generated.
[0013]
The solvent for converting the resin into a resin varnish must be composed of water. Of course, if the varnish of the aqueous solution or the aqueous dispersion can be used, other organic solvents of less than 10% by weight may be contained. That is, the composition of the solvent of the resin varnish of water 90 wt% or more, good Mashiku must contain water 95 wt% or more.
By setting the composition of the solvent of the resin varnish of the thermosetting resin to 90% by weight or more of water, a resin varnish having a viscosity necessary for penetration of the resin varnish into the yarn bundle of the glass cloth is obtained by water dilution, and Since water has a higher surface tension than the organic solvent, the selective penetration of the solvent into the yarn bundle of the glass cloth is less than that of the organic solvent, and there is also a synergistic effect of suppressing the generation of the resin non-impregnated portion, A prepreg with less resin-unimpregnated portions can be obtained.
[0014]
Furthermore, the use of water as the solvent is different from thermosetting resins dissolved or dispersed in organic solvents, since the only exhaust gas in the drying and heating processes during prepreg production is water vapor. The risk of adverse effects on the global environment, the danger of chronic and acute poisoning due to the increase in the concentration of organic solvents in the working environment, and the danger of explosion due to flammable organic solvents are eliminated. Further, large-scale equipment such as an explosion-proof device and an organic solvent recovery device for reducing adverse effects and dangers of the organic solvent is not required.
[0015]
(B) Method for Producing Prepreg As a method for producing a prepreg according to the present invention, first, a resin varnish (hereinafter referred to as a resin varnish (hereinafter referred to as a resin) in which a thermosetting resin (hereinafter referred to as a resin) is dissolved in a solvent having a solvent composition of 90 wt% or more of water (hereinafter referred to as a solvent). Resin varnish) into a glass cloth.
As the water that can be used in the present invention, any of tap water, distilled water, ion-exchanged water, soft water, and hard water can be used, and a small amount (less than 10% by weight) of an organic solvent can be used in addition to water.
The solid content in the resin varnish is 20.0 to 80.0% (the same applies to weight% or less), preferably 30.0 to 80.0%.
[0016]
The viscosity of the resin varnish at 25 ° C. is 20 cP to 2000 cP, preferably 50 cP to 1000 cP.
If the viscosity of the resin solution is less than 20 cP, the resin impregnated into the glass fiber fabric will flow too much, making it difficult to stabilize the resin content of the prepreg. The impregnation of the resin solution into the prepreg is insufficient, resulting in an increase in the resin-impregnated portion of the prepreg and the generation of the resin-impregnated portion of the laminate.
[0017]
Further, the content of glass cloth (hereinafter, glass content) in the prepreg in the prepreg state is at least 70% or less, preferably 65% or less. The lower limit is limited from the viewpoint of the dimensional stability of the laminate, and is usually preferably about 20%.
If the glass content of the prepreg exceeds 70%, the prepreg has resin only in the yarn bundle portion of the glass fiber fabric, and cannot be formed into a laminate.
[0018]
Also, if the glass cloth is subjected to corona discharge treatment before the resin is impregnated into the glass cloth, the glass surface is activated, and the penetration of the resin varnish into the yarn bundle of the glass cloth is improved. Of prepreg with a small amount.
For example, in the case of corona discharge treatment, the applied power is 0.1 kW to 40.0 kW, preferably 0.3 kW to 20.0 kW, the frequency is 1 kHz to 120 kHz, preferably 5 kHz to 50 kHz, and the treatment time is preferably 0.05 seconds. The time is more preferably 0.1 second or more.
[0019]
After impregnating the glass cloth with the resin varnish, the solvent is dried and the resin is semi-cured. As the method, a known method such as hot air, electromagnetic waves, and the like are possible, a method of drying the solvent and semi-curing the resin by heating, a method of drying the solvent by heating, and a method of semi-curing the resin by ultraviolet rays or electron beams. The application method is not particularly limited.
To prepare a prepreg from a resin varnish, semi-cured by drying and curing in a dryer at a temperature of 100 to 200 ° C., preferably 120 to 180 ° C. for 1 to 25 minutes, preferably 3 to 20 minutes. A prepreg in a state (B stage) is created.
[0020]
The semi-cured state means that the resin of the prepreg is dissolved and extracted with methyl ethyl ketone, and after the methyl ethyl ketone is removed at a temperature of 30 ° C. or less, the gel time of the resin measured at 170 ° C. is 10 to 300 seconds, preferably 20 to 200 seconds.
If the gel time is less than 10 seconds, the flow of the resin is small during the laminate molding process, and the adhesiveness between the prepreg layers is reduced. If the gel time exceeds 300 seconds, the flow of the resin is large during the laminate molding process, and the stable production of the laminate is achieved. Becomes difficult.
[0021]
In order to improve the adhesion between the resin and the glass, it is necessary to facilities previously silane compound treated glass cloth prior to impregnation with the resin varnish to the glass cloth.
Examples of silane compounds that can be used include, for example, γ- (2-aminoethyl) aminopropyltrimethoxysilane,
γ- (2-aminoethyl) aminopropylmethyldimethoxysilane,
3-aminopropyltriethoxysilane,
3-aminopropylmethyldiethoxysilane,
γ-methacryloxypropyltrimethoxysilane,
γ-methacryloxypropylmethyldimethoxysilane,
N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane and its hydrochloride,
N-β- (N-vinylbenzylaminoethyl) -γ-aminopropylmethyldimethoxysilane and its hydrochloride,
N-β- (N-benzylaminoethylaminopropyl) trimethoxysilane and its hydrochloride,
N-β- (N-benzylaminoethylaminopropyl) methyldimethoxysilane and its hydrochloride,
γ-glycidoxypropyltrimethoxysilane,
A silane compound such as γ-glycidoxypropyldimethoxysilane can be used.
[0022]
Further, the glass cloth applied to the present invention may be any glass cloth such as E glass, A glass, D glass, and S glass. Further, as the glass cloth, the weaving density is 10 to 200 yarns / 25 mm, preferably 15 to 100 yarns / 25 mm, and the mass is 5 to 400 g / m 2 , preferably 10 to 300 g / m 2. For plain weave, satin weave, twill weave, Nanako weave and the like can be used. Further, a glass cloth woven with glass threads subjected to texture processing on both or both sides may be used. Further, a glass cloth subjected to physical processing such as fiber opening by a columnar flow or a water flow by a high-frequency vibration method may be used.
[0023]
(C) Production of Laminated Plate from Prepreg Further, a laminated plate can be obtained by laminating a predetermined number of the prepregs of the present invention produced as described above, and heating and pressing them. Also, at this time, a predetermined number of metal foils are stacked on one side or both sides of the prepreg, and the prepreg and the metal foil are heated and pressed together to produce a glass fiber reinforced resin metal foil-clad laminate for a printed wiring board. can do.
As the metal foil, a copper foil, an aluminum foil, a stainless steel foil or the like can be used.
[0024]
Further, a printed wiring board can be obtained by forming a circuit by etching or the like of a metal foil of a laminate manufactured from the prepreg of the present invention.
Further, a printed wiring board obtained from a laminate manufactured from the prepreg of the present invention is used as an inner-layer printed wiring board, and a plurality of prepregs of the present invention and / or other prepregs other than the present invention are interposed therebetween. A multilayer printed wiring board can be produced by heating and press-molding a metal foil laminated on the outermost layer.
[0025]
In addition, a plurality of sheets of an inner layer printed wiring board obtained from a laminate manufactured from a prepreg other than the present invention are stacked with a prepreg of the present invention interposed therebetween and a metal foil is stacked on the outermost layer, and heated. By performing pressure molding, a multilayer printed wiring board can be produced.
In the case of a copper-clad multilayer printed wiring board, generally, the surface of a copper foil serving as an inner layer is chemically treated into copper oxide (blackening treatment). At that time, generally, the maximum heating temperature during molding is 120 to 250 ° C., preferably 150 to 200 ° C., and the maximum pressing pressure is 3 to 50 kgf / cm 2 , preferably 5 to 40 kgf / cm 2. The heating and pressurizing time is at least 10 minutes, preferably 20 minutes or more.
After completion of the heating and pressurizing, the resin may be reheated at a temperature of 150 to 250 ° C. under pressure release to further advance the curing of the resin (post-curing).
[0026]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. Note that the present invention is not limited to the following examples.
As the resins, the following six kinds of resins were blended and used in proportions shown in Tables 1, 2 and 3.
In some cases, two or more resins were used in combination, and therefore, Table 1, Table 2, and Table 3 show the first resin and the second resin. In the case where the resin is diluted with a solvent in advance, the solid content is shown in the compounding amounts of the resins in Tables 1, 2 and 3, and the amount of the solvent is calculated by adding the amount of the solvent used in the resin varnishing. It was shown as the amount of the solvent compounded.
[0027]
Resin "A": Bisphenol A type epoxy resin for water dispersion (Aquato 510 manufactured by Toto Kasei Co., Ltd., solid content: 100%, epoxy equivalent: 200)
Resin "B": water-dispersed novolak epoxy resin (Aquato 5003, manufactured by Toto Kasei Co., Ltd., solid content: 55%, solvent: 45% water, solid epoxy equivalent: 205)
Resin "C": water-dispersed bisphenol A type epoxy acrylate (Ripoxy EM-203, manufactured by Showa Polymer Co., Ltd., solid content: 50%, solvent: 50% water)
Resin "D": Bisphenol A type epoxy resin (Epicoat 819, manufactured by Yuka Shell Epoxy Co., Ltd., solid content: 100%, epoxy equivalent: 200)
Resin "E": novolak type epoxy resin (Epicoat 180S65B70, manufactured by Yuka Shell Epoxy Co., Ltd., solid content: 70%, solvent: 30% methyl ethyl ketone, epoxy equivalent: 205)
Resin “F”: brominated bisphenol A type epoxy resin (Epicoat 5046B80, manufactured by Yuka Shell Epoxy Co., Ltd., solid content: 80%, methyl ethyl ketone: 20%, epoxy equivalent: 475)
[0028]
As a curing agent and a curing catalyst for curing the resin, the following four types of curing agents and two types of curing catalysts were mixed and used in proportions shown in Tables 1, 2, and 3.
In some cases, two or more types of curing agents and curing catalysts were used in combination. Therefore, Tables 1, 2, and 3 show the first curing agent, the second curing agent, "2E4MZ", and "BPO". Curing agent "a": dicyandiamide (sieved with a 38μ sieve having a mesh opening of JIS standard, and dicyandiamide passing through a 38μ sieve was used)
Curing agent "b": tetrabromobisphenol A (screened with a 38 μm sieve according to JIS standard, and tetrabromobisphenol A passing through a 38 μm sieve was used.)
Curing agent "c": Modified novolak phenol-formaldehyde resin (Barcam VH-4290 manufactured by Dainippon Ink and Chemicals, Inc.) is pulverized with a pulverizer, and the particles are sieved through a 38 μm JIS standard sieve. , Modified phenolic formaldehyde resin particles passing through a 38μ sieve were used.)
Curing agent "d": 1,3-bis (hydrazidecarboethyl) -5-isopropylhydantoin (AMICURE VDH manufactured by Ajinomoto Co., Inc.)
Curing catalyst "2E4MZ": 2-ethyl-4-methylimidazole curing catalyst "BPO": benzoyl peroxide (Nipa-BMTK40 manufactured by NOF Corporation)
[0029]
As the solvent for forming the resin varnish, the following four types of solvents were blended and used in proportions shown in Tables 1, 2, and 3.
In some cases, two or more solvents were used in combination, and therefore, in Tables 1, 2, and 3, they are shown as "water", "DMF", "MCS", and "MEK".
Solvent "water": distilled water and / or water solvent of dilute resin "DMF": dimethylformamide solvent "MCS": 2-methoxyethanol solvent "MEK": methyl ethyl ketone and / or inorganic powder of methyl diketone of dilute resin Aluminum hydroxide (C-308 manufactured by Sumitomo Chemical Co., Ltd., average particle diameter: 8 μm) was used as a body in the composition shown in Tables 1 and 3.
[0030]
(1) 7628 (manufactured by Asahi Swebel Co., Ltd.) deoiled by glass cloth heat cleaning was used.
(2) Glass cloth pretreatment N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane hydrochloride (trade name: SZ6032, manufactured by Toray Dow Corning Silicone Co., Ltd.). The glass fiber fabric was immersed in a 5% by weight solution of the silane coupling agent, squeezed with a squeeze roll, and dried in an oven at 120 ° C. (3) Corona discharge treatment As the corona discharge treatment shown in Tables 1 and 2, the corona surface treatment device (two wire-electrode type, manufactured by Kasuga Electric Co., Ltd.) was used for the glass cloth of (2). Corona discharge treatment was performed under the conditions of an applied power of 1.5 kW, a frequency of 40 kHz, and a treatment time of 1.0 second.
[0031]
(4) Preparation of resin varnish A curing agent and a curing catalyst were added to the solvents shown in Tables 1, 2, and 3 and stirred for 1 hour to obtain a dispersed state and / or a dissolved state. And the inorganic powder were added and stirred again for 2 hours to prepare a resin varnish.
The viscosity of the resin varnish prepared by the above method, the amount of the resin-unimpregnated portion of the prepreg, and a laminate using the prepreg were prepared, and the glass transition temperature and solder heat resistance were evaluated by the following methods.
[0032]
(I) (Measurement of varnish viscosity)
The temperature of the varnish was adjusted in a constant temperature water bath at 25 ° C. for 10 hours, and then the rotor No. was measured with a B-type viscometer (Vismetron manufactured by Shibaura System Co., Ltd.). Using No. 1, the viscosity was measured under the conditions of a rotation speed of 6 rpm to 30 rpm.
(Ii) (Evaluation of resin-impregnated portion of prepreg)
The cross section of the prepreg in the warp direction and the weft direction of the glass cloth impregnated with the resin is observed by using an electron microscope for 100 yarn bundles in each direction, and the resin unimpregnated portion is generated. The number of bundles was counted, and the rate of occurrence of the resin-unimpregnated portion-generated yarn bundles was evaluated.
[0033]
(Iii) (Preparation of laminated board)
Four prepregs are laminated, a copper foil of 18 μm thickness is laminated on both surface layers, and pressed and heated at 175 ° C. and 35 kgf / cm 2 for 60 minutes to form a 0.8 mm-thick double-sided copper-clad laminate. Obtained.
(Iv) (Measurement of glass transition temperature of resin of laminate)
The copper foil on the double-sided copper-clad laminate is removed by etching, washed with water, air-dried, and RDA
II (manufactured by Rheometrics Co., Ltd.), the viscoelastic behavior was measured at a heating rate of 3 ° C./min, and the temperature at which a peak of tan δ appeared was defined as the glass transition temperature.
(V) (Moisture absorption heat resistance test of laminate)
The copper foil of the double-sided copper-clad laminate is removed by etching, washed with water, air-dried, cut into 50 mm x 50 mm, boiled with distilled water for a certain time, immersed in molten solder at 260 ° C for 20 seconds, and observed defects generated did.
The test results for Examples 1 to 9 and Comparative Examples 1 to 6 are shown in Table 1.
[0034]
[Table 1]
Figure 0003599481
[0035]
[Table 2]
Figure 0003599481
[0036]
[Table 3]
Figure 0003599481
However, in Tables 1 to 3, the corona discharge treatment: yes or no x, and the water content in the solvent: 90% by weight or more and ○ and less than 90% by weight x.
[0037]
As is clear from Tables 1, 2 and 3, the water content in the solvent was obtained using the glass cloth obtained in Examples 1 to 8 which had been previously treated with a silane compound and then corona-discharged. Comparative There prepregs created by more than 90% of the resin varnish, is not and / or subjected to a corona discharge treatment as in Comparative example 1 to 7 shown a prepreg content of water in the solvent is prepared by resin varnish of less than 90% Thus, it can be seen that the resin non-impregnated portion is small and has excellent resin non-impregnated portion suppressing power.
Further, it can be seen that the prepreg has excellent properties as well.
[0038]
【The invention's effect】
As described above, the glass cloth of the present invention is preliminarily treated with a silane compound and then subjected to corona discharge machining, and then the glass cloth is impregnated with a resin varnish containing 90% by weight or more of water. The prepreg obtained by (1) has a feature that the resin-unimpregnated portion is small.
In particular, by using the prepreg of the present invention, it is possible to obtain a laminate having no resin-impregnated portion, and to obtain a laminate having excellent characteristics without adversely affecting the global environment and the working environment. Become.

Claims (1)

熱硬化性樹脂ワニスをガラスクロスに含浸させてなるプリプレグの製造方法において、ガラスクロスに予めシラン化合物処理を行い、コロナ放電加工を行った後、溶剤構成が水90重量%以上含む樹脂ワニスをガラスクロスに含浸させてなることを特徴とするプリプレグの製造方法。In a method for producing a prepreg, in which a thermosetting resin varnish is impregnated into a glass cloth , the glass cloth is subjected to a silane compound treatment in advance, corona discharge machining is performed, and then a resin varnish containing 90% by weight or more of water as a solvent in the glass cloth. A method for producing a prepreg, wherein the cloth is impregnated.
JP12633496A 1996-04-24 1996-04-24 Manufacturing method of prepreg Expired - Lifetime JP3599481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12633496A JP3599481B2 (en) 1996-04-24 1996-04-24 Manufacturing method of prepreg

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12633496A JP3599481B2 (en) 1996-04-24 1996-04-24 Manufacturing method of prepreg

Publications (2)

Publication Number Publication Date
JPH09291161A JPH09291161A (en) 1997-11-11
JP3599481B2 true JP3599481B2 (en) 2004-12-08

Family

ID=14932615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12633496A Expired - Lifetime JP3599481B2 (en) 1996-04-24 1996-04-24 Manufacturing method of prepreg

Country Status (1)

Country Link
JP (1) JP3599481B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003034731A (en) * 2001-07-24 2003-02-07 Asahi Schwebel Co Ltd Method of manufacturing prepreg

Also Published As

Publication number Publication date
JPH09291161A (en) 1997-11-11

Similar Documents

Publication Publication Date Title
WO2011132408A1 (en) Epoxy resin composition, prepreg, metal-clad laminate, and printed wiring board
JP3599481B2 (en) Manufacturing method of prepreg
JP3570806B2 (en) Glass fiber woven fabric and method for producing the same
JP2009079128A (en) Resin composition, prepreg, cured product, sheet-like laminated body, laminate and multilayer laminate
JP2008127530A (en) Epoxy resin composition, prepreg, metal-clad laminate, printed wiring board and multilayer printed wiring board
JP2003213021A (en) Prepreg, metal-clad laminated plate and printed wiring plate using the same
JP2001011750A (en) Glass fiber woven fabric
JPH0362734B2 (en)
JP3897699B2 (en) Glass cloth and its use
JP2000129086A (en) Epoxy resin composition, prepreg, resin-coated metallic foil and laminate
JP2003034731A (en) Method of manufacturing prepreg
JP2003034728A (en) Low dielectric constant prepreg
JP4969425B2 (en) Aramid fiber fabric, and prepreg and laminate using the fabric
JP2003041486A (en) Glass cloth having low permittivity
JP4703030B2 (en) Glass cloth patterned by plating
JP2012041662A (en) Organic fiber woven fabric for reinforcing laminate
JP2002348754A (en) Glass cloth, prepreg, laminated sheet, and printed wiring board
JP3383440B2 (en) Copper clad laminate
JPH1045921A (en) Prepreg
JP2003031957A (en) Manufacturing method of multilayer printed wiring board
JP2000129087A (en) Epoxy resin composition, prepreg, resin-coated metallic foil and laminate
JP2006037252A (en) Method for producing fiber structure for resin reinforcement
JP2004188882A (en) Manufacturing process for laminate
JP4866087B2 (en) Prepreg for printed wiring boards, copper-clad laminates
JP2004146711A (en) Manufacturing method of multilayer printed wiring board and multilayer printed wiring board manufactured by it

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040914

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

EXPY Cancellation because of completion of term