JP3598407B2 - Method and apparatus for manufacturing heat exchange parts - Google Patents

Method and apparatus for manufacturing heat exchange parts Download PDF

Info

Publication number
JP3598407B2
JP3598407B2 JP12912995A JP12912995A JP3598407B2 JP 3598407 B2 JP3598407 B2 JP 3598407B2 JP 12912995 A JP12912995 A JP 12912995A JP 12912995 A JP12912995 A JP 12912995A JP 3598407 B2 JP3598407 B2 JP 3598407B2
Authority
JP
Japan
Prior art keywords
heat radiation
heat
starting material
heat exchange
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12912995A
Other languages
Japanese (ja)
Other versions
JPH08306833A (en
Inventor
宏巳 片岡
Original Assignee
宏巳 片岡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏巳 片岡 filed Critical 宏巳 片岡
Priority to JP12912995A priority Critical patent/JP3598407B2/en
Publication of JPH08306833A publication Critical patent/JPH08306833A/en
Application granted granted Critical
Publication of JP3598407B2 publication Critical patent/JP3598407B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Forging (AREA)

Description

【0001】
【発明の目的】
【産業上の利用分野】
本発明はマイクロプロセッサやインバータ等の放熱を促す金属製の熱交換部品の製造方法並びに製造装置に関するものである。
【0002】
【発明の背景】
集積回路など電子部品用の熱交換部品としては、金属製の基板部上に多数の放熱突起を形成したものがあり、これら突起物によって放熱作用面積の増大を図るようにしている。
ところでこのような熱交換部品の製造手法としては、精密性や生産効率において塑性加工によるものが優れる。
【0003】
塑性加工による製造手法としては、例えば本発明者がすでに提案している特願平7−21212号に示されるものがある。このものは図12に示すように、放熱突起成形型3′によって掴持型4により保持された出発素材(金属素材W′)を押圧し、成形孔21′内に出発素材(金属素材W′)の一部を絞り込み、基板部H1′の表面に放熱突起H2′を多数成形するものであって、このような熱交換部品の製造手段を採ると、例えば細く長い放熱突起H2′を形成できる。
【0004】
しかし、図示されるように出発素材(金属素材W′)を横からサポートする掴持型4等と放熱突起成形型3′との型の合わせ目があると、加圧時の高圧力によって、その合わせ目が瞬間的に幾分か広がって隙間が生じ、ここに出発素材(金属素材W′)が成形時に流れ込み、基板部H1′の放熱突起H2′が形成される面側にバリを生じさせ、これに伴い種々の問題点を派生する。
すなわち、このような状態となると出発素材(金属素材W′)の表面に塗布した潤滑材(例えばテフロン膜)がバリ状となった部分に奪われ放熱突起H2′のスムーズな成形が阻害されるということがあった。また、当然ながらバリが生じるとこれを除去する工程を必要とするし、また前記潤滑材が途切れることと相まって、特に外周側に形成される放熱突起H2′に充分に材料が流れず、その寸法が充分高く形成されないという問題も派生する。
【0005】
【開発を試みた技術的事項】
本発明はこのような背景からなされたものであって、放熱突起成形型と掴持型等との間であって、放熱突起H2′が成形される側に出発素材または出発素材と共にその表面に塗布した潤滑材が入り込むことなく、スムーズな成形が可能な熱交換部品の製造方法並びに製造装置の開発を試みたものである。
【0006】
【発明の構成】
【目的達成の手段】
すなわち請求項記載の熱交換部品の製造方法は、金属製のブロック状の出発素材を塑性変形させ、基盤部と、この基盤部から立ち上がるように成形された多数の放熱突起とを具えた部材を製造する方法であり、前記出発素材を塑性変形させるにあたっては、連続面で形成された受入凹部とこの受入凹部の底部に穿孔された多数の成形孔を具える放熱突起成形型と、この受入凹部に進入可能でかつ押出接触面に内広がり状の保持凹部を有する押出型とを用い、前記出発素材受入凹部内で押出型の押圧を加えて、成形孔により放熱突起を基盤から突出するように形成させると共に押出接触面側では出発素材の一部を保持凹部に押出さてチャッキング状態とし、離型図るようにしたことを特徴として成るものである。
【0007】
また請求項記載の熱交換部品の製造装置は、金属製のブロック状の出発素材を塑性変形させ、基盤部と、この基盤部から立ち上がるように成形された多数の放熱突起とを具えた部材を製造する装置であり、この装置は、連続面で形成された受入凹部とこの受入凹部の底部に穿孔された多数の成形孔とを具える放熱突起成形型と、この受入凹部に進入可能でかつ押出接触面に内広がり状の保持凹部を有する押出型とを具えて成り、前記出発素材に対して、受入凹部内で押出型の押圧を加えて、成形孔により放熱突起を基盤から突出するように形成させると共に押出接触面側では出発素材の一部を保持凹部に押出さてチャッキング状態とし、離型図るようにしたものであることを特徴として成るものである。
【0008】
更にまた請求項記載の熱交換部品の製造装置は、前記請求項記載の要件に加え、前記成形孔には、絞り部と、この絞り部の奥方に在りこの絞り部よりは大きな孔径の拡開部とから成り、成形終了時に放熱突起の先端が当接しない余剰スペースを有していることを特徴として成るものである。
【0009】
更にまた請求項記載の熱交換部品の製造装置は、前記請求項2または3記載の要件に加え、前記押出型には、前記保持凹部内に出没自在なノックピンが設けられていることを特徴として成るものである。
【0010】
更にまた請求項記載の熱交換部品の製造装置は、前記請求項2、3または4記載の要件に加え、前記放熱突起成形型の押圧面には、各成形孔を個別に仕切る仕切リブが形成されていることを特徴として成るものである。
【0011】
更にまた請求項記載の熱交換部品の製造装置は、前記請求項2、3または4記載の要件に加え、前記放熱突起成形型の押圧面には、各成形孔を個別に仕切る案内溝が形成されていることを特徴として成るものである。
【0012】
【発明の作用】
請求項1、記載の熱交換部品の製造方法並びに製造装置によれば、放熱突起成形型の受入凹部に型の合わせ目がないため、出発素材の放熱突起が成形される側の一部が型の合わせ目に流れ込み、基板部の放熱突起が成形される面側にはバリが生じることがない。従ってこの部位のバリを後に除去する工程を必要としないし、放熱突起H2が成形される側の出発素材表面の潤滑材(潤滑膜)を破断して途切れさすことなく、変形される出発素材表面に常に留まらせておくことができる。その結果、出発素材は確実に放熱突起を形成すべく案内されるように流れて変形し、外周側の放熱突起が低く形成されるなどの問題点が生じない。なお基板部の放熱突起が成形されない面側にはバリが生じることもあるが、こちら側に生じるバリは、潤滑材を途切れさすこともなく成形される放熱突起にはほとんど影響を及ばさない。更にまた、押出型の押出接触面には、保持凹部が形成されているため、成形時に出発素材の一部が保持凹部内に充填されて、成形された製品素材が把持される。従って、成形された製品素材を放熱突起成形型から離型するのに、製品素材を把持するためのチャッキング装置等を別途必要としない。
【0013】
請求項記載の熱交換部品の製造装置によれば、成形孔における絞り部のみが出発素材、製品素材、そして出発素材から製品素材に至るまでの中間素材(以下これらを特に区別して指さない場合には、総称して金属素材と呼称する)に接触し、拡開部は接触しないため、放熱突起の成形時に金属素材から受ける抵抗が従来の塑性加工に比べて非常に少ない。従って、基板部に対し細くて断面が複雑なものなど精巧な放熱突起を単位面積当たりに多数本塑性成形することもできる。また放熱突起成形型の成形孔は成形終了時に放熱突起の先端が当接しない余剰スペースを有しているため、従来の密閉型の手法のように遅く成形される放熱突起のために大きな成形加圧を必要とせず、遅く成形される放熱突起以外の放熱突起にとっては不必要に充満密着されることもなく、型部材の負荷が小さい。また出発素材の体積誤差や素材硬度、また放熱突起成形型等の作製誤差や成形のための潤滑膜の不均一などが従来ほど問題とならない。
【0014】
請求項記載の熱交換部品の製造装置によれば、押出型には、保持凹部内に出没自在なノックピンが設けられているため、ノックピンを保持凹部内に出没させることにより製品素材を簡単に押出型から離型することができる。
【0015】
請求項記載の熱交換部品の製造装置によれば、放熱突起成形型の押圧面における各成形孔の周縁には、これらを個別に仕切る仕切リブが形成されているため、出発素材が抵抗の少ない成形孔の方へ不規則に流れ込むことがない。従って放熱突起の長さが不揃いとならない。
【0016】
請求項記載の熱交換部品の製造装置によれば、放熱突起成形型の押圧面における各成形孔の周縁には、これらを個別に仕切る案内溝が形成されているため、押圧面が平坦なものと比べて出発素材の表面に設けられる潤滑材の流動が全体的に規制される。また案内溝の案内傾斜面を徐々に潤滑材が移動して成形孔内に送り出されるため、特に長い放熱突起を形成する場合に成形初期時に成形孔内に流れ過ぎ、成形完了前に潤滑不足となるようなことがない。従って放熱突起の成形が成形初期時から成形完了時まで常にスムーズに行われ、放熱突起の長さも不揃いとならない。
【0017】
【実施例】
以下、本発明の熱交換部品の製造方法並びに製造装置について図面に基づいて具体的に説明する。なお以下の説明にあたっては、まず本発明によって製造される熱交換部品Hについて説明し、次いでこのような熱交換部品Hを成形するのに使用される本発明の熱交換部品の製造装置1について説明する。そしてその後、このような熱交換部品の製造装置1の使用状態を説明しながら併せて本発明の熱交換部品の製造方法について説明する。
なお本発明においては、前記熱交換部品の製造装置1で成形を全く施していない状態の金属製の材料を出発素材W0 、加工途中のものを中間素材W1 、成形が終了した時点のものを製品素材W2 と定義し、そしてこれらすべてを特に区別して説明しない場合には金属素材Wと総称する。また前記製品素材W2 の放熱突起H2の上端を適宜切り揃え、全体にアルマイトまたはメッキ等の表面処理を施したもの、及び前記製品素材W2 のままのものを本発明の熱交換部品Hと定義する。
【0018】
まず図1に示すものは、熱交換部品Hの使用状態を示すもので、発熱が著しい電子部品Eを基板部H1にて支持して配線用基板B上に取り付けられている。このように熱交換部品Hは電子部品Eを支持することにより電子部品Eから発生する熱を放熱して電子部品Eの冷却を図っている。
【0019】
熱交換部品Hについて詳細に述べると、図2、3に示すように矩形状の基板部H1上に多数の円柱形の放熱突起H2がほぼ垂直に立ち上がるように塑性成形されている。因みにこの熱交換部品Hは主成分をアルミニウムとした金属材料から成り、基板部H1の放熱突起H2の形成された面は縦が60mm、横が60mmで、面積が3600mm2 である。また放熱突起H2の直径は0.8mmで、長さが25mm、そして基板部H1上に縦25×横25本で625本形成されており、625本の合計表面積は約40000mm2 である。従ってこの前記放熱突起H2の表面積は、放熱突起H2が形成された基板部H1の面の面積の約11倍となっている。
熱交換部品Hは以上のように放熱突起H2の単位面積当たりの本数が多くて表面積が大きいため、放熱作用面積が大きい。従って支持した電子部品Eの放熱作用に非常に優れる。
【0020】
次に本発明の熱交換部品の製造装置1について説明する。熱交換部品の製造装置1は、図4(a)に示すように出発素材W0 を押し出す押出型2と、放熱突起H2を成形するための放熱突起成形型3とを具備して成る。
まず放熱突起成形型3について説明する。放熱突起成形型3は、出発素材W0 を内部に受け入れる受入凹部3aを有し、この受入凹部3aの底部に多数の成形孔21が穿孔されている。そして本発明の特徴としてこの受入凹部3aは型のつなぎ目等の無い連続した面で形成されている。なお受入凹部3aを連続した面で形成するにあたっては、放熱突起成形型3を一体形成してもよいし、複数個の別体のブロックを隙間無く固定して接続して形成するようにしてもよい。
【0021】
上記成形孔21について説明する。成形孔21は図4(c)の拡大図に示すように出発素材W0 に最初に当接する側(図4(a)において上方)が、放熱突起H2の径を設定するための円形状の絞り部21Aとなっている。そしてこの絞り部21Aの奥方(図4(a)において下方)は、絞り部21Aより孔径の大きい拡開部21Bとなっている。なおこの絞り部21Aの形状は、本実施例では図1〜3で示される熱交換部品Hの放熱突起H2の形状に合わせて円形としたが、四角形や三角形など成形したい放熱突起H2の形状に応じて、種々改変されるものである。
【0022】
また図4(b)に示すように、放熱突起成形型3の成形孔21の周縁の押圧面22にはこれら成形孔21を個別に仕切る仕切リブ23が形成されている。この仕切リブ23は、各成形孔21内へ出発素材W0 及び中間素材W1 の一部が均等に流れ込むようにするものである。このような仕切リブ23を設けることによって、出発素材W0 及び中間素材W1 の抵抗の少ない方へ流れ込むという性質が規制され、放熱突起H2の長さが揃う。
【0023】
また長さの長い放熱突起H2を成形する場合に、出発素材W0 の表面に塗布した潤滑材が成形初期時に成形孔21へ多量に流れ込み、成形完了前に潤滑不足となって成形後半にスムーズな成形が行われないということがあった。そこでこのような場合には、図5に示すように放熱突起成形型3の成形孔21の周縁の押圧面22に、これら成形孔21を個別に仕切る案内溝25を形成しておいてもよい。なおこの案内溝25の案内傾斜面25aは、傾斜角度が1〜5°の範囲内に設定することが好ましい。
このように案内溝25を形成しておくと、まず押圧面22が平坦なものと比べて潤滑材、出発素材W0 及び中間素材W1 の成形孔21への不均等な流れ込みが規制される。そして加圧とともに案内溝25の案内傾斜面25aを徐々に潤滑材が登って成形孔21内に送り出されるため、特に長い放熱突起H2を形成する場合に成形初期時に成形孔21内に流れ過ぎて、成形完了前に潤滑不足となるようなことがない。従って放熱突起H2の成形が成形初期時から成形完了時まで常にスムーズに行われ、放熱突起H2の長さも不揃いとならない。
【0024】
次に押出型2について説明する。押出型2は、前記放熱突起成形型3の受入凹部3aに嵌挿されて出発素材W0 の一部を成形孔21内へ絞り込む。この押出型2の押出接触面10には図4(a)に示すようにアリ溝形状の保持凹部10aが形成されている。この保持凹部10aへ出発素材W0 の一部が成形時に充填されることにより、成形後に製品素材W2 が把持される。このため放熱突起成形型3からの製品素材W2 の離型を行うのに別途チャッキング装置等を必要としない。
またそして把持された製品素材W2 を押出型2から離型するために、シリンダ等により保持凹部10a内に出没自在なノックピン11が設けられている。
なお上記保持凹部10aとしては、図4(a)のアリ溝形状のもののほか、製品素材W2 が把持されるように内広がり状となる形状のものを種々適用できるものであって、例えば図6(a)に示すような逆円錐台形状ものでも構わない。また図6(b)に示すようにこのような保持凹部10aを複数個所設けるようにしても構わない。
【0025】
本発明の熱交換部品の製造装置1は以上のような構成を有し、以下この使用状態を説明しながら、併せて本発明の熱交換部品の製造方法について説明する。
(i)成形開始前(出発素材W0
まず図7(a)に示すように、アルミニウムから成るブロック状の出発素材W0 を放熱突起成形型3の受入凹部3a内に載置する。
【0026】
(ii)成形途中(出発素材W0 →中間素材W1
そして押出型2を放熱突起成形型3の受入凹部3a内に嵌挿させながら出発素材W0 に押し当てて、出発素材W0 を圧縮する。すると出発素材W0 は、一部が放熱突起成形型3の成形孔21内に絞り込まれるようにして変形し、図7(b)に示すような中間素材W1 に成形されていく。なお放熱突起成形型3の受入凹部3aが連続した面となっており、型の合わせ目がないため、そこに潤滑材や出発素材W0 の一部が流れ込むということがなく、成形が非常にスムーズであり、基板部H1の放熱突起H2が形成される面側にはバリが生じるようなこともない。従ってバリに放熱突起H2を形成するべき金属素材Wの一部や潤滑材が取られて、放熱突起H2の高さが著しく不揃いとなるようなこともない。また成形孔21の周縁の仕切リブ23により、各成形孔21へ均等な量の金属素材Wが流れ込む。なお基板部H1の放熱突起H2が成形されない面側にはバリが生じることもあるが、こちら側に生じるバリは、潤滑材を途切れさすこともなく成形される放熱突起H2には影響をほとんど及ばさない。
【0027】
(iii)成形終了(中間素材W1 →製品素材W2
そして更に中間素材W1 は、絞り部21Aにより横断面がほぼ円形に形成されながら下方に移動して放熱突起H2が形成されていき、図7(c)に示すような製品素材W2 に成形される。なお絞り部21Aの奥方は拡開部21Bとなっていて、放熱突起H2が上方に形成されていくとき接触しないため、加工時の抵抗が少ない。
一方、押出型2に押圧されることにより、中間素材W1 の上部の一部も押出型2の保持凹部10aに押し出されるようにして移動し、製品素材W2 と押出型2とのチャッキング状態が得られるようになる。なお押圧型の押圧は多数の放熱突起H2のいずれかの先端が、放熱突起成形型3の拡開部21Bの最奥部に当接しない範囲とする。
【0028】
(iv) 放熱突起成形型の離型(製品素材W2
そして以上のようにして放熱突起H2が形成されたら、図8(a)に示すように押出型2を上方に持ち上げる。すると製品素材W2 は保持凹部10aで把持されているため、同時に持ち上げられ放熱突起成形型3から離型される。
なお放熱突起成形型3が放熱突起H2と接触している部位は、絞り部21Aだけであるため、抵抗が少なく非常にスムーズに離型することができ、放熱突起H2を折ってしまうようなこともない。
【0029】
(v)押出型の離型(製品素材W2 →熱交換部品H)
そして図8(b)に示すように、ノックピン11を下方へ押し出すことにより製品素材W2 を押出型2から離型する。
そしてこのように取り出された製品素材W2 を適宜放熱突起H2の上端を切り揃え、全体にアルマイトやメッキ等の表面処理を施すことにより熱交換部品Hを得る。
【0030】
【他の実施例】
本発明は以上のものを基本とするもので、以下のような改変が行える。
<熱交換部品の他の参考形態
まず熱交換部品Hの他の参考形態を説明する。すなわち、基板部H1の平面形状としては、矩形状のほか、円形、多角形、その他種々の形状に形成しても構わず、また平板状のほか、折れ曲がったような形状や、その他適宜の立体形状でも構わない。
また放熱突起H2の形状も円柱形のほか、図9(a)(b)(c)に示すように角柱状、翼板状、波板状など適宜の形状で形成しても構わない。また更に図10に示すような円筒状の本体部の周縁に放射状にフィンH2aが形成され、中心に芯孔H2bが貫通されるような放熱突起H2でもよい。このように放熱突起H2を形成した場合、放熱突起H2の外面積に加え、芯孔H2b内の内面積が加わるため、非常に放熱作用面積が大きい。そしてこの芯孔H2b内に例えば流体を流すことにより、熱交換率を自然放熱よりも更に増大することもできる。また図9(d)に示すものは、内部方向へ空気を受け入れやすいように、外周端の放熱突起H2を横断面が砲弾状に形成した熱交換部品Hである。
【0031】
<熱交換部品の製造方法並びに製造装置の他の実施例>
次に熱交換部品の製造方法並びに製造装置の他の実施例を説明する。図11(a)に示すものは図10の熱交換部品Hを形成するための熱交換部品の製造装置1である。このものは、前記基本実施例と同様に押出型2と放熱突起成形型3とから成っている。そして本実施例の特徴として、放熱突起成形型3に芯孔成形用ピン24が複数本成形孔21内に立っている。また押出型2には保持凹部10aが芯孔成形用ピン24の間に複数個所設けられており、この保持凹部10a内に出没可能なノックピン11が設けられている。なお放熱突起成形型3の成形孔21の形状は、図11(b)(c)に示す通り放熱突起H2の形状に対応したものである。
このような熱交換部品の製造装置1を用いて図10に示すような熱交換部品Hを形成するには、まず出発素材W0 として貫通孔W0 aを多数有するものを使用する。そしてこのような出発素材W0 を、前記芯孔成形用ピン24に貫通孔W0 aにおいて嵌挿して受入凹部3a上に載置する。そして後は前述した基本実施例のように押出型2を出発素材W0 に押し当てて放熱突起H2を形成する。
【0032】
【発明の効果】
請求項1、記載の熱交換部品の製造方法並びに製造装置によれば、放熱突起成形型3の受入凹部3aに型の合わせ目がないため、出発素材W0 の一部が型の合わせ目に流れ込み、成形された製品素材W2 の周縁部にバリが生じるようなことがない。従ってこの部位のバリを後に除去する工程を必要としないし、放熱突起H2が成形される側の出発素材W0 表面の潤滑材(潤滑膜)を破断して途切れさすことなく、変形される出発素材W0 表面に常に留まらせておくことができる。その結果、出発素材W0 は確実に放熱突起H2を形成すべく案内されるように流れて変形し、外周側の放熱突起H2が低く形成されるなどの問題点が生じない。更にまた、押出型2の押出接触面10には、製品素材W2 の取出方向に逆テーパ状の保持凹部10aが形成されているため、成形時に出発素材W0 の一部が保持凹部10a内に充填されて、成形された製品素材W2 が把持される。従って、成形された製品素材W2 を放熱突起成形型3から離型するのに、製品素材W2 を把持するためのチャッキング装置等を別途必要としない。
【0033】
請求項記載の熱交換部品の製造装置によれば、成形孔21における絞り部21Aのみが金属素材Wに接触し、拡開部21Bは接触しないため、放熱突起H2の成形時に金属素材Wから受ける抵抗が従来の塑性加工に比べて非常に少ない。従って、基板部H1に対し細くて断面が複雑なものなど精巧な放熱突起H2を単位面積当たりに多数本塑性成形することもできる。
また放熱突起成形型3の成形孔21は成形終了時に放熱突起H2の先端が当接しない余剰スペースを有している。このため従来の密閉型の手法のように遅く成形される放熱突起H2のために大きな成形加圧を必要とせず、遅く成形される放熱突起H2以外の放熱突起H2にとっては不必要に充満密着されることもなく、型部材の負荷が小さい。また出発素材W0 の体積誤差や素材硬度、また放熱突起成形型3等の作製誤差や成形のための潤滑膜の不均一などが従来ほど問題とならない。
【0034】
請求項記載の熱交換部品の製造装置によれば、押出型2には、保持凹部10a内に出没自在なノックピン11が設けられているため、ノックピン11を保持凹部10a内に出没させることにより製品素材W2 を簡単に押出型2から離型することができる。
【0035】
請求項記載の熱交換部品の製造装置によれば、放熱突起成形型3の押圧面22における各成形孔21の周縁には、これらを個別に仕切る仕切リブ23が形成されているため、出発素材W0 が抵抗の少ない成形孔21の方へ不規則に流れ込むことがない。従って放熱突起H2の長さが不揃いとならない。
【0036】
請求項記載の熱交換部品の製造装置によれば、放熱突起成形型3の押圧面22における各成形孔21の周縁には、これらを個別に仕切る案内溝25が形成されているため、押圧面が平坦なものと比べて出発素材W0 の表面に設けられる潤滑材の流動が全体的に規制される。また案内溝25の案内傾斜面25aを徐々に潤滑材が移動して成形孔21内に送り出されるため、特に長い放熱突起H2を形成する場合に成形初期時に成形孔21内に流れ過ぎて、成形完了前に潤滑不足となるようなことがない。従って放熱突起H2の成形が成形初期時から成形完了時まで常にスムーズに行われ、放熱突起H2の長さも不揃いとならない。
【図面の簡単な説明】
【図1】本発明によって製造される熱交換部品の使用状態を示す斜視図である。
【図2】本発明によって製造される熱交換部品を示す斜視図である。
【図3】同上平面図である。
【図4】本発明の熱交換部品の製造装置を示す縦断正面図並びに同図b部及びc部を拡大して示
す縦断正面図である。
【図5】同上押圧面に案内溝を形成した実施例を示す縦断正面図である。
【図6】保持凹部の形状及び配置を異ならせた二種の実施例を示す縦断斜視図並びに底面図であ
る。
【図7】本発明の熱交換部品の製造方法の成形開始から成形終了までの過程を段階的に示す縦断
正面図である。
【図8】同上放熱突起成形型からの離型の様子及び押出型からの離型の様子を合わせ示す縦断正
面図である。
【図9】放熱突起の横断面形状を異ならせた種々の参考形態を示す斜視図並びに平面図である。
【図10】同上更に他の参考形態を示す斜視図である。
【図11】本発明の熱交換部品の製造装置の他の実施例を示す縦断正面図並びに同図b部を拡大し
て示す縦断正面図並びにc−c線における横断平面図である。
【図12】従来の熱交換部品の製造装置を使用した場合の問題点を示す縦断正面図である。
【符号の説明】
1 熱交換部品の製造装置
2 押出型
3 放熱突起成形型
3a 受入凹部
4 掴持型
10 押出接触面
10a 保持凹部
11 ノックピン
21 成形孔
21A 絞り部
21B 拡開部
22 押圧面
23 仕切リブ
24 芯孔成形用ピン
25 案内溝
25a 案内傾斜面
B 配線用基板
E 電子部品
H 熱交換部品
H1 基板部
H2 放熱突起
H2a フィン
H2b 芯孔
W 金属素材
0 出発素材
0 a 貫通孔
1 中間素材
2 製品素材
[0001]
[Object of the invention]
[Industrial applications]
The present invention relates to a method and an apparatus for manufacturing a metal heat exchange part for promoting heat radiation, such as a microprocessor and an inverter.
[0002]
BACKGROUND OF THE INVENTION
As a heat exchange component for electronic components such as an integrated circuit, there is a component having a large number of heat radiation projections formed on a metal substrate, and these projections are used to increase the heat radiation action area.
By the way, as a method of manufacturing such a heat exchange part, a method by plastic working is excellent in precision and production efficiency.
[0003]
As a manufacturing method by plastic working, for example, there is a method disclosed in Japanese Patent Application No. 7-21212 already proposed by the present inventors. As shown in FIG. 12, the starting material (metal material W ') held by the gripping die 4 is pressed by the heat radiation projection forming die 3', and the starting material (metal material W ') is formed in the forming hole 21'. ) Is narrowed down to form a large number of heat radiation projections H2 'on the surface of the substrate portion H1'. If such a heat exchange component manufacturing means is employed, for example, thin and long heat radiation projections H2 'can be formed. .
[0004]
However, as shown in the figure, if there is a joint between the gripping die 4 or the like that supports the starting material (metal material W ') from the side and the heat radiation protrusion forming die 3', the high pressure at the time of pressurization causes The joint is instantaneously somewhat widened to form a gap, in which the starting material (metal material W ') flows during molding, and burrs are generated on the surface of the substrate portion H1' on which the heat radiation projections H2 'are formed. This causes various problems.
That is, in such a state, the lubricant (for example, a Teflon film) applied to the surface of the starting material (metal material W ') is robbed by the burr-shaped portion, and the smooth formation of the heat radiation projection H2' is hindered. There was that. Naturally, if burrs are formed, a step of removing the burrs is required. In addition, the lubricating material is interrupted, so that the material does not sufficiently flow particularly to the heat radiation projections H2 'formed on the outer peripheral side. Is not formed sufficiently high.
[0005]
[Technical items that we attempted to develop]
The present invention has been made in view of such a background, and has a starting material or a starting material on a surface between a heat radiation projection forming die and a gripping die on the side where the heat radiation protrusion H2 'is formed. An attempt was made to develop a method and an apparatus for manufacturing a heat exchange component capable of performing smooth molding without entering the applied lubricant.
[0006]
Configuration of the Invention
[Means for achieving the purpose]
That is, the method for manufacturing a heat exchange component according to claim 1 is a member comprising a base portion and a number of heat radiation projections formed so as to rise from the base portion by plastically deforming a metal block-shaped starting material. When plastically deforming the starting material, a heat-dissipating projection mold having a receiving recess formed by a continuous surface and a plurality of forming holes formed at the bottom of the receiving recess is provided. Using an extrusion die capable of entering the recess and having an inwardly extending holding recess on the extrusion contact surface, applying pressure of the extrusion die to the starting material in the receiving recess, and projecting the heat radiation projection from the base by the forming hole. together to form as, in extrusion contacting surface side in which made as a feature in that as by extrusion in the holding recess a part of the starting material and chucked, promote release.
[0007]
According to a second aspect of the present invention, there is provided an apparatus for manufacturing a heat exchange component, comprising: a base portion; and a plurality of heat-radiating projections formed so as to rise from the base portion by plastically deforming a metal block-shaped starting material. This device is a device for manufacturing a heat-dissipating protrusion having a receiving recess formed by a continuous surface and a plurality of forming holes formed in the bottom of the receiving recess, and is capable of entering the receiving recess. And an extrusion die having an inwardly extending holding recess on the extrusion contact surface, wherein the starting material is pressed by the extrusion die in the receiving recess to project the heat radiation projection from the base by the forming hole. together to form as, in extrusion contacting surface side in which made be characterized by those which is adapted by extrusion in the holding recess a part of the starting material and chucked, promote release.
[0008]
Furthermore, in addition to the requirement of the above-mentioned claim 2 , the apparatus for manufacturing a heat exchange part according to the third aspect further includes a narrowed portion formed in the forming hole and a hole having a larger diameter located deeper than the narrowed portion. And a surplus space that does not come into contact with the tip of the heat radiation projection at the end of molding.
[0009]
Furthermore, the apparatus for manufacturing a heat exchange component according to claim 4 is characterized in that, in addition to the requirements described in claim 2 or 3 , the extruding die is provided with a knock pin that can be protruded and retracted in the holding recess. It consists of.
[0010]
According to a fifth aspect of the present invention, in addition to the requirements of the second, third, or fourth aspect, the pressing surface of the heat-dissipating projection mold includes a partition rib for individually partitioning each forming hole. It is characterized by being formed.
[0011]
Further, in the heat exchange component manufacturing apparatus according to the sixth aspect, in addition to the requirements described in the second, third, or fourth aspect, a guide groove that individually partitions each forming hole is provided on the pressing surface of the heat radiation projection forming die. It is characterized by being formed.
[0012]
Effect of the Invention
According to the method and the apparatus for manufacturing a heat exchange component according to claims 1 and 2, since there is no seam of the mold in the receiving concave portion of the heat radiation projection molding die, a part of the starting material on the side where the heat radiation projection is molded is formed. No burrs are formed on the surface of the substrate portion on which the heat radiation projections are formed. Therefore, there is no need for a step of removing the burrs at this portion later, and the starting material surface that is deformed without breaking and breaking the lubricant (lubricating film) on the starting material surface on the side where the heat radiation projections H2 are formed. You can always stay at As a result, the starting material flows and deforms so as to be surely formed so as to form the heat radiation projections, and there is no problem that the heat radiation projections on the outer peripheral side are formed low. Although burrs may be formed on the surface of the substrate portion where the heat radiation projections are not formed, the burrs formed on this side hardly affect the heat radiation projections formed without interrupting the lubricant. Furthermore, since the holding recess is formed on the extrusion contact surface of the extrusion die, a part of the starting material is filled in the holding recess at the time of molding, and the formed product material is gripped. Therefore, a separate chucking device or the like for gripping the product material is not required to release the formed product material from the heat radiation protrusion forming die.
[0013]
According to the heat exchange component manufacturing apparatus of the third aspect, only the narrowed portion in the forming hole is a starting material, a product material, and an intermediate material from the starting material to the product material (hereinafter, these are not particularly distinguished and pointed out). In this case, the expanded portions do not come into contact with each other, and the expanded portions do not come into contact with each other. Therefore, the resistance received from the metal material during the formation of the heat radiation projection is much smaller than that of the conventional plastic working. Therefore, it is also possible to plastically form a large number of elaborate heat radiation projections per unit area, such as those having a thin and complicated cross section on the substrate. In addition, since the molding hole of the heat radiation projection mold has an extra space where the tip of the heat radiation projection does not come into contact at the end of molding, a large molding process is required for the heat radiation projection that is formed slowly as in the conventional closed mold method. No pressure is required, the heat radiation projections other than the heat radiation projections that are formed late are not unnecessarily filled and adhered, and the load on the mold member is small. In addition, there are no problems such as the volume error and the material hardness of the starting material, the manufacturing error of the heat radiation projection molding die and the like, and the unevenness of the lubricating film for molding.
[0014]
According to the heat exchanging part manufacturing apparatus of the fourth aspect , since the push-out die is provided with the knock pin which can be protruded and retracted in the holding recess, the product material can be easily formed by causing the knock pin to protrude and retract in the holding recess. It can be released from the extrusion mold.
[0015]
According to the apparatus for manufacturing a heat exchange component according to the fifth aspect, since the partition ribs for individually separating these are formed on the periphery of each forming hole in the pressing surface of the heat radiation projection forming die, the starting material is formed of a resistance. It does not flow irregularly toward the few forming holes. Therefore, the length of the heat radiation projection does not become uneven.
[0016]
According to the heat exchanging part manufacturing apparatus of the sixth aspect, since the guide groove for individually partitioning the forming holes is formed in the peripheral surface of each forming hole in the pressing surface of the heat radiation projection forming die, the pressing surface is flat. The flow of the lubricant provided on the surface of the starting material is regulated overall as compared with that of the starting material. Also, since the lubricant gradually moves on the guide inclined surface of the guide groove and is sent out into the forming hole, especially when forming a long heat radiation projection, it flows too much into the forming hole at the beginning of molding, and there is insufficient lubrication before completion of forming. There is no such thing. Therefore, the molding of the heat radiating projection is always performed smoothly from the initial stage to the completion of the molding, and the length of the heat radiating projection does not become uneven.
[0017]
【Example】
Hereinafter, a method and an apparatus for manufacturing a heat exchange component of the present invention will be specifically described with reference to the drawings. In the following description, first, the heat exchange component H manufactured according to the present invention will be described, and then the heat exchange component manufacturing apparatus 1 of the present invention used to form such a heat exchange component H will be described. I do. After that, the method of manufacturing the heat exchange component of the present invention will be described while explaining the use state of the heat exchange component manufacturing apparatus 1.
Note that, in the present invention, a metal material that has not been molded at all in the heat exchanging part manufacturing apparatus 1 is a starting material W 0 , a metal material being processed is an intermediate material W 1 , and a metal material at the time when molding is completed. It was defined as the product material W 2, and collectively referred to as metal material W when not be distinguished all these particular. The appropriately trimmed the upper end of the heat dissipation protrusions H2 of the product material W 2, that has been subjected to a surface treatment anodized or plated like the whole, and a heat exchange part H of the present invention what remains of the product material W 2 Define.
[0018]
First, FIG. 1 shows the state of use of the heat exchange component H. The electronic component E, which generates a large amount of heat, is mounted on the wiring board B while supported by the board portion H1. As described above, the heat exchange component H supports the electronic component E, thereby radiating heat generated from the electronic component E to cool the electronic component E.
[0019]
To describe the heat exchange component H in detail, as shown in FIGS. 2 and 3, a large number of cylindrical heat radiation projections H2 are plastically formed on a rectangular substrate portion H1 so as to rise almost vertically. The heat exchange component H is made of a metal material whose main component is aluminum, and the surface of the substrate portion H1 on which the heat radiation projections H2 are formed is 60 mm long, 60 mm wide and 3600 mm 2 in area. Further, the diameter of the heat radiation projection H2 is 0.8 mm, the length is 25 mm, and 625 of 25 × 25 are formed on the substrate portion H1, and the total surface area of the 625 is about 40000 mm 2 . Therefore, the surface area of the heat radiation protrusion H2 is about 11 times the area of the surface of the substrate portion H1 on which the heat radiation protrusion H2 is formed.
As described above, since the number of the heat radiation projections H2 per unit area is large and the surface area is large, the heat exchange component H has a large heat radiation action area. Therefore, the heat dissipating action of the supported electronic component E is very excellent.
[0020]
Next, the heat exchange component manufacturing apparatus 1 of the present invention will be described. Manufacturing apparatus 1 of the heat exchange part is formed by including the extrusion die 2 for extruding the starting material W 0 as shown in FIG. 4 (a), and a heat dissipation protrusions mold 3 for molding the heat dissipation protrusion H2.
First, the heat radiation projection molding die 3 will be described. Radiating projections mold 3 has a receiving recess 3a receiving the starting material W 0 within a number of molded hole 21 is drilled in the bottom of the receiving recess 3a. As a feature of the present invention, the receiving concave portion 3a is formed of a continuous surface having no joint between the molds. When the receiving recess 3a is formed on a continuous surface, the heat radiation projection forming die 3 may be integrally formed, or a plurality of separate blocks may be fixedly connected without gaps and formed. Good.
[0021]
The molding hole 21 will be described. Molded hole 21 is first side abutting on the starting material W 0 as shown in the enlarged view of FIG. 4 (c) (upward in FIG. 4 (a)), circular for setting the diameter of the heat dissipation protrusions H2 The aperture portion is 21A. A deeper portion (lower portion in FIG. 4A) of the narrowed portion 21A is an expanded portion 21B having a larger hole diameter than the narrowed portion 21A. In this embodiment, the shape of the narrowed portion 21A is circular in accordance with the shape of the heat radiation projection H2 of the heat exchange component H shown in FIGS. Various modifications may be made accordingly.
[0022]
As shown in FIG. 4B, partition ribs 23 are formed on the pressing surface 22 on the peripheral edge of the molding hole 21 of the heat radiation projection molding die 3 to individually partition these molding holes 21. The partition ribs 23, a portion of the starting material W 0 and intermediate material W 1 to each of the forming hole 21 to flow evenly. By providing such a partition ribs 23, is restricted nature flows towards less resistive starting material W 0 and intermediate material W 1, is aligned length of the heat dissipation protrusions H2.
[0023]
In the case of molding of H2 long radiating projection lengths, a large amount of flow to the starting material W 0 of the forming hole in lubricant during molding initial coated on the surface 21, smoothly late molding becomes insufficient lubrication before completion molding Molding was not performed. Therefore, in such a case, as shown in FIG. 5, a guide groove 25 for individually partitioning the molding holes 21 may be formed in the pressing surface 22 around the molding holes 21 of the heat radiation projection molding die 3. . In addition, it is preferable that the inclination angle of the guide inclined surface 25a of the guide groove 25 is set within a range of 1 to 5 degrees.
If you leave forming such guiding groove 25, lubricant is first compared the pressing surface 22 is assumed flat, uneven flow is restricted to the starting material W 0 and molding hole 21 of the intermediate material W 1 . Since the lubricant gradually rises on the guide inclined surface 25a of the guide groove 25 and is sent out into the forming hole 21 together with the pressurization, particularly when the long heat radiation projection H2 is formed, the lubricant excessively flows into the forming hole 21 at the initial stage of forming. Insufficient lubrication does not occur before molding is completed. Therefore, the molding of the heat radiation projection H2 is always smoothly performed from the initial stage to the completion of molding, and the length of the heat radiation projection H2 does not become uneven.
[0024]
Next, the extrusion die 2 will be described. The extrusion die 2 is fitted into the receiving recess 3 a of the heat radiation projection molding die 3 to narrow a part of the starting material W 0 into the molding hole 21. As shown in FIG. 4A, a dovetail-shaped holding recess 10a is formed on the extrusion contact surface 10 of the extrusion die 2. By the holding recess 10a is a part of the starting material W 0 is filled during molding, the product material W 2 is gripped after molding. Do not require such additional chucking device for performing the release of the product material W 2 from the for radiating projections mold 3.
Further and to release the gripped product Material W 2 from the extrusion die 2, freely knock pin 11 is provided haunt in the holding recess 10a by a cylinder or the like.
Note The above holding recesses 10a, in addition to those of the dovetail groove shape of FIG. 4 (a), be those capable of various application of a shape comprising an inner spreading shape, as product material W 2 is gripped, for example, FIG. An inverted truncated cone shape as shown in FIG. Also, as shown in FIG. 6B, a plurality of such holding concave portions 10a may be provided.
[0025]
The heat exchange component manufacturing apparatus 1 of the present invention has the above-described configuration. Hereinafter, the method of manufacturing the heat exchange component of the present invention will be described while describing the state of use.
(I) Before starting molding (starting material W 0 )
First, as shown in FIG. 7 (a), placing the starting material W 0 of the block-shaped made of aluminum radiator projections mold 3 in the receiving recess 3a.
[0026]
(Ii) During forming (starting material W 0 → intermediate material W 1 )
Then, the extruding die 2 is pressed against the starting material W 0 while being fitted into the receiving concave portion 3 a of the heat radiation projection forming die 3 to compress the starting material W 0 . Then, the starting material W 0 is partially deformed so as to be squeezed into the forming hole 21 of the heat radiation projection forming die 3, and is formed into the intermediate material W 1 as shown in FIG. 7B. Note radiator has a protrusion receiving recess 3a of the mold 3 has a continuous surface, there is no mold seam, there is no fact that part of the lubricating material and the starting material W 0 flows, forming a very It is smooth, and burrs do not occur on the surface of the substrate portion H1 where the heat radiation projections H2 are formed. Therefore, a portion of the metal material W on which the heat radiation protrusion H2 is to be formed or the lubricant is not removed from the burrs, and the height of the heat radiation protrusion H2 does not become significantly uneven. In addition, a uniform amount of the metal material W flows into each forming hole 21 by the partition ribs 23 on the peripheral edge of the forming hole 21. Although burrs may be formed on the surface of the substrate portion H1 where the heat radiation projections H2 are not formed, the burrs generated on this side hardly affect the heat radiation projections H2 formed without interrupting the lubricant. Not.
[0027]
(iii) completion of molding (intermediate material W 1 → product Material W 2)
And further intermediate material W 1 is the heat dissipation protrusions H2 moves downward while cross-section is formed in a substantially circular shape by the diaphragm portion 21A is gradually formed, shaping the product material W 2 as shown in FIG. 7 (c) Is done. In addition, the deeper part of the narrowed part 21A is an expanded part 21B, which does not contact when the heat radiation projection H2 is formed upward, so that the resistance during processing is small.
On the other hand, by being pressed by the extrusion die 2, a part of the upper portion of the intermediate material W 1 also moves so as to be pushed out to the holding concave portion 10 a of the extrusion die 2, and chucks the product material W 2 and the extrusion die 2. A state is obtained. Note that the pressure of the pressing die is set so that any one end of the large number of heat radiation protrusions H2 does not contact the deepest part of the expanded portion 21B of the heat radiation protrusion molding die 3.
[0028]
(iv) Release of heat radiation protrusion mold (product material W 2 )
When the heat radiation projections H2 are formed as described above, the extrusion die 2 is lifted upward as shown in FIG. Then, since the product material W 2 is gripped by the holding recess 10 a, the product material W 2 is simultaneously lifted and released from the heat radiation projection forming die 3.
Since the heat radiation projection molding die 3 is in contact with the heat radiation projection H2 only at the throttle 21A, the mold can be released very smoothly with low resistance, and the heat radiation projection H2 may be broken. Nor.
[0029]
(V) Extrusion mold release (product material W 2 → heat exchange part H)
Then, as shown in FIG. 8 (b), the product material W 2 is released from the extrusion die 2 by pushing the knock pin 11 downward.
And thus trimmed appropriately heat dissipation protrusion upper end of the H2 product material W 2 taken out to obtain a heat exchange part H by performing a surface treatment of the anodized aluminum or plating throughout.
[0030]
[Other embodiments]
The present invention is based on the above, and the following modifications can be made.
<Other reference forms of heat exchange parts>
First, another embodiment of the heat exchange component H will be described. That is, the planar shape of the substrate portion H1 may be rectangular, circular, polygonal, or other various shapes, or may be a flat shape, a bent shape, or any other appropriate three-dimensional shape. The shape may be acceptable.
Further, the shape of the heat radiation projection H2 may be not only a columnar shape but also an appropriate shape such as a prismatic shape, a wing plate shape, a corrugated plate shape as shown in FIGS. 9 (a), 9 (b) and 9 (c). Further, a radiating fin H2a may be formed such that fins H2a are radially formed on the peripheral edge of a cylindrical main body as shown in FIG. 10 and a core hole H2b passes through the center. When the heat radiating protrusion H2 is formed in this manner, the heat radiating effect area is extremely large because the inner area in the core hole H2b is added to the outer area of the heat radiating protrusion H2. By flowing a fluid, for example, into the core hole H2b, the heat exchange rate can be further increased as compared with the natural heat radiation. FIG. 9D shows a heat exchange component H in which a heat radiation protrusion H2 at the outer peripheral end is formed in a shell-like cross section so as to easily receive air inward.
[0031]
<Other Embodiments of Method and Apparatus for Manufacturing Heat Exchange Parts>
Next, another embodiment of a method of manufacturing a heat exchange component and a manufacturing apparatus will be described. FIG. 11 (a) shows a heat exchange component manufacturing apparatus 1 for forming the heat exchange component H of FIG. This is composed of an extrusion die 2 and a heat radiation projection molding die 3 as in the basic embodiment. As a feature of this embodiment, a plurality of core hole forming pins 24 stand in the plurality of forming holes 21 in the heat radiation protrusion forming die 3. The extrusion die 2 is provided with a plurality of holding recesses 10a between the core hole forming pins 24, and is provided with knock pins 11 which can come and go in the holding recesses 10a. The shape of the molding hole 21 of the heat radiation projection molding die 3 corresponds to the shape of the heat radiation projection H2 as shown in FIGS. 11B and 11C.
To form the heat exchanging part H as shown in FIG. 10 by using the manufacturing apparatus 1 of such a heat exchanger component is first used which has a large number of through holes W 0 a as a starting material W 0. Then, the starting material W 0 is fitted into the core hole forming pin 24 in the through hole W 0 a and placed on the receiving recess 3 a. Then after forming the heat dissipation protrusion H2 is pressed against the extrusion die 2 as in the basic embodiment described above the starting material W 0.
[0032]
【The invention's effect】
According to the method and the apparatus for manufacturing a heat exchange component according to the first and second aspects, since the receiving concave portion 3a of the heat radiation projection forming die 3 does not have a die joint, a part of the starting material W0 is partially joined with the die. the flow, there is no such thing as burr occurs on the periphery of the product material W 2 which has been formed. Therefore do not require the step of removing after the burr of this site, lubricant starting material W 0 surface on which the heat dissipation protrusion H2 is molded (lubricating film) without refer interrupted by breaking, starting to be deformed it is possible to be always allowed to remain on the material W 0 surface. As a result, the starting material W 0 flows and deforms so as to be surely formed so as to form the heat radiation protrusion H2, and there is no problem that the heat radiation protrusion H2 on the outer peripheral side is formed low. Furthermore, in the extrusion contact surface 10 of the extrusion die 2, because the inversely tapered holding recess 10a in the outlet direction of the product material W 2 is formed, a part of the starting material W 0 during molding the holding recesses 10a is filled in, the product material W 2 is gripped molded. Accordingly, although to release the product material W 2 molded from the heat dissipation protrusions mold 3 does not need a separate like chucking apparatus for gripping a product material W 2.
[0033]
According to the heat exchange component manufacturing apparatus of the third aspect, only the narrowed portion 21A in the forming hole 21 comes into contact with the metal material W and the expanded portion 21B does not come in contact with the metal material W at the time of forming the heat radiation projection H2. The resistance received is very low compared to conventional plastic working. Therefore, a large number of elaborate heat radiation protrusions H2 such as those having a thin and complicated cross section with respect to the substrate portion H1 can be plastically formed per unit area.
Further, the molding hole 21 of the heat radiation projection molding die 3 has an extra space where the tip of the heat radiation projection H2 does not abut at the end of molding. For this reason, a large molding pressure is not required for the heat-dissipating protrusions H2 formed late, unlike the conventional closed mold method, and the heat-dissipating protrusions H2 other than the heat-dissipating protrusions H2 formed late are unnecessarily filled and adhered. And the load on the mold member is small. Further, the volume error and the material hardness of the starting material W 0 , the production error of the heat radiation projection molding die 3 and the like, and the unevenness of the lubricating film for molding do not cause any problems as compared with the related art.
[0034]
According to the heat exchange component manufacturing apparatus of the fourth aspect , since the push pin 2 is provided with the knock pin 11 which can be moved into and out of the holding recess 10a, the knock pin 11 can be moved into and out of the holding recess 10a. it can be released from the product material W 2 easy extrusion die 2.
[0035]
According to the apparatus for manufacturing a heat exchange component according to the fifth aspect, since the partition ribs 23 for individually partitioning the molding holes 21 on the pressing surface 22 of the heat radiation projection molding die 3 are formed on the peripheral edge of the molding holes 21. The material W 0 does not flow irregularly into the molding hole 21 having a small resistance. Therefore, the lengths of the heat radiation protrusions H2 do not become uneven.
[0036]
According to the heat exchanging part manufacturing apparatus of the sixth aspect, since the guide groove 25 for individually partitioning the molding holes 21 in the pressing surface 22 of the heat radiation projection molding die 3 is formed at the peripheral edge of the molding hole 21. plane flow of lubricant provided on the surface of the starting material W 0 are totally restricted compared to that flat. Further, since the lubricant gradually moves on the guide inclined surface 25a of the guide groove 25 and is sent out into the forming hole 21, especially when the long heat radiation projection H2 is formed, the lubricant flows too much into the forming hole 21 at the initial stage of forming, and the molding is performed. There is no shortage of lubrication before completion. Therefore, the molding of the heat radiation projection H2 is always smoothly performed from the initial stage to the completion of molding, and the length of the heat radiation projection H2 does not become uneven.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a use state of a heat exchange component manufactured by the present invention.
FIG. 2 is a perspective view showing a heat exchange component manufactured according to the present invention.
FIG. 3 is a plan view of the same.
4 is a vertical sectional front view showing longitudinal sectional front view and an enlarged drawing b unit及beauty c section showing an apparatus for manufacturing a heat exchange part of the present invention.
FIG. 5 is a vertical sectional front view showing an embodiment in which a guide groove is formed on the pressing surface.
FIG. 6 is a longitudinal sectional perspective view and a bottom view showing two examples in which the shape and arrangement of the holding recesses are different.
FIG. 7 is a longitudinal sectional front view showing a stepwise process from the start of molding to the end of molding in the method for manufacturing a heat exchange component of the present invention.
FIG. 8 is a vertical sectional front view showing the state of release from the heat radiation projection molding die and the state of release from the extrusion die.
FIG. 9 is a perspective view and a plan view showing various reference embodiments in which the cross-sectional shapes of the heat radiation projections are different.
FIG. 10 is a perspective view showing still another reference embodiment of the present invention.
FIG. 11 is a longitudinal sectional front view showing another embodiment of the apparatus for manufacturing a heat exchange component of the present invention, a longitudinal sectional front view showing an enlarged part b in FIG. 11, and a cross-sectional plan view taken along line cc.
FIG. 12 is a longitudinal sectional front view showing a problem when a conventional heat exchange component manufacturing apparatus is used.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 Heat exchange component manufacturing device 2 Extrusion die 3 Heat radiation projection molding die 3a Receiving recess 4 Gripping die 10 Extrusion contact surface 10a Holding recess 11 Knock pin 21 Molding hole 21A Narrowing portion 21B Expanding portion 22 Pressing surface 23 Partition rib 24 Core hole Forming pin 25 Guide groove 25a Guide inclined surface B Wiring board E Electronic component H Heat exchange component H1 Board portion H2 Heat radiating protrusion H2a Fin H2b Core hole W Metal material W 0 Starting material W 0 a Through hole W 1 Intermediate material W 2 Product material

Claims (6)

金属製のブロック状の出発素材を塑性変形させ、基盤部と、この基盤部から立ち上がるように成形された多数の放熱突起とを具えた部材を製造する方法であり、前記出発素材を塑性変形させるにあたっては、連続面で形成された受入凹部とこの受入凹部の底部に穿孔された多数の成形孔を具える放熱突起成形型と、この受入凹部に進入可能でかつ押出接触面に内広がり状の保持凹部を有する押出型とを用い、前記出発素材受入凹部内で押出型の押圧を加えて、成形孔により放熱突起を基盤から突出するように形成させると共に押出接触面側では出発素材の一部を保持凹部に押出さてチャッキング状態とし、離型図るようにしたことを特徴とする熱交換部品の製造方法。A method of manufacturing a member having a base portion and a large number of heat radiation projections formed so as to rise from the base portion by plastically deforming a metal block-shaped starting material, wherein the starting material is plastically deformed. In doing so, a heat sinking projection mold having a receiving recess formed of a continuous surface and a number of forming holes drilled at the bottom of the receiving recess, and an inwardly extending shape that can enter the receiving recess and extend into the extrusion contact surface. Using an extrusion die having a holding concave portion, applying a pressure of the extrusion die to the starting material in the receiving concave portion to form a heat radiation projection so as to protrude from the base by a forming hole , and at the extrusion contact surface side, the starting material A method for manufacturing a heat exchange component, characterized in that a part is extruded into a holding recess to form a chucking state and release is performed . 金属製のブロック状の出発素材を塑性変形させ、基盤部と、この基盤部から立ち上がるように成形された多数の放熱突起とを具えた部材を製造する装置であり、この装置は、連続面で形成された受入凹部とこの受入凹部の底部に穿孔された多数の成形孔とを具える放熱突起成形型と、この受入凹部に進入可能でかつ押出接触面に内広がり状の保持凹部を有する押出型とを具えて成り、前記出発素材に対して、受入凹部内で押出型の押圧を加えて、成形孔により放熱突起を基盤から突出するように形成させると共に押出接触面側では出発素材の一部を保持凹部に押出さてチャッキング状態とし、離型図るようにしたものであることを特徴とする熱交換部品の製造装置。This is a device for plastically deforming a metal block-shaped starting material to produce a member having a base portion and a large number of heat radiation protrusions formed so as to rise from the base portion. A heat-dissipating projection mold having a receiving recess formed therein and a number of forming holes drilled in the bottom of the receiving recess; and an extrusion having an inwardly extending holding recess which can enter the receiving recess and has an extruding contact surface. become comprises a mold, relative to the starting material, in addition to press the extrusion die in the receiving recess, the heat dissipation projection by molding hole with is formed so as to protrude from the base, the starting material is extruded contact surface heat exchange parts of the manufacturing apparatus, characterized in that part by extrusion in the holding recess and chucked, is obtained so as to achieve release. 前記成形孔は、絞り部と、この絞り部の奥方に在りこの絞り部よりは大きな孔径の拡開部とから成り、成形終了時に放熱突起の先端が当接しない余剰スペースを有していることを特徴とする請求項記載の熱交換部品の製造装置。The forming hole is composed of a constricted portion and an expanded portion located deeper in the constricted portion and having a larger hole diameter than the constricted portion, and has an extra space in which the tip of the heat radiation projection does not contact at the end of the forming. The apparatus for producing a heat exchange component according to claim 2, wherein: 前記押出型には、前記保持凹部内に出没自在なノックピンが設けられていることを特徴とする請求項2または3記載の熱交換部品の製造装置。The heat exchanging part manufacturing apparatus according to claim 2 , wherein the extrusion die is provided with a knock pin that can be protruded and retracted in the holding recess. 前記放熱突起成形型の押圧面には、各成形孔を個別に仕切る仕切リブが形成されていることを特徴とする請求項2、3または4記載の熱交換部品の製造装置。5. The heat exchange component manufacturing apparatus according to claim 2 , wherein a partition rib for individually partitioning each forming hole is formed on a pressing surface of the heat radiation projection forming die. 前記放熱突起成形型の押圧面には、各成形孔を個別に仕切る案内溝が形成されていることを特徴とする請求項2、3または4記載の熱交換部品の製造装置。5. The heat exchange component manufacturing apparatus according to claim 2 , wherein a guide groove which individually partitions each forming hole is formed on a pressing surface of the heat radiation projection forming die.
JP12912995A 1995-04-28 1995-04-28 Method and apparatus for manufacturing heat exchange parts Expired - Lifetime JP3598407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12912995A JP3598407B2 (en) 1995-04-28 1995-04-28 Method and apparatus for manufacturing heat exchange parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12912995A JP3598407B2 (en) 1995-04-28 1995-04-28 Method and apparatus for manufacturing heat exchange parts

Publications (2)

Publication Number Publication Date
JPH08306833A JPH08306833A (en) 1996-11-22
JP3598407B2 true JP3598407B2 (en) 2004-12-08

Family

ID=15001819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12912995A Expired - Lifetime JP3598407B2 (en) 1995-04-28 1995-04-28 Method and apparatus for manufacturing heat exchange parts

Country Status (1)

Country Link
JP (1) JP3598407B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343910A (en) * 2001-05-17 2002-11-29 Tetsuji Kataoka Heat sink and its manufacturing method
JP3767587B2 (en) 2002-08-20 2006-04-19 セイコーエプソン株式会社 Fine forging method and liquid jet head manufacturing method
KR20040021769A (en) * 2002-09-04 2004-03-11 (주)대영정공 A manufacturing method of heat sink
CN100344399C (en) * 2005-09-13 2007-10-24 隆都铝业科技(常熟)有限公司 Machining method of aluminium extruding mould
JP5896720B2 (en) * 2011-12-16 2016-03-30 昭和電工株式会社 Sealed forged molded product and manufacturing method thereof

Also Published As

Publication number Publication date
JPH08306833A (en) 1996-11-22

Similar Documents

Publication Publication Date Title
US6134783A (en) Heat sink and process of manufacture
US20050211416A1 (en) Heat sink with fins and a method for manufacturing the same
TW201238676A (en) Extrusion molding die for aluminum base of heat sink and manufacturing method thereof
CN105665573B (en) Pin fin manufacturing process
EP2204245A1 (en) Method for assembling heat sink
EP3466559B1 (en) Forging device and forging method
JP2010129774A (en) Method for manufacturing integrated pin-fin heat sink
JP3885197B2 (en) Heat exchange component having long hole in substrate and method for manufacturing the same
CN110918843B (en) Space envelope forming manufacturing method for thin-wall high-rib radiating component
US6367152B1 (en) Method for manufacturing a heat sink
JP3598407B2 (en) Method and apparatus for manufacturing heat exchange parts
JP3740665B2 (en) Manufacturing method and manufacturing apparatus for heat exchange parts
JP2519505B2 (en) Method for manufacturing metal member for heat dissipation
JP5656163B2 (en) Embossed metal plate and manufacturing method thereof
JP6682395B2 (en) Forging machine
JPH08192237A (en) Heat exchanger part and production thereof
US20230320037A1 (en) Heatsink, method for manufacturing heatsink, and electronic component package using said heatsink
US11648599B2 (en) Method and system for forming protrusions, and method for manufacturing metal component having protrusions
CN202974014U (en) Structure of radiator
JPH08181259A (en) Manufacture of pin fin heat sink
CN220491725U (en) Mould structure of radio charging magnetic core
WO2021020529A1 (en) Heat sink
JP5634193B2 (en) Manufacturing method of molding die and holding jig
CN1095413C (en) Technology for manufacturing heat radiator
JP2017228618A (en) Method of manufacturing heat sink

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040831

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070924

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080924

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090924

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100924

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110924

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120924

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term