JP3597723B2 - Antibiotic polymer composition - Google Patents

Antibiotic polymer composition Download PDF

Info

Publication number
JP3597723B2
JP3597723B2 JP4247399A JP4247399A JP3597723B2 JP 3597723 B2 JP3597723 B2 JP 3597723B2 JP 4247399 A JP4247399 A JP 4247399A JP 4247399 A JP4247399 A JP 4247399A JP 3597723 B2 JP3597723 B2 JP 3597723B2
Authority
JP
Japan
Prior art keywords
antibiotic
aqueous solution
weight
resin
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4247399A
Other languages
Japanese (ja)
Other versions
JP2000239533A (en
Inventor
勉 野須
晴美 高畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Chemical Industry Co Ltd
Original Assignee
Kyowa Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Chemical Industry Co Ltd filed Critical Kyowa Chemical Industry Co Ltd
Priority to JP4247399A priority Critical patent/JP3597723B2/en
Publication of JP2000239533A publication Critical patent/JP2000239533A/en
Application granted granted Critical
Publication of JP3597723B2 publication Critical patent/JP3597723B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、銀系抗菌剤の特徴である光に対する変色性を改良した抗生物性ポリマー組成物である。詳しくは、特定の亜鉛型ハイドロタルサイト(以下“Zn型HT”と略称することがある)粒子を配合し、特に銀イオンが塩素イオンの存在に起因するポリマーの変色を防止した抗生物性ポリマー組成物に関する。
【0002】
【従来の技術】
現在、人の生活環境に深く浸透した樹脂は、例えば台所用品や風呂などの水回り用品に広く利用されているが、濡れたまま放置されることが多く黴や雑菌の温床となっている。さらには壁紙やカーペットにも人が手に触れたりして栄養素が多分に存在し、雑菌やカビが多く繁殖するので、これらを防止するために抗菌性および防黴性を付与することが望まれるようになり、多くの抗菌防黴剤(抗生物剤)や抗菌防黴性樹脂組成物が開発されてきた。
【0003】
例えば、有機系抗生物剤ではクロロヘキシジン、第4級アンモニウム塩、ピリチオン金属塩などがあり、無機系抗生物剤では、銀、銅、亜鉛、錫、水銀、鉛、鉄、コバルト、ニッケル、マンガン、ビスマス、バリウム、カドミウムおよびクロム等の金属イオン等が抗菌性、防黴性および防藻性を示すことがよく知られている。以下、本発明では、抗菌性、抗(防)黴性および抗(防)藻性を総称して“抗生物性”と称することがある。一般的に有機系は耐熱性が悪いため、樹脂に練り混んだ場合、抗菌効果を十分発揮できず又樹脂を着色させたりする問題のあることが知られている。一方、金属イオンは耐熱性がよくても人体に有害な金属も多く、最近では、例えば特開平3−153745号公報または特開平10−25419号公報に開示された ゼオライト等の粘度鉱物または多孔質シリカゲル等の無機イオン交換体に銀、亜鉛、銅等の安全性の高い金属イオンを担持した抗生物剤を樹脂に配合した抗生物性樹脂組成物が多く見られるようになった。しかしながら、一般的に銀系無機抗生物剤およびこれらと樹脂とからなる抗生物性樹脂組成物は、保存時、使用時または加工時に変色し、更には外観上の変化ばかりでなく、樹脂自身が質的に変化し、樹脂の劣化を伴う場合が多いという問題があった。
【0004】
【発明が解決しようとする課題】
本発明は、銀イオン含有抗生物剤配合のポリマー組成物、即ち樹脂、ゴム、繊維および塗料等に使われるポリマー組成物並びに成型品の抗生物剤が持つ本来の抗生物活性を損なわずに長期間の抗菌性、防黴性および防藻性を維持でき、加工性を落とさず成型品の外観、耐変色性を改良することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、上記課題を達成するため鋭意研究につとめた結果、ハイドロタルサイトにおける2価金属をZnに置き換え且つ分散性を改良した特定の性状のハイドロタルサイトを用いることにより解決できることを見いだした。即ち、本発明によれば、a)ポリマー100重量部に、b)銀イオンを担持した無機イオン交換体からなる抗生物剤0.1〜5重量部および、c)下記(i)〜(iii)の条件を満足する亜鉛型ハイドロタルサイト粒子0.2〜3重量部を配合したことを特徴とする抗生物性ポリマー組成物およびその成形体が提供される。
(i)化学組成は下記式(1)で表され
ZnxAl2(OH)4+2xCO3・mH2O (1)
[式中、3.5≦x≦4.5、0≦m≦4を満足する]
(ii)平均二次粒子サイズは2μm以下であり、
(iii)BET法による比表面積は20m2/g以下である。
【0006】
特開平3−153745号公報には、塩素を中和し、変色を防止する目的で、ハイドロタルサイトおよび/または酸化マグネシウムを用いることが開示されている。そのハイドロタルサイトとしてはマグネシウム、カルシウム、亜鉛、アルミニウム、ビスマス等の含水塩基性炭酸塩またはその結晶水を含まない物で、天然物および合成品が含まれ、合成品としてMg0.7Al0.3(OH)(CO0.15・0.54HO、Mg4.5Al(OH)13CO・3.5HO、ZnAl(OH)16CO・4HO、CaAl(OH)16CO・4HO等が開示され、Znを含むハイドロタルサイトは、他のハイドロタルサイトと共に1例のみ記載があるものの具体的な実施例はなく、どの様な性状を持ったZn含有ハイドロタルサイトであるかについて言及されていない。
【0007】
本発明者らの研究によると、樹脂、ゴム、繊維および塗料等に使われるポリマー組成物並びに成型品の変色防止、且つ抗生物剤が持つ本来の抗生物性を損なわずに長期間の抗菌性、防黴性および防藻性を維持でき、成型品の外観、加工性を改良した樹脂組成物を提供するためには、難燃剤または触媒残渣に由来するハロゲン、および構造中に持つハロゲン含有樹脂や、使用環境においてハロゲンと抗菌剤が持つ銀イオンとが反応することを速やかに阻止でき、且つ、分散性の良好な微粒子であることが要求される。これらの要求を満足するためには上記性状を持ったZn型HT粒子を用いることで初めて達成されることが判った。
【0008】
Zn型HTの成形品における変色防止効果のメカニズムは不明であるものの、Mgを含んだハイドロタルサイトと同様にハロゲンを速やかに中和し、塩化銀の生成を抑えることのほか、ポリマーには、多くの場合がフェノール系酸化防止剤、帯電防止剤、その他多くの添加剤等を添加しており、Zn型HTはMg含有HTに比べてpHが低いことも着色を抑制する効果の高い一因と思われる。
【0009】
本発明において使用されるc)成分のZn型HT粒子は、例えば、特公昭47−32198号公報等に開示された公知およびその他の方法で得られるハイドロタルサイトを、例えば水性媒体中で加熱処理して得ることができる。具体的には亜鉛を含む水溶液、例えば塩化亜鉛、硝酸亜鉛、硫酸亜鉛、亜鉛酸アルカリ金属塩等から得られる亜鉛の水溶液と、アルミニウムを含む水溶液、例えば塩化アルミニウム、硫酸アルミニウム、アルミン酸アルカリ金属塩等から得られる水溶液と、苛性アルカリおよび炭酸アルカリおよび必要に応じ硫酸のような無機酸の水溶液とのそれぞれ必要量をpH約6.0〜約11、好ましくはpH約8.0〜約10.0の範囲で反応生成させることができる。得られたZn型HTを、固液分離した後十分洗浄し、80〜130℃の温度、好適には90〜120℃の温度で約5〜約30時間水性媒体中で水熱処理することにより得ることができる。
【0010】
c)成分のZn型HT粒子において、式(1)中のxの値が上記範囲よりも小さくなると、水性媒体中に上記範囲で加熱処理しても分散性が悪く、逆に大きくなると回折X線測定および電子顕微鏡観察において柱状の酸化亜鉛が多く生成されることが分かった。
【0011】
c)成分のZn型HT粒子において、その平均二次粒子サイズは2μm以下、好ましくは1.5μm以下である。平均二次粒子サイズが2μmを超えるものは、凝集体が多く、また凝集粒子も大きいため分散性が低下するとともに、フィルターの目詰まりを起こしやすくなる。またZn型HT粒子はBET法による比表面積が20m/g以下、好ましくは4〜15m/gが望ましい。BET法比表面積が20m/gを超えるものは、表面活性により凝集しやすく、機械的な分散処理も困難である。
【0012】
また、Zn型HTはZnとAlの塩基性炭酸塩であり、結晶水も存在し、樹脂の加工温度で多量のガスを放出し、樹脂中に発泡の問題を生じることがありその発泡を抑制するため、500℃以下、好ましくは150℃〜300℃で焼成したものを用いることができる。
本発明において、c)成分であるZn型HT粒子の添加量は、ポリマー100重量部に対し、0.2〜3重量部である。これよりも少ない場合には耐変色性に与える効果が不十分で、またこれ以上増加しても効果があまり期待できず、物性面に悪影響を及ぼすことがある。
【0013】
本発明におけるZn型HT粒子は、樹脂との相溶性、分散性などを向上させるため、表面処理剤で表面処理することができる。
このような表面処理剤の例としては、例えば、ステアリン酸、オレイン酸、ラウリン酸等の高級脂肪酸類およびそのアルカリ金属塩、例えばビニルトリエトキシシラン、γーアミノプロピルトリメトキシシラン、イソプロピルトリイソステアロイルチタネート等のごときシラン系もしくはチタネート系カップリング剤類、例えば、グリセリンモノステアレート、グリセリンモノオレート等のごときグリセリン脂肪酸エステル類を例示することができる。
【0014】
本発明に用いられるa)成分のポリマーとは、天然、半合成および合成のプラスチック、ゴム、繊維および塗料等のいずれであっても良く、例えばポリエチレン、ポリプロピレン、ポリスチレン、ポリアミド、ポリエステル、ポリビニルアルコール、ポリカーボネート、ポリアセタール、ポリ塩化ビニル、ポリ塩化ビニリデン、フッ素樹脂、ABS、アクリル樹脂、ポリアクリロニトリル−塩化ビニリデン共重合体、ポリウレタンエラストマー、ポリエステルエラストマー、メラミン樹脂、ユリア樹脂、四フッ化エチレン樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、フェノール樹脂、レーヨン、アセテート、天然ゴム、シリコーンゴム、スチレン・ブタジエンゴム、クロロプレンゴム、エチレンプロピレンゴム、フッ素ゴム、ニトリルゴム、クロロスルホン化ポリエチレンゴム、ブタジエンゴム、ブチルゴム等が例示できる。
【0015】
本発明において、b)成分である銀イオンを担持した無機イオン交換体からなる抗生物剤とは、抗生物成分としての銀イオン単独または銀イオンを含む銅イオン、亜鉛イオンおよびスズイオンを無機イオン交換体に担持したもので、例えば特開平6−263916に開示された、銀イオンを0.1wt%以上担持できる無機イオン交換体として、アンチモン酸、酸化ニオブ、酸化タンタル、含水酸化チタン、含水酸化鉄(III)、含水酸化マンガン、酸化アルミニウム、含水酸化バナジウム、含水酸化ジルコニウム、含水酸化スズ、シリカゲル等の水酸化物または含水酸化物、リン酸ジルコニウム(層状)、リン酸チタン(層状または網目状)、リンアンチモン酸、タングステン酸チタン、アンチモン酸チタン、アンチモン酸タンタル、タングステン酸スズ、トリポリリン酸クロム等の多価金属の酸性塩、および合成アルミノケイ酸塩(ゼオライト)等があり、特に、シリカゲル、ゼオライトに銀イオンを担持したものが推奨できる。
【0016】
銀イオンの担持方法は、公知の方法を適宜利用することができる。例えば、無機イオン交換体を、硝酸、塩酸、硫酸等の無機酸で処理した後、任意の濃度に調整した硝酸銀水溶液または硝酸銀、硝酸銅、硝酸亜鉛および硝酸スズ等の混合水溶液中に無機イオン交換体を浸漬し、0.1wt%以上、5wt%以下の銀イオンを担持させる。
【0017】
0.1wt%未満であれば、抗生物効果が十分発揮できず、抗生物剤の配合量を多くする必要があり、樹脂成型品の物性に悪影響を与える。5wt%を越える銀イオンを担持した場合はコストが高くなり、耐変色性に悪影響が起こり、好ましくない。抗生物剤の配合量はポリマー100重量部に対して0.1〜5重量部、好ましくは0.3〜2重量部である。この範囲よりも少ないと抗菌効果が不十分となり、多い場合は物性に悪影響を及ぼすため好ましくない。また抗生物剤の物性として、平均粒子径が6ミクロン以下で且つ10ミクロン以下の粒子が80wt%以上の微粒子である抗生物剤がポリマーの物性、加工性において好ましい。このような物性を持った銀系抗生物剤は既に数多く市販されている。
【0018】
尚、本発明の抗生物性ポリマー組成物に、前記の各成分の他に、目的を阻害しない範囲で慣用の添加剤、例えば、タルク、マイカ、ワラストナイト等の無機充填剤、例えば、フェノール系、リン系およびイオウ系等の酸化防止剤、例えば、ベンゾトリアゾール系、ベンゾフェノン系等の紫外線吸収剤、ヒンダードアミン系、ベンゼート系、ニッケル系等の光安定剤、ステアリン酸カルシウム、ステアリン酸亜鉛等の金属脂肪酸塩、更には、帯電防止剤、核剤、顔料、分散剤、アンチブロッキング剤等を配合することができる。
【0019】
【実施例】
本発明を実施例に基づきより詳細に説明するが、実施例によって本発明を限定されるものではない。
以下に各種ハイドロタルサイト粒子(サンプルA〜F)の調整方法を示し、表1にそれぞれの物性値を示した。
【0020】
サンプルA:
硝酸亜鉛1モル/Lの水溶液4Lと、硫酸アルミニウム1モル/Lの水溶液1Lを混合した混合溶液と、NaOH2モル/Lの水溶液6Lと炭酸ナトリウム1モル/L水溶液1Lを混合した混合溶液を、あらかじめ水を張ってある反応槽中に、攪拌下にpH9.5となるように同時注下する。反応温度35℃にて得られた反応物を固液分離した後、不純物を洗浄し、50g/L濃度に再乳化し120℃で20時間水熱熟成した。得られたスラリーをステアリン酸Naで2%表面処理した後、脱水洗浄し、100℃にて乾燥後、試験用ハンマーミルで微粉砕し試験用サンプルAとした。
【0021】
サンプルB:
硝酸亜鉛1モル/Lの水溶液6Lと、硫酸アルミニウム1モル/Lの水溶液1Lを混合した混合溶液と、NaOH2モル/Lの水溶液8Lと炭酸ナトリウム1モル/L水溶液1Lを混合した混合溶液を、あらかじめ水を張ってある反応槽中に、攪拌下にpH9.5となるように同時注下する。反応温度35℃にて得られた反応物を固液分離した後、サンプルAと同様に処理してサンプルBとした。
【0022】
サンプルC:
硝酸亜鉛1モル/Lの水溶液6Lと、硫酸アルミニウム1モル/Lの水溶液1Lを混合した混合溶液と、NaOH2モル/Lの水溶液8Lと炭酸ナトリウム1モル/L水溶液1Lを混合した混合溶液を、あらかじめ水を張ってある反応槽中に、攪拌下にpH9.5となるように同時注下する。反応温度35℃にて得られた反応物を固液分離した後、不純物を洗浄し、50g/L濃度に再乳化したスラリーをステアリン酸Naで2%となるように表面処理した後、脱水洗浄し、100℃にて乾燥後、試験用ハンマーミルで微粉砕し試験用サンプルCとした。
【0023】
サンプルD:
硝酸亜鉛1モル/Lの水溶液3Lと、硫酸アルミニウム1モル/Lの水溶液1Lを混合した混合溶液と、NaOH2モル/Lの水溶液5Lと炭酸ナトリウム1モル/L水溶液1Lを混合した混合溶液を、あらかじめ水を張ってある反応槽中に、撹拌下にpH9.5となるように同時注下する。反応温度35℃にて得られた反応物を固液分離した後、サンプルAと同様に処理してサンプルDとした。
【0024】
サンプルE:
市販のハイドロタルサイト(協和化学工業(株)製 DHT−4A)を使用した。
【0025】
サンプルF:
硝酸亜鉛1モル/Lの水溶液1Lと、硝酸マグネシウム1モル/Lの水溶液3Lおよび硝酸アルミニウム2モル/Lの水溶液1Lを混合した混合溶液と、NaOH2モル/Lの水溶液6Lと炭酸ナトリウム1モル/L水溶液1Lを混合した混合溶液を、あらかじめ水を張ってある反応槽中に、撹拌下にpH9.5となるように同時注下する。反応温度35℃にて得られた反応物を固液分離した後、不純物を洗浄し、50g/L濃度に再乳化し150℃で6時間水熱熟成した。得られたスラリーをステアリン酸Naで2%表面処理した後、脱水洗浄し、100℃にて乾燥後、試験用ハンマーミルで微粉砕し試験用サンプルFとした。
【0026】
【表1】

Figure 0003597723
【0027】
前記各サンプルの平均二次粒子サイズおよびBET比表面積、また各サンプルをポリマーに配合した場合の耐変色性、外観、抗生物性および加工性を以下の方法にて測定した。
【0028】
(1)平均二次粒子サイズ:
ハイドロタルサイト類の乾燥粉末をハンマーミルで粉砕したサンプルをエタノールに湿らせた後、ヘキサメタリン酸1wt%水溶液中に投入し1wt%のハイドロタルサイト類水性スラリーとし、超音波で3分間処理した後、マイクロトラック(レーザー光回折散乱法:日機装(株)製)を用いて測定した。
【0029】
(2)BET法比表面積:
窒素吸着法により、3点プロット法で求める。但し、窒素の分子吸着断面積は、16.2平方オングストロームとして計算する。また各測定試料は100℃で30分真空で排気処理した後、窒素の吸着テストを行った。
【0030】
(3)耐変色性:
市販の直鎖状低密度ポリエチレン(日本ポリケム:UF240)100重量部に、市販の抗菌剤1.0重量部と表1の各種ハイドロタルサイト類をそれぞれ表2に示した如く添加し、良く混合した後、190℃混練押し出し機にて抗菌性樹脂組成物ペレットを作成した。このペレットを乾燥後、190℃にて1mm厚みのプレス成形し、直射日光の当たる室内に30日間放置し黄色度(I.Y)を日本電色工業(株)製ZE−2000にて測定した。
【0031】
(4)外観:
耐変色性測定と同様にして得られたペレットを、押出し成形による60ミクロンのTダイフィルムを作成し、目視にてA4サイズ中のフィッシュアイの数を測定した。
Figure 0003597723
【0032】
(5)抗生物性:
外観測定用に作成した60ミクロンTダイフィルムを10mm角に切断し、該フィルムを0.75g採取し、シェークフラスコ法にて、大腸菌数1.8×10個/ml濃度の試験液を用い、25℃、24時間処理した。処理後の試験液菌数濃度を測定し、処理前の菌数濃度から差し引いた値を処理前の菌数濃度で割った値を求めた。
【0033】
(6)加工性:
加工性の評価として、フィルター通過性を測定した。
【0034】
実施例1〜4および比較例1〜8
上記に示した本発明のZn型HT粒子および他のハイドロタルサイト粒子を、市販の直鎖状低密度ポリエチレンを用いた下記配合に添加し、各試験片を作成し評価した結果を表2に表した。
【0035】
配合:
直鎖状低密度ポリエチレン(日本ポリケム:UF240) 100重量部
抗生物剤((株)シナネンゼオミック製:AW−10D) 変量
各種ハイドロタルサイト粒子 変量
【0036】
【表2】
Figure 0003597723
【0037】
実施例5〜6および比較例9〜11
フィルター通過性テストを次の方法で評価した。試薬特級のN,N−ジメチルアセトアミド100重量部に対し、表1のハイドロタルサイト類15重量部を加え、特殊機化工業(株)製のホモミキサー マークIIを用い5000回転にて30分間分散させた後、ポリウレタン溶液75重量部を加え2時間混合させた試料を、MILLIPORE CORPORATION 製の47mmタンク式ステンレスフィルターホルダー(100ml)に目開き20ミクロンのフィルターを装着し、0.3Kg/cm2圧力にて試験液のフィルター通過時間を測定し、結果を表3に表した。通過速度の遅いものは分散不良でフィルターへの目詰まりを起こし、連続生産を妨げるものである。
【0038】
なお前記ポリウレタン溶液とは、平均分子量1200のポリテトラメチレングリコール1000gおよび4,4’−ジフェニルメタンジイソシアネート312gを、窒素ガス気流中95℃において90分間撹拌しつつ反応させて得た、イソシアネート基残有のプレポリマーを室温まで冷却後、乾燥ジメチルホルムアミド2360gを加えたものである。
【0039】
【表3】
Figure 0003597723
【0040】
【発明の効果】
本発明により、加工性を改善し、銀系抗生物剤の抗菌力を発揮しつつ、着色を抑制した商品価値の十分満足できる繊維、積層フィルムおよび台所用ポリマー製品等に使用しうる樹脂組成物を提供することが出来る。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention is an antibiotic polymer composition having improved discoloration to light, which is a characteristic of silver-based antibacterial agents. More specifically, an antibiotic polymer composition containing specific zinc-type hydrotalcite (hereinafter sometimes abbreviated as “Zn-type HT”) particles, and in particular, silver ions prevent discoloration of the polymer due to the presence of chloride ions. About things.
[0002]
[Prior art]
At present, resins that have deeply penetrated the human living environment are widely used in, for example, kitchenware and water supplies such as baths, but are often left wet and serve as a hotbed of mold and various germs. Furthermore, there is a lot of nutrients, such as people touching the wallpaper and carpet, and many germs and fungi propagate, so it is desirable to provide antibacterial and antifungal properties to prevent these. As a result, many antibacterial and antifungal agents (antibiotics) and antibacterial and antifungal resin compositions have been developed.
[0003]
For example, organic antibiotics include chlorohexidine, quaternary ammonium salts, metal salts of pyrithione, etc., and inorganic antibiotics include silver, copper, zinc, tin, mercury, lead, iron, cobalt, nickel, manganese, It is well known that metal ions such as bismuth, barium, cadmium and chromium exhibit antibacterial, antifungal and antialgal properties. Hereinafter, in the present invention, the antibacterial property, the anti (fungal) fungicidal property and the anti (antifungal) algal property are sometimes collectively referred to as “antibiotics”. In general, it is known that organic compounds have poor heat resistance, so that when kneaded with a resin, there is a problem that an antibacterial effect cannot be sufficiently exhibited and that the resin is colored. On the other hand, metal ions have many heat-resistant metals that are harmful to the human body, and recently, for example, a viscous mineral such as zeolite disclosed in JP-A-3-153745 or JP-A-10-25419, or porous metal. Antibiotics resin compositions in which an antimicrobial agent carrying a highly safe metal ion such as silver, zinc, copper or the like on an inorganic ion exchanger such as silica gel is blended with a resin have become common. However, in general, silver-based inorganic antibiotics and antibiotic resin compositions comprising these and a resin discolor during storage, use or processing, and not only change in appearance but also the quality of the resin itself. In many cases, and often accompanied by deterioration of the resin.
[0004]
[Problems to be solved by the invention]
The present invention provides a polymer composition containing a silver ion-containing antibiotic, that is, a polymer composition used for resins, rubbers, fibers, paints, and the like, as well as a long-lasting activity without impairing the intrinsic antibiotic activity of a molded antibiotic. It is an object of the present invention to maintain the antibacterial property, antifungal property, and antialgal property during a period, and to improve the appearance and discoloration resistance of a molded product without lowering processability.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present invention has found that it can be solved by using hydrotalcite of a specific property in which divalent metal in hydrotalcite is replaced with Zn and dispersibility is improved. . That is, according to the present invention, a) 100 parts by weight of a polymer, b) 0.1 to 5 parts by weight of an antibiotic agent comprising an inorganic ion exchanger carrying silver ions, and c) the following (i) to (iii) The present invention provides an antibiotic polymer composition characterized by containing 0.2 to 3 parts by weight of zinc-type hydrotalcite particles satisfying the above condition, and a molded article thereof.
(I) the chemical composition is represented by the following formula (1) Zn x Al 2 ( OH) 4 + 2x CO 3 · mH 2 O (1)
[Where, 3.5 ≦ x ≦ 4.5 and 0 ≦ m ≦ 4 are satisfied]
(Ii) the average secondary particle size is 2 μm or less;
(Iii) The specific surface area by the BET method is 20 m 2 / g or less.
[0006]
JP-A-3-153745 discloses the use of hydrotalcite and / or magnesium oxide for the purpose of neutralizing chlorine and preventing discoloration. The hydrotalcite is a hydrated basic carbonate such as magnesium, calcium, zinc, aluminum, bismuth or the like and does not contain water of crystallization, and includes natural products and synthetic products, and Mg 0.7 Al 0 as a synthetic product. .3 (OH) 2 (CO 3 ) 0.15 · 0.54H 2 O, Mg 4.5 Al 2 (OH) 13 CO 3 · 3.5H 2 O, Zn 6 Al 2 (OH) 16 CO 3 · 4H 2 O, Ca 6 Al 2 (OH) 16 CO 3 .4H 2 O, etc. are disclosed. As for the hydrotalcite containing Zn, only one example is described with other hydrotalcites, but specific examples are as follows. No description is given on what properties the Zn-containing hydrotalcite has.
[0007]
According to the study of the present inventors, it is possible to prevent discoloration of polymer compositions and molded articles used for resins, rubbers, fibers, paints, etc., and antibacterial properties for a long time without impairing the original antibiotic properties of antibiotics, In order to provide a resin composition capable of maintaining mold resistance and anti-algae properties and improving the appearance and processability of molded articles, halogens derived from flame retardants or catalyst residues, and halogen-containing resins having in the structure In addition, it is required that the fine particles be capable of promptly preventing the reaction between the halogen and the silver ion of the antibacterial agent in the environment of use and have good dispersibility. It has been found that these requirements can be satisfied only by using Zn-type HT particles having the above properties.
[0008]
Although the mechanism of the effect of preventing discoloration in a molded article of Zn-type HT is unknown, in addition to quickly neutralizing halogens and suppressing the generation of silver chloride as in the case of hydrotalcite containing Mg, other polymers include: In many cases, phenolic antioxidants, antistatic agents, and many other additives are added. Zn-HT has a lower pH than Mg-containing HT. I think that the.
[0009]
The Zn-type HT particles of the component c) used in the present invention can be obtained by subjecting hydrotalcite obtained by known and other methods disclosed in, for example, Japanese Patent Publication No. 47-32198 to heat treatment in, for example, an aqueous medium. Can be obtained. Specifically, an aqueous solution containing zinc, for example, an aqueous solution of zinc obtained from zinc chloride, zinc nitrate, zinc sulfate, alkali metal zincate, and an aqueous solution containing aluminum, for example, aluminum chloride, aluminum sulfate, alkali metal aluminate And an aqueous solution of an inorganic acid such as caustic and alkali carbonates and, if necessary, sulfuric acid, respectively, at a required pH of about 6.0 to about 11, preferably about 8.0 to about 10. The reaction can be produced in the range of 0. The obtained Zn-type HT is obtained by subjecting it to a solid-liquid separation, followed by sufficient washing and hydrothermal treatment in an aqueous medium at a temperature of 80 to 130 ° C, preferably 90 to 120 ° C for about 5 to about 30 hours. be able to.
[0010]
In the Zn type HT particles of the component c), when the value of x in the formula (1) is smaller than the above range, the dispersibility is poor even if the heat treatment is carried out in the above range in an aqueous medium. It was found by line measurement and electron microscope observation that a large amount of columnar zinc oxide was generated.
[0011]
In the Zn type HT particles of the component c), the average secondary particle size is 2 μm or less, preferably 1.5 μm or less. When the average secondary particle size exceeds 2 μm, the amount of aggregates is large and the aggregated particles are large, so that the dispersibility is reduced and the filter is easily clogged. The Zn type HT particles specific surface area by the BET method of 20 m 2 / g or less, preferably 4~15m 2 / g is desirable. Those having a BET specific surface area of more than 20 m 2 / g are easily aggregated due to surface activity, and are difficult to mechanically disperse.
[0012]
In addition, Zn-type HT is a basic carbonate of Zn and Al, and water of crystallization is present, and a large amount of gas is released at the processing temperature of the resin, which may cause a problem of foaming in the resin and suppresses the foaming. For this purpose, a material fired at 500 ° C. or lower, preferably 150 ° C. to 300 ° C. can be used.
In the present invention, the addition amount of Zn type HT particles is c) component, against the 100 parts by weight of the polymer, 0.2 to 3 parts by weight. If the amount is less than this, the effect on discoloration resistance is insufficient, and if the amount is further increased, the effect cannot be expected so much, and the physical properties may be adversely affected.
[0013]
The Zn-type HT particles in the present invention can be surface-treated with a surface-treating agent in order to improve compatibility with a resin, dispersibility, and the like.
Examples of such surface treatment agents include, for example, higher fatty acids such as stearic acid, oleic acid, and lauric acid and alkali metal salts thereof, for example, vinyltriethoxysilane, γ-aminopropyltrimethoxysilane, and isopropyltriisostearoyl. Examples thereof include silane-based or titanate-based coupling agents such as titanate, and glycerin fatty acid esters such as glycerin monostearate and glycerin monooleate.
[0014]
The polymer of the component (a) used in the present invention may be any of natural, semi-synthetic and synthetic plastics, rubbers, fibers, paints and the like, for example, polyethylene, polypropylene, polystyrene, polyamide, polyester, polyvinyl alcohol, Polycarbonate, polyacetal, polyvinyl chloride, polyvinylidene chloride, fluorine resin, ABS, acrylic resin, polyacrylonitrile-vinylidene chloride copolymer, polyurethane elastomer, polyester elastomer, melamine resin, urea resin, ethylene tetrafluoride resin, unsaturated polyester Resin, epoxy resin, urethane resin, phenol resin, rayon, acetate, natural rubber, silicone rubber, styrene / butadiene rubber, chloroprene rubber, ethylene propylene rubber, fluorine resin , Nitrile rubber, chlorosulfonated polyethylene rubber, butadiene rubber, butyl rubber and the like.
[0015]
In the present invention, the term "antibiotics comprising an inorganic ion exchanger carrying silver ion as the component (b)" refers to silver ion alone as an antibiotic component or copper ion, zinc ion and tin ion containing silver ion as an inorganic ion exchange agent. For example, antimonic acid, niobium oxide, tantalum oxide, hydrated titanium oxide, hydrated iron oxide as an inorganic ion exchanger disclosed in JP-A-6-263916 and capable of supporting silver ions in an amount of 0.1 wt% or more. (III) Hydroxide or hydrated oxide such as hydrous manganese oxide, aluminum oxide, hydrous vanadium hydroxide, hydrous zirconium, hydrous tin oxide, silica gel, zirconium phosphate (layered), titanium phosphate (layered or meshed) , Phosphorus antimonic acid, titanium tungstate, titanium antimonate, tantalum antimonate, Tin Gusuten acid, polyvalent metal acid salts of chromium tripolyphosphate, and there is such as a synthetic aluminosilicate (zeolites), particularly, silica gel, it recommended that carrying the silver ions into the zeolite.
[0016]
As a method for supporting silver ions, a known method can be appropriately used. For example, after treating an inorganic ion exchanger with an inorganic acid such as nitric acid, hydrochloric acid, and sulfuric acid, the inorganic ion exchange is performed in an aqueous solution of silver nitrate adjusted to an arbitrary concentration or a mixed aqueous solution of silver nitrate, copper nitrate, zinc nitrate, and tin nitrate. The body is immersed to carry silver ions of 0.1 wt% or more and 5 wt% or less.
[0017]
If the amount is less than 0.1 wt%, the antibiotic effect cannot be sufficiently exhibited, and it is necessary to increase the blending amount of the antibiotic, which adversely affects the physical properties of the resin molded product. When silver ions exceeding 5% by weight are supported, the cost increases and the discoloration resistance is adversely affected, which is not preferable. The amount of the antibiotic is 0.1 to 5 parts by weight, preferably 0.3 to 2 parts by weight, per 100 parts by weight of the polymer. When the amount is less than this range, the antibacterial effect becomes insufficient, and when the amount is more than this, the physical properties are adversely affected, which is not preferable. As the physical properties of the antibiotic, an antibiotic having an average particle diameter of 6 μm or less and particles of 10 μm or less as fine particles of 80 wt% or more is preferable in terms of physical properties and processability of the polymer. Many silver antibiotics having such properties are already commercially available.
[0018]
In addition, the antibiotic polymer composition of the present invention, in addition to the above components, conventional additives in a range that does not hinder the purpose, for example, talc, mica, inorganic fillers such as wollastonite, for example, phenol-based , Phosphorus-based and sulfur-based antioxidants, for example, benzotriazole-based, benzophenone-based, etc. ultraviolet absorbers, hindered amine-based, benzate-based, nickel-based, etc., light stabilizers, calcium stearate, zinc stearate, and other metal fatty acids Salts, and further, an antistatic agent, a nucleating agent, a pigment, a dispersant, an antiblocking agent, and the like can be added.
[0019]
【Example】
The present invention will be described in more detail based on examples, but the present invention is not limited by the examples.
The methods for preparing various hydrotalcite particles (samples A to F) are shown below, and Table 1 shows the respective physical property values.
[0020]
Sample A:
A mixed solution obtained by mixing 4 L of an aqueous solution of 1 mol / L of zinc nitrate and 1 L of an aqueous solution of 1 mol / L of aluminum sulfate, and a mixed solution obtained by mixing 6 L of an aqueous solution of 2 mol / L of NaOH and 1 L of an aqueous solution of 1 mol / L of sodium carbonate, The mixture is simultaneously poured into a reaction vessel previously filled with water so as to have a pH of 9.5 with stirring. After solid-liquid separation of the reaction product obtained at a reaction temperature of 35 ° C, impurities were washed, re-emulsified to a concentration of 50 g / L, and hydrothermally aged at 120 ° C for 20 hours. The obtained slurry was subjected to a 2% surface treatment with sodium stearate, dehydrated and washed, dried at 100 ° C., and finely pulverized with a test hammer mill to obtain a test sample A.
[0021]
Sample B:
A mixed solution obtained by mixing 6 L of an aqueous solution of 1 mol / L of zinc nitrate and 1 L of an aqueous solution of 1 mol / L of aluminum sulfate, and a mixed solution obtained by mixing 8 L of an aqueous solution of 2 mol / L of NaOH and 1 L of an aqueous solution of 1 mol / L of sodium carbonate, The mixture is simultaneously poured into a reaction vessel previously filled with water so as to have a pH of 9.5 with stirring. After the reaction product obtained at a reaction temperature of 35 ° C. was subjected to solid-liquid separation, it was treated in the same manner as Sample A to obtain Sample B.
[0022]
Sample C:
A mixed solution obtained by mixing 6 L of an aqueous solution of 1 mol / L of zinc nitrate and 1 L of an aqueous solution of 1 mol / L of aluminum sulfate, and a mixed solution obtained by mixing 8 L of an aqueous solution of 2 mol / L of NaOH and 1 L of an aqueous solution of 1 mol / L of sodium carbonate, The mixture is simultaneously poured into a reaction vessel previously filled with water so as to have a pH of 9.5 with stirring. After solid-liquid separation of the reaction product obtained at a reaction temperature of 35 ° C., impurities were washed, and a slurry re-emulsified to a concentration of 50 g / L was subjected to surface treatment with Na stearate to 2%, followed by dehydration washing. After drying at 100 ° C., the sample was finely pulverized with a test hammer mill to obtain a test sample C.
[0023]
Sample D:
A mixed solution obtained by mixing 3 L of an aqueous solution of 1 mol / L of zinc nitrate and 1 L of an aqueous solution of 1 mol / L of aluminum sulfate, and a mixed solution of 5 L of an aqueous solution of 2 mol / L of NaOH and 1 L of an aqueous solution of 1 mol / L of sodium carbonate, The mixture is simultaneously poured into a reaction vessel previously filled with water so as to have a pH of 9.5 with stirring. The reaction product obtained at a reaction temperature of 35 ° C. was subjected to solid-liquid separation, and then treated in the same manner as Sample A to obtain Sample D.
[0024]
Sample E:
A commercially available hydrotalcite (DHT-4A manufactured by Kyowa Chemical Industry Co., Ltd.) was used.
[0025]
Sample F:
1 L of an aqueous solution of 1 mol / L of zinc nitrate, 3 L of an aqueous solution of 1 mol / L of magnesium nitrate and 1 L of an aqueous solution of 2 mol / L of aluminum nitrate, 6 L of an aqueous solution of 2 mol / L of NaOH and 1 mol of sodium carbonate / A mixed solution obtained by mixing 1 L of the L aqueous solution is simultaneously poured into a reaction vessel previously filled with water so as to have a pH of 9.5 with stirring. After solid-liquid separation of the reaction product obtained at a reaction temperature of 35 ° C., impurities were washed, re-emulsified to a concentration of 50 g / L, and hydrothermally aged at 150 ° C. for 6 hours. The obtained slurry was subjected to 2% surface treatment with sodium stearate, dehydrated and washed, dried at 100 ° C., and finely pulverized with a test hammer mill to obtain a test sample F.
[0026]
[Table 1]
Figure 0003597723
[0027]
The average secondary particle size and BET specific surface area of each sample, and the discoloration resistance, appearance, antibiotic properties and processability when each sample was blended with a polymer were measured by the following methods.
[0028]
(1) Average secondary particle size:
A sample obtained by pulverizing a dry powder of hydrotalcite with a hammer mill is moistened with ethanol, and then poured into a 1 wt% aqueous solution of hexametaphosphoric acid to obtain a 1 wt% aqueous slurry of hydrotalcite, which is treated with ultrasonic waves for 3 minutes. Was measured using a Microtrac (laser light diffraction / scattering method: manufactured by Nikkiso Co., Ltd.).
[0029]
(2) BET specific surface area:
It is determined by a three-point plot method by a nitrogen adsorption method. Here, the molecular adsorption cross section of nitrogen is calculated as 16.2 square angstroms. Each sample was evacuated at 100 ° C. for 30 minutes under vacuum, and then subjected to a nitrogen adsorption test.
[0030]
(3) Discoloration resistance:
To 100 parts by weight of a commercially available linear low-density polyethylene (Nippon Polychem: UF240), add 1.0 part by weight of a commercially available antibacterial agent and various hydrotalcites shown in Table 1 as shown in Table 2, and mix well. After that, an antibacterial resin composition pellet was prepared using a kneading extruder at 190 ° C. After drying the pellets, they were press-molded at 190 ° C. to a thickness of 1 mm, left in a room exposed to direct sunlight for 30 days, and the yellowness (I.Y) was measured by ZE-2000 manufactured by Nippon Denshoku Industries Co., Ltd. .
[0031]
(4) Appearance:
From the pellets obtained in the same manner as in the measurement of discoloration resistance, a 60-micron T-die film was formed by extrusion molding, and the number of fish eyes in A4 size was measured visually.
Figure 0003597723
[0032]
(5) Antibiotics:
A 60-micron T-die film prepared for appearance measurement was cut into 10 mm squares, 0.75 g of the film was collected, and a test solution having a concentration of 1.8 × 10 5 Escherichia coli / ml was used by a shake flask method. At 25 ° C. for 24 hours. The bacterial concentration of the test solution after the treatment was measured, and a value obtained by dividing the value obtained by subtracting from the bacterial concentration before the treatment by the bacterial concentration before the treatment was obtained.
[0033]
(6) Workability:
As an evaluation of processability, filter passability was measured.
[0034]
Examples 1-4 and Comparative Examples 1-8
The Zn-type HT particles and other hydrotalcite particles of the present invention described above were added to the following formulation using a commercially available linear low-density polyethylene, and each test piece was prepared and evaluated. expressed.
[0035]
Formula:
Linear low-density polyethylene (Nippon Polychem: UF240) 100 parts by weight Antibiotic (manufactured by Sinanen Zeomic Co., Ltd .: AW-10D) Variables Various hydrotalcite particles Variables
[Table 2]
Figure 0003597723
[0037]
Examples 5 to 6 and Comparative Examples 9 to 11
The filterability test was evaluated in the following manner. 15 parts by weight of the hydrotalcites shown in Table 1 were added to 100 parts by weight of the reagent grade N, N-dimethylacetamide, and dispersed at 5000 rpm for 30 minutes using a homomixer mark II manufactured by Tokushu Kika Kogyo Co., Ltd. After that, 75 parts by weight of a polyurethane solution was added and mixed for 2 hours. A sample having a size of 20 μm was attached to a 47 mm tank type stainless steel filter holder (100 ml) made by MILLIPORE CORPORATION, and the pressure was reduced to 0.3 kg / cm 2 pressure. The time required for the test solution to pass through the filter was measured, and the results are shown in Table 3. If the passing speed is low, poor dispersion causes clogging of the filter and hinders continuous production.
[0038]
Note that the polyurethane solution was obtained by reacting 1000 g of polytetramethylene glycol having an average molecular weight of 1200 and 312 g of 4,4′-diphenylmethane diisocyanate with stirring in a nitrogen gas stream at 95 ° C. for 90 minutes. After cooling the prepolymer to room temperature, 2360 g of dry dimethylformamide was added.
[0039]
[Table 3]
Figure 0003597723
[0040]
【The invention's effect】
According to the present invention, a resin composition which can be used for fibers, laminated films, polymer products for kitchens, etc., which improves processability and exerts the antibacterial activity of silver-based antibiotics while suppressing coloration and sufficiently satisfying commercial value. Can be provided.

Claims (2)

a)ポリマー100重量部に対して、b)銀イオンを担持した無機イオン交換体からなる抗生物剤0.1〜5重量部および、c)下記(i)〜(iii)の条件を満足する亜鉛型ハイドロタルサイト粒子0.2〜3重量部を配合したことを特徴とする抗生物性ポリマー組成物。
(i)化学組成は下記式(1)で表され
ZnxAl2(OH)4+2xCO3・mH2O (1)
[式中、3.5≦x≦4.5、0≦m≦4を満足する]
(ii)平均二次粒子サイズは2μm以下であり、
(iii)BET法による比表面積は20m2/g以下である。
a) With respect to 100 parts by weight of the polymer, b) 0.1 to 5 parts by weight of an antibiotic agent comprising an inorganic ion exchanger carrying silver ions, and c) satisfying the following conditions (i) to (iii): An antibiotic polymer composition comprising 0.2 to 3 parts by weight of zinc-type hydrotalcite particles.
(I) the chemical composition is represented by the following formula (1) Zn x Al 2 ( OH) 4 + 2x CO 3 · mH 2 O (1)
[Where, 3.5 ≦ x ≦ 4.5 and 0 ≦ m ≦ 4 are satisfied]
(Ii) the average secondary particle size is 2 μm or less;
(Iii) The specific surface area by the BET method is 20 m 2 / g or less.
請求項1記載のポリマー組成物より形成された抗生物性成形体。An antibiotic molded article formed from the polymer composition according to claim 1.
JP4247399A 1999-02-22 1999-02-22 Antibiotic polymer composition Expired - Lifetime JP3597723B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4247399A JP3597723B2 (en) 1999-02-22 1999-02-22 Antibiotic polymer composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4247399A JP3597723B2 (en) 1999-02-22 1999-02-22 Antibiotic polymer composition

Publications (2)

Publication Number Publication Date
JP2000239533A JP2000239533A (en) 2000-09-05
JP3597723B2 true JP3597723B2 (en) 2004-12-08

Family

ID=12637044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4247399A Expired - Lifetime JP3597723B2 (en) 1999-02-22 1999-02-22 Antibiotic polymer composition

Country Status (1)

Country Link
JP (1) JP3597723B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626911B2 (en) * 2000-11-20 2011-02-09 電気化学工業株式会社 Polychloroprene latex composition and aqueous adhesive
JP5726083B2 (en) * 2009-10-09 2015-05-27 協和化学工業株式会社 Zinc aluminum salt hydroxide
JP5370682B2 (en) * 2010-03-04 2013-12-18 戸田工業株式会社 Zn-Mg-Al hydrotalcite-type particle powder and resin composition containing the Zn-Mg-Al hydrotalcite-type particle powder

Also Published As

Publication number Publication date
JP2000239533A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
RU2403272C2 (en) Antibacterial medication consisting of silver-containing particles of aluminium sulfate hydroxide and its application
EP0052331B1 (en) Halogen containing polyolefin composition, and method for inactivating halogens therein
DE69826629T2 (en) SYNTHETIC RESIN COMPOSITION RESISTANT TO THERMAL DECOMPOSITION AND MOLDED ARTICLES
JP4151744B2 (en) Hydrotalcite compound particles, resin stabilizer using the particles, halogen-containing resin composition, and anion-trapping material using the particles
KR20070084358A (en) Hydrotalcite and synthetic resin composition
JPH05179052A (en) Stabilizer for resin
JP5182912B2 (en) Antibacterial agent, production method thereof and use thereof
JP2925857B2 (en) Compounding agent for resin
JP2642934B2 (en) Blocking inhibitor and composition for synthetic resin film
JPH04288353A (en) Amorphous silica filler
JP5182911B2 (en) Antibacterial agent comprising aluminum sulfate hydroxide particles containing silver and organic acid anions and use thereof
JP5394380B2 (en) Flame retardant resin composition
JP3597723B2 (en) Antibiotic polymer composition
JP3384816B2 (en) Composite metal oxide-containing resin composition and method for producing the oxide
JP6709782B2 (en) Manufacturing method of transparent synthetic resin moldings using hydrotalcite particles
JP3465248B2 (en) Antimicrobial agent
JPH1067882A (en) Compounding ingredient for resin, production thereof, and olefin resin composition containing the same
JP2987262B2 (en) Antimicrobial agent and antimicrobial resin or rubber composition
JPH0912836A (en) Antibacterial abs resin composition
JPH0753770A (en) Production of antibacterial thermoplastic resin molding
JP3541507B2 (en) Antibacterial polyolefin resin composition
JPH09176370A (en) Antimicrobial resin composition
JPH09324079A (en) Antibacterial polyolefin resin composition
JP2911282B2 (en) Antimicrobial agent and antimicrobial resin or rubber composition
WO2007123264A1 (en) Novel aluminum complex hydroxide salt and method for producing the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040524

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040909

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term