JP3596983B2 - Fiber reinforced optical fiber cord and method of manufacturing the same - Google Patents

Fiber reinforced optical fiber cord and method of manufacturing the same Download PDF

Info

Publication number
JP3596983B2
JP3596983B2 JP16462596A JP16462596A JP3596983B2 JP 3596983 B2 JP3596983 B2 JP 3596983B2 JP 16462596 A JP16462596 A JP 16462596A JP 16462596 A JP16462596 A JP 16462596A JP 3596983 B2 JP3596983 B2 JP 3596983B2
Authority
JP
Japan
Prior art keywords
fiber
optical fiber
diameter
organic
cord
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16462596A
Other languages
Japanese (ja)
Other versions
JPH1010382A (en
Inventor
史紀 中嶋
伸尚 石井
健次 小塚
孝清 加藤
正男 立蔵
信夫 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Nippon Telegraph and Telephone Corp
Ube-Nitto Kasei Co Ltd
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Nippon Telegraph and Telephone Corp
Ube-Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Nippon Telegraph and Telephone Corp, Ube-Nitto Kasei Co Ltd filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP16462596A priority Critical patent/JP3596983B2/en
Publication of JPH1010382A publication Critical patent/JPH1010382A/en
Application granted granted Critical
Publication of JP3596983B2 publication Critical patent/JP3596983B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバコードに関し、とりわけ石英ガラス等からなるコアおよびクラッドの外周にバッファ層を一次被覆した光ファイバ素線に補強繊維と熱硬化性樹脂とでさらに被覆した繊維強化光ファイバコードおよびその製造方法に関する。
【0002】
【従来の技術】
従来のこの種の光ファイバコードおよびその製造方法として、本出願人が開発し既に特許された、特公平5−59056号公報および特公平5−17853号公報に記載されたものがある。
【0003】
前者の公報に記載された発明は、シリコーンゴムのバッファ層で一次被覆した光ファイバ素線の外周に、縦添えした繊維をアリル系及び/又はメタクリル酸系単量体含有不飽和ポリエステル樹脂の硬化により結着した内殻層、スチレン系単量体含有不飽和ポリエステル樹脂を繊維に含有させた繊維強化硬化性樹脂を硬化してなる外殻層、および熱可塑性樹脂からなる表面層を順次積層してなる二次被覆を有し、外殻層と表面層とがアンカー接着されている強化光ファイバ単心コードである。
【0004】
後者の公報に記載された発明は、FRP被覆光ファイバ心線の製造方法に関するものであって、フッ素系熱可塑性樹脂を溶融被覆することにより、真円性を保持した寸法制度の良好な直径5mm程度以下の繊維強化連続棒状成型物の連続成形法である。
【0005】
【発明が解決しようとする課題】
ところで、光ファイバをウレタンアクリレート等のバッファ層で囲んだ光ファイバ素線を繊維強化硬化性樹脂で被覆してなるFRP被覆光ファイバ心線は公知である。
【0006】
一方、光ファイバによる通信システムにおいて、光ファイバケーブルが、幹線、中継、さらには末端系へと整備されようとしているなかで、ケーブル本体については細径化の検討が積極的に進められている。
【0007】
さらに、これらの光ケーブルと接続する光ファイバ単心コードについても細径化が望まれている。ここで、従来から使用されている光ファイバ単心コードとは、外径0.4mmのシリコン緩衝層を有する光ファイバ素線に、アラミド繊維等の高強度・高弾性繊維を縦添えし、軟質PVC等の熱可塑性樹脂で被覆したものがよく知られているが、外径が2.0mm程度あり、一度に多数の光配線を必要とするエリアにおいては、それら単心コードの束が占有する面積はきわめて大きなものとなり、接続装置の容積も大きなものとなる。また、光ケーブルに使用される光テープを構成する光ファイバ素線の外径は250μmが標準であるため、標準サイズのコネクターが使用できないといった点も問題である。
【0008】
この従来からの250μm光ファイバ素線は、繊維補強されていないことから引張性能が不十分であり、また取扱い性(一定の曲げ剛性がないとコネクター部分での伝送損失が大きくなってしまう)からも単心コードとして使用するには問題を有する。したがって、光ファイバ素線の外径を150〜180μmに細径化し、その外周にFRP被覆をし、引張性能、取扱い性を向上した強化光ファイバが提案されている。
【0009】
この細径化された光ファイバ素線は、緩衝層が薄肉化されているため、側圧に対して容易に伝送特性の劣化が招かれる。また、FRP被覆の厚さについても、35〜50μmときわめて薄いため、単糸切れやフィブリル化が生じて取扱いの難しい細番手の補強繊維が必要となってくる。
【0010】
一般に、光ファイバ素線の外径は、ある一定の変動幅を有しており、この光ファイバ素線にFRP被覆を行うと、この素線の外径変動によっても伝送損失が増加してしまう。特に、素線の緩衝層厚さが、薄肉化された光ファイバ素線については、この傾向が著しい。
【0011】
従来からガラス繊維を光ファイバ素線に縦添えして強化した光ファイバ心線が知られているが、繊維が剛直であるため、細径化された光ファイバ素線に対して、伝送損失を著しく増加させてしまう。また、細番手の繊維を使用する必要から、FRP被覆加工段階でのノズル通過性が低下し、工業的に安定した製造が困難である。
【0012】
本発明の目的は、細径化された光ファイバ素線を用いた繊維強化光ファイバ単心コードにおいて、マイクロベント等による伝送損失を低減するとともに、製造加工性に優れた細径の繊維強化光ファイバコードおよびその製造方法を提供することにある。
【0013】
【課題を解決するための手段】
以上の目的を達成するため、本発明のうち請求項1に記載された繊維強化光ファイバコードは、光ファイバ素線の外周に補強繊維が縦添えされてなり最終外径が250μm以下である繊維強化光ファイバコードであって、前記補強繊維は、引張弾性率が6000kg/mm 以上で、かつフィラメント径が光ファイバ素線径の1/20〜1/3である複数の有機繊維を、熱硬化性樹脂の硬化により1〜5層の同心円状に結着した補強繊維束であり、前記有機繊維は、ポリフェニレンベンゾビスオキサゾール(PBO)繊維、またはポリフェニレンスルフィッド(PPS)をスキン層に配置した複合繊維であることを特徴とするものである。
【0014】
また、本発明のうち請求項2に記載された繊維強化光ファイバコードの製造方法は、中央に光ファイバ素線を配し、未硬化の熱硬化性樹脂を含浸させていない有機繊維束を該光ファイバ素線の外周囲に縦添えし、該有機繊維束を案内板の透孔に挿通させて所定形状に成形した後、未硬化の熱硬化性樹脂を外周面から浸透させてさらに成形および硬化させることにより最終外径が250μm以下の繊維強化光ファイバコードを製造する方法であって、前記有機繊維束は、引張弾性率が6000kg/mm 以上で、かつフィラメント径が光ファイバ素線径の1/20〜1/3である複数の有機繊維を、熱硬化性樹脂の硬化により1〜5層の同心円状に結着したものであり、前記有機繊維は、ポリフェニレンベンゾビスオキサゾール(PBO)繊維、またはポリフェニレンスルフィッド(PPS)をスキン層に配置した複合繊維であることを特徴とするものである。
【0016】
【発明の実施の形態】
本発明に用いられる有機繊維は、長繊維状の補強繊維として高強度で低伸度のテンションメンバ機能を維持するために、引張弾性率が6000kg/mm以上あればよく、例えば芳香族ポリアミド(アラミド)繊維、芳香族ポリエステル液晶(ベクトラン)繊維、ポリパラフェニレンベンゾビスオキサゾール繊維(PBO繊維)、超高強度ポリエチレン繊維、ポリパラフェニレンベンゾビスチアゾール繊維(PBT繊維)などである。これらの有機繊維は、繊維の引張弾性率は高いが、ガラス繊維のような剛直性を有していないために光ファイバ素線の緩衝層への圧迫が小さく、伝送損失を小さくすることができる。
【0017】
製造段階でのノズル通過性を向上するためには、例えばポリフェニレンスルフィッド(PPS)繊維のような摺動性、あるいは耐摩耗性に優れた樹脂をスキン層に配置した複合繊維や、同じく摺動性あるいは耐摩耗性に優れたPBO繊維が好適である。
【0018】
有機繊維のフィラメント径については、光ファイバ素線径の1/3〜1/20の範囲であることが好ましく、1/20未満の細径繊維では、単糸切れ、フィブリル化等が発生して、FRP被覆加工段階でのノズル通過性が極端に悪化して、安定した製造ができなくなるとともに、機械的性能の低下や伝送損失の増加につながってくる。
【0019】
また、1/3を越える太さでは、有機繊維補強繊維を同心円状に均一に配置することができず、FRP厚さが不均一となって側圧耐久性が低下し、伝送損失が増加する。
【0020】
さらに、本発明の有機繊維は、撚りのない繊維が好ましい。撚りのある繊維では、光ファイバ心線のマイクロベントを招いて伝送損失が大きくなってしまう。従って、製造方法として、あらかじめ無撚りの繊維ロービングを用意するか、あるいは繊維に撚りを加えない繊維ロービング供給方法(例えば横取り)を採用することが好ましい。また、本発明の有機繊維は、表面荒さが1μm以下の平滑性を有していることが好ましい。細繊化された有機繊維はフィブリル化しやすく、このため繊維表面が凹凸状となって、光ファイバ素線の緩衝層を不均一に圧迫し、伝送損失が増加することになるからである。
【0021】
前述した光ファイバ素線の外径変動に対して、本発明の有機繊維は、ガラス繊維、炭素繊維といった無機繊維と比較して、繊維断面方向の剛直性が小さく柔軟であることから、光ファイバ素線の外径変動を吸収することができ、伝送損失を低減できる。
【0022】
有機繊維を同心円状に結着させる熱硬化性樹脂としては、ベンゼン核を有しない単量体である、ジアリルフタレート、トリアリルフタレートなどのアリル系単量体、メチルアクリレート、エチルアクリレートなどのアクリル酸エステル系単量体、メチルメタクリレート、トリエチレングリコールジメタクリレートなどのメタクリル酸エステル系単量体を架橋成分とし、骨格樹脂成分として、エポキシアクリレート(ノボラック型、もしくはビスフェノール型)または不飽和ポリエステルが例示される。
【0023】
本発明の製造方法において、未硬化の熱硬化性樹脂を含浸させていない有機繊維束をあらかじめ光ファイバ素線に縦添えして成形することにより、光ファイバ素線を偏心させることなく、確実に有機繊維束の中央に配置できるようになる。またその後、未硬化の熱硬化性樹脂を外周面から浸透させることにより、光ファイバ素線の緩衝層近傍の熱硬化性樹脂の含有率が外周面に比べて低くすることができるため、樹脂の硬化ひずみに伴う伝送損失を低減できる。
【0024】
熱硬化性樹脂を外周面から浸透させた後、成形および硬化させる方法としては、公知の方法が採用でき、例えば特公平5−17853号公報に記載されている方法、すなわち、フッ素系熱可塑性樹脂を環状に押出被覆して、熱硬化性樹脂を硬化させた後、該フッ素系熱可塑性樹脂による被覆樹脂層を剥離除去して繊維強化光ファイバコードを得る方法が好適である。
【0025】
【実施例】
<実施例1>
図1において、左端中央のボビン1からコア径10μm、クラッド径125μmの石英系光ファイバの外周をウレタンアクリレートで160μmの外径に被覆して緩衝層を形成した光ファイバ素線3を供給し、その外周に補強繊維束5としてフィラメント径22.4μm(25デニール)の芳香族ポリエステル液晶−PPS複合繊維(株式会社クラレ製:Vecry−SAF )ロービング7本を案内板7の透孔に挿通させて縦添えして、外径0.5mmに成形した。その後、樹脂槽入口ガイド9によって0.25mmの外径とし、直ちにメタクリル酸エステル系単量体含有ノボラック型ビニルエステル樹脂(三井東圧化学株式会社製:エスターH2000HV)が入った樹脂槽11に挿通して、補強繊維束5の外周面から該熱硬化性樹脂を浸透させた。
【0026】
次いで、これをクロスヘッドダイ13に挿通して、溶融状の4フッ化エチレン−6フッ化プロピレン共重合体樹脂(三井フロロケミカル株式会社製:FEP)を環状に押し出して被覆し、冷却水槽15に導いて冷却固化し、被覆厚み0.1mmで内部が未硬化の繊維強化光ファイバコードを得た。続いてこれを蒸気圧3.5kg/cmで145℃に加熱された硬化槽17に導いて内部の熱硬化性材料を硬化させ、鋭利な切断刃をセットした被覆剥離装置19によってFEP被覆層を切開剥離してFRP表面を露呈させ、引取装置21を通して、図示しない製品用ドラムに巻き取った。
【0027】
このようにして得られた繊維強化光ファイバは、図2に示すように、光ファイバ素線3の外周に補強繊維束5が、熱硬化性樹脂たるメタクリル酸エステル系単量体含有ノボラック型ビニルエステル樹脂(三井東圧化学株式会社製:エスターH2000HV)の硬化により、複数層(同図では、2層)の同心円状に結着されてなるものである。
【0028】
<実施例2>
補強繊維束として、フィラメント径12μm(100デニール)のPBO繊維ロービング(東洋紡株式会社製)を2本用いたこと以外は、実施例1と同様にして繊維強化光ファイバコードを得た。
【0029】
<実施例3>
補強繊維束として、フィラメント径10.7μm(70デニール)の芳香族ポリアミド繊維ロービング(デュポン・東レケブラー株式会社製:ケブラーK49)を3本用いたこと以外は、実施例1と同様にして繊維強化光ファイバコードを得た。
【0030】
<比較例1>
補強繊維束として、フィラメント径5μm(11.2テックス)のTガラス繊維ロービング(日東グラスファイバー工業株式会社製)を3本用いたこと以外は実施例1と同様にして繊維強化光ファイバコードを得た
<評価>
実施例1ないし3、比較例1の物性を表1に示す。
【0031】
【表1】

Figure 0003596983
以上の結果から、本発明の実施例1ないし3では、測定波長1.3μmにおける伝送損失値が順に1.04dB/km ,0.98dB/km ,1.02dB/km であるのに対し、比較例1では、測定不能であった。この点から、本発明では、最終外径が250μm以下の細径でありながら、伝送損失の増加を極少に抑えられることが分かる。
【0032】
また、実施例1ないし3では、ノズル通過性に問題が少なく、特に実施例2では単糸切れがし難くノズルに蓄積物が無いといった優れた効果が実証された。
【0033】
【発明の効果】
以上説明したように、請求項1の発明によれば、緩衝層が薄くなった細径の光ファイバ素線を用いているにもかかわらず、耐側圧を向上させて伝送損失の増加を極少に抑え、かつ最終外径が250μm以下の従来にはない細径の繊維強化光ファイバコードが得られる。
【0034】
請求項2の発明によれば、製造上のトラブルが少なく、きわめて安定的に製品を得ることができる。しかも、最終外径が250μm以下の細径でありながら、耐側圧が向上して伝送損失の増加が抑えられる繊維強化光ファイバコードを、製造上のトラブルが少なく、きわめて安定的に得ることができる。
【0035】
請求項3の発明によれば、最終外径が250μm以下の細径でありながら、耐側圧が向上して伝送損失の増加が抑えられる繊維強化光ファイバコードを、製造上のトラブルが少なく、きわめて安定的に得ることができる。
【図面の簡単な説明】
【図1】本発明による繊維強化光ファイバ製造方法を実施する製造装置を示す概略図である。
【図2】本発明による繊維強化光ファイバを示す概略断面図である。
【符号の説明】
1 ボビン
3 光ファイバ素線
5 補強繊維束
7 案内板
9 樹脂層入口ガイド
11 樹脂槽
13 クロスヘッドダイ
15 冷却水槽
17 硬化槽
19 被覆剥離装置
21 引取装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an optical fiber cord, in particular, a fiber-reinforced optical fiber cord further coated with a reinforcing fiber and a thermosetting resin on an optical fiber element wire primarily coated with a buffer layer on the outer periphery of a core and a clad made of quartz glass or the like, and It relates to the manufacturing method.
[0002]
[Prior art]
As a conventional optical fiber cord of this type and a method for manufacturing the same, there are those described in Japanese Patent Publication No. Hei 5-59056 and Japanese Patent Publication No. Hei 5-17853, which have been developed and patented by the present applicant.
[0003]
The invention described in the former publication is directed to curing an unsaturated polyester resin containing an allylic and / or methacrylic acid-based monomer by vertically arranging fibers on the outer periphery of an optical fiber that is primarily coated with a silicone rubber buffer layer. An outer shell layer formed by curing a fiber-reinforced curable resin containing a styrene-based monomer-containing unsaturated polyester resin in a fiber, and a surface layer made of a thermoplastic resin are sequentially laminated. This is a reinforced optical fiber single-core cord having a secondary coating comprising a shell layer and a surface layer anchored to each other.
[0004]
The invention described in the latter publication relates to a method for producing an FRP-coated optical fiber core wire, which is formed by melting and coating a fluorine-based thermoplastic resin to have a diameter of 5 mm having a good dimensional accuracy while maintaining roundness. This is a continuous molding method for producing a fiber-reinforced continuous rod-shaped molded product having a degree of less than about.
[0005]
[Problems to be solved by the invention]
By the way, an FRP-coated optical fiber core in which an optical fiber in which an optical fiber is surrounded by a buffer layer such as urethane acrylate is coated with a fiber-reinforced curable resin is known.
[0006]
On the other hand, in a communication system using an optical fiber, as an optical fiber cable is being improved to a trunk line, a relay, and further to an end system, studies on reducing the diameter of the cable body are being actively promoted.
[0007]
Further, it has been desired to reduce the diameter of the optical fiber single-core cord connected to these optical cables. Here, the conventionally used optical fiber single-core cord is an optical fiber having a silicon buffer layer having an outer diameter of 0.4 mm and a high-strength, high-elastic fiber such as aramid fiber longitudinally added to a soft fiber. Although those coated with a thermoplastic resin such as PVC are well known, in an area having an outer diameter of about 2.0 mm and requiring a large number of optical wirings at once, a bundle of these single-core cords is occupied. The area is very large and the volume of the connecting device is also large. Another problem is that a standard size connector cannot be used because the outer diameter of the optical fiber constituting the optical tape used for the optical cable is typically 250 μm.
[0008]
This conventional 250 μm optical fiber is insufficient in tensile performance because it is not fiber reinforced, and is difficult to handle (transmission loss at the connector part increases if there is no constant bending rigidity). Also have problems to use as single core cords. Therefore, there has been proposed a reinforced optical fiber in which the outer diameter of the optical fiber is reduced to 150 to 180 μm, the outer periphery thereof is coated with FRP, and the tensile performance and handleability are improved.
[0009]
Since the buffer layer of the optical fiber having a reduced diameter is made thinner, the transmission characteristics are easily deteriorated with respect to the lateral pressure. In addition, the thickness of the FRP coating is extremely small, that is, 35 to 50 μm. Therefore, a single fiber breakage or fibrillation occurs, and a fine fiber having a difficult count is required.
[0010]
In general, the outer diameter of an optical fiber has a certain fluctuation range, and when this optical fiber is coated with FRP, transmission loss increases due to the outer diameter of the optical fiber. . In particular, this tendency is remarkable for an optical fiber in which the thickness of the buffer layer is reduced.
[0011]
Conventionally, there has been known an optical fiber core fiber reinforced by vertically attaching glass fiber to an optical fiber strand.However, since the fiber is rigid, transmission loss is reduced with respect to an optical fiber strand having a reduced diameter. It will increase significantly. In addition, since it is necessary to use a fine-count fiber, the nozzle passability in the FRP coating processing stage is reduced, and it is difficult to produce a stable industrially.
[0012]
SUMMARY OF THE INVENTION An object of the present invention is to provide a fiber-reinforced optical fiber single-core cord using an optical fiber having a reduced diameter, to reduce transmission loss due to a micro vent or the like and to realize a small-diameter fiber-reinforced optical fiber having excellent processability. An object of the present invention is to provide a fiber cord and a method for manufacturing the same.
[0013]
[Means for Solving the Problems]
In order to achieve the above object, a fiber reinforced optical fiber cord according to claim 1 of the present invention is a fiber in which a reinforcing fiber is vertically attached to the outer periphery of an optical fiber and has a final outer diameter of 250 μm or less. In the reinforced optical fiber cord, a plurality of organic fibers each having a tensile elastic modulus of 6000 kg / mm 2 or more and a filament diameter of 1/20 to 1/3 of an optical fiber strand are heat-treated. 1 to 5 layers of reinforcing fiber bundles concentrically bound by curing of a curable resin, wherein the organic fibers include polyphenylene benzobisoxazole (PBO) fibers or polyphenylene sulfide (PPS ) disposed on a skin layer. Characterized in that it is a composite fiber.
[0014]
In the method for producing a fiber reinforced optical fiber cord according to claim 2 of the present invention, an optical fiber strand is disposed at the center, and an organic fiber bundle not impregnated with an uncured thermosetting resin is used. Along the outer periphery of the optical fiber, the organic fiber bundle is inserted into the through hole of the guide plate and molded into a predetermined shape, and then the uncured thermosetting resin is permeated from the outer peripheral surface to further form and form. A method for producing a fiber-reinforced optical fiber cord having a final outer diameter of 250 μm or less by curing, wherein the organic fiber bundle has a tensile elastic modulus of 6000 kg / mm 2 or more and a filament diameter of an optical fiber wire diameter. A plurality of organic fibers of 1/20 to 1/3 are bound in a concentric circle of 1 to 5 layers by curing of a thermosetting resin, and the organic fibers are polyphenylene benzobisoxazole (PBO) fiber Or characterized in that polyphenylene sulfide head a (PPS) is a composite fiber which is disposed in the skin layer.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The organic fiber used in the present invention may have a tensile modulus of 6000 kg / mm 2 or more in order to maintain a high-strength, low-elongation tension member function as a long-fiber reinforcing fiber. (Aramid) fiber, aromatic polyester liquid crystal (Vectran) fiber, polyparaphenylene benzobisoxazole fiber (PBO fiber), ultra-high strength polyethylene fiber, polyparaphenylene benzobisthiazole fiber (PBT fiber), and the like. These organic fibers have a high tensile modulus of fiber, but do not have the rigidity of glass fiber, so that the pressure on the buffer layer of the optical fiber is small and the transmission loss can be reduced. .
[0017]
In order to improve the nozzle passage property in the manufacturing stage, for example, a composite fiber in which a resin excellent in sliding property such as polyphenylene sulfide (PPS) fiber or abrasion resistance is disposed in the skin layer, or a sliding fiber in the same manner, PBO fibers having excellent mobility or wear resistance are preferred.
[0018]
The filament diameter of the organic fiber is preferably in the range of 1/3 to 1/20 of the optical fiber diameter, and if the fiber diameter is less than 1/20, single yarn breakage, fibrillation, etc. may occur. In addition, the nozzle-passing property in the FRP coating processing stage is extremely deteriorated, so that stable production cannot be performed, leading to a decrease in mechanical performance and an increase in transmission loss.
[0019]
On the other hand, if the thickness exceeds 1/3, the organic fiber reinforcing fibers cannot be arranged concentrically and uniformly, the FRP thickness becomes uneven, the lateral pressure durability decreases, and the transmission loss increases.
[0020]
Further, the organic fiber of the present invention is preferably a fiber having no twist. Twisted fibers cause micro-venting of the optical fiber, resulting in increased transmission loss. Therefore, it is preferable to prepare a non-twisted fiber roving in advance, or to adopt a fiber roving supply method (for example, cross-cutting) that does not add twist to the fiber. Further, the organic fiber of the present invention preferably has a smoothness with a surface roughness of 1 μm or less. This is because the finely divided organic fibers are liable to be fibrillated, and the fiber surface becomes uneven, so that the buffer layer of the optical fiber is unevenly pressed and the transmission loss increases.
[0021]
The organic fiber of the present invention is less flexible than the inorganic fiber such as glass fiber and carbon fiber in the fiber cross-sectional direction with respect to the outer diameter variation of the above-described optical fiber wire, and is thus flexible. Fluctuations in the outer diameter of the strand can be absorbed, and transmission loss can be reduced.
[0022]
Examples of the thermosetting resin that binds organic fibers concentrically include monomers having no benzene nucleus, such as diallyl phthalate and triallyl phthalate, and allyl-based monomers, and acrylic acid such as methyl acrylate and ethyl acrylate. A methacrylate monomer such as an ester monomer, methyl methacrylate, or triethylene glycol dimethacrylate is used as a crosslinking component, and an epoxy acrylate (novolak type or bisphenol type) or an unsaturated polyester is exemplified as a skeleton resin component. You.
[0023]
In the manufacturing method of the present invention, the organic fiber bundle not impregnated with the uncured thermosetting resin is vertically attached to the optical fiber in advance and molded, without decentering the optical fiber, without fail. It can be arranged at the center of the organic fiber bundle. Further, thereafter, by infiltrating the uncured thermosetting resin from the outer peripheral surface, the content of the thermosetting resin in the vicinity of the buffer layer of the optical fiber can be reduced as compared with the outer peripheral surface. Transmission loss due to curing strain can be reduced.
[0024]
As a method of molding and curing after the thermosetting resin is infiltrated from the outer peripheral surface, a known method can be employed, for example, a method described in Japanese Patent Publication No. 5-17853, that is, a fluorine-based thermoplastic resin. It is preferable to obtain a fiber-reinforced optical fiber cord by extrusion-coating to cure the thermosetting resin, and then peeling and removing the coating resin layer of the fluorine-based thermoplastic resin.
[0025]
【Example】
<Example 1>
In FIG. 1, an optical fiber 3 having a buffer layer formed by coating the outer periphery of a silica-based optical fiber having a core diameter of 10 μm and a cladding diameter of 125 μm with an outer diameter of 160 μm from a bobbin 1 at the left end center and forming a buffer layer is supplied. Aromatic polyester liquid crystal-PPS conjugate fiber (Vecry-SAF, manufactured by Kuraray Co., Ltd.) having a filament diameter of 22.4 μm (25 denier) as a reinforcing fiber bundle 5 is inserted around the perimeter of the guide plate 7 as a reinforcing fiber bundle 5. It was vertically attached to form an outer diameter of 0.5 mm. After that, the outer diameter was set to 0.25 mm by the resin tank inlet guide 9 and immediately inserted into the resin tank 11 containing a novolak type vinyl ester resin containing methacrylic acid ester monomer (Ester H2000HV manufactured by Mitsui Toatsu Chemicals, Inc.). Then, the thermosetting resin was permeated from the outer peripheral surface of the reinforcing fiber bundle 5.
[0026]
Next, this is inserted into a crosshead die 13 to extrude and coat a molten ethylene-fluorinated hexafluoropropylene copolymer resin (manufactured by Mitsui Fluorochemicals Co., Ltd .: FEP) in a ring shape. To obtain a fiber-reinforced optical fiber cord having a coating thickness of 0.1 mm and an uncured inside. Subsequently, this was introduced into a curing tank 17 heated to 145 ° C. at a vapor pressure of 3.5 kg / cm 2 to cure the thermosetting material therein, and the FEP coating layer was formed by a coating stripping device 19 having a sharp cutting blade set therein. Was cut and peeled to expose the FRP surface, and was wound up on a product drum (not shown) through the take-off device 21.
[0027]
As shown in FIG. 2, the fiber reinforced optical fiber obtained in this manner has a reinforcing fiber bundle 5 on the outer periphery of an optical fiber 3 and a novolak type vinyl containing a methacrylate monomer as a thermosetting resin. By consolidating an ester resin (Ester H2000HV, manufactured by Mitsui Toatsu Chemicals, Inc.), a plurality of layers (two layers in the figure) are concentrically bound.
[0028]
<Example 2>
A fiber-reinforced optical fiber cord was obtained in the same manner as in Example 1, except that two PBO fiber rovings (manufactured by Toyobo Co., Ltd.) having a filament diameter of 12 μm (100 denier) were used as the reinforcing fiber bundle.
[0029]
<Example 3>
Fiber reinforcement was performed in the same manner as in Example 1 except that three aromatic polyamide fiber rovings (manufactured by Dupont Toray Kevlar Kevlar K49) having a filament diameter of 10.7 μm (70 denier) were used as the reinforcing fiber bundle. An optical fiber cord was obtained.
[0030]
<Comparative Example 1>
A fiber reinforced optical fiber cord was obtained in the same manner as in Example 1 except that three T glass fiber rovings (manufactured by Nitto Glass Fiber Industries, Ltd.) having a filament diameter of 5 μm (11.2 tex) were used as the reinforcing fiber bundle. <Evaluation>
Table 1 shows the physical properties of Examples 1 to 3 and Comparative Example 1.
[0031]
[Table 1]
Figure 0003596983
From the above results, in Examples 1 to 3 of the present invention, the transmission loss values at the measurement wavelength of 1.3 μm were 1.04 dB / km, 0.98 dB / km, and 1.02 dB / km, respectively. In Example 1, measurement was impossible. From this point, it can be seen that in the present invention, the increase in transmission loss can be minimized even though the final outer diameter is a small diameter of 250 μm or less.
[0032]
Further, in Examples 1 to 3, there was little problem in the nozzle passage property, and in particular, in Example 2, an excellent effect was demonstrated in which the single yarn was hardly broken and there was no accumulation in the nozzle.
[0033]
【The invention's effect】
As described above, according to the first aspect of the present invention, despite the use of a small-diameter optical fiber having a thin buffer layer, the withstand pressure is improved to minimize the increase in transmission loss. An unprecedented small-diameter fiber-reinforced optical fiber cord having a suppressed outer diameter of 250 μm or less can be obtained.
[0034]
According to the second aspect of the present invention, a product can be obtained very stably with little trouble in manufacturing. In addition, a fiber-reinforced optical fiber cord having a small outer diameter of 250 μm or less and improved lateral pressure resistance to suppress an increase in transmission loss can be obtained extremely stably with little trouble in manufacturing. .
[0035]
According to the third aspect of the present invention, a fiber-reinforced optical fiber cord which has a small final diameter of 250 μm or less, has an improved lateral pressure resistance and suppresses an increase in transmission loss, has very few troubles in manufacturing, and is extremely It can be obtained stably.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a manufacturing apparatus for performing a fiber-reinforced optical fiber manufacturing method according to the present invention.
FIG. 2 is a schematic sectional view showing a fiber-reinforced optical fiber according to the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 bobbin 3 optical fiber 5 reinforcing fiber bundle 7 guide plate 9 resin layer entrance guide 11 resin tank 13 crosshead die 15 cooling water tank 17 curing tank 19 coating stripping device 21 take-off device

Claims (2)

光ファイバ素線の外周に補強繊維が縦添えされてなり最終外径が250μm以下である繊維強化光ファイバコードであって、
前記補強繊維は、引張弾性率が6000kg/mm 以上で、かつフィラメント径が光ファイバ素線径の1/20〜1/3である複数の有機繊維を、熱硬化性樹脂の硬化により1〜5層の同心円状に結着した補強繊維束であり、
前記有機繊維は、ポリフェニレンベンゾビスオキサゾール(PBO)繊維、またはポリフェニレンスルフィッド(PPS)をスキン層に配置した複合繊維であることを特徴とする繊維強化光ファイバコード。
A fiber-reinforced optical fiber cord in which a reinforcing fiber is vertically attached to an outer periphery of the optical fiber and has a final outer diameter of 250 μm or less,
The reinforcing fiber is obtained by curing a plurality of organic fibers having a tensile modulus of elasticity of 6000 kg / mm 2 or more and a filament diameter of 1/20 to 1/3 of the optical fiber diameter by curing a thermosetting resin. It is a reinforcing fiber bundle bound in five layers concentrically,
The fiber reinforced optical fiber cord, wherein the organic fiber is a polyphenylene benzobisoxazole (PBO) fiber or a composite fiber in which polyphenylene sulfide (PPS ) is disposed on a skin layer.
中央に光ファイバ素線を配し、未硬化の熱硬化性樹脂を含浸させていない有機繊維束を該光ファイバ素線の外周囲に縦添えし、該有機繊維束を案内板の透孔に挿通させて所定形状に成形した後、未硬化の熱硬化性樹脂を外周面から浸透させてさらに成形および硬化させることにより最終外径が250μm以下の繊維強化光ファイバコードを製造する方法であって、
前記有機繊維束は、引張弾性率が6000kg/mm 以上で、かつフィラメント径が光ファイバ素線径の1/20〜1/3である複数の有機繊維を、熱硬化性樹脂の硬化により1〜5層の同心円状に結着したものであり、
前記有機繊維は、ポリフェニレンベンゾビスオキサゾール(PBO)繊維、またはポリフェニレンスルフィッド(PPS)をスキン層に配置した複合繊維であることを特徴とする繊維強化光ファイバコードの製造方法。
An optical fiber strand is disposed in the center, and an organic fiber bundle not impregnated with an uncured thermosetting resin is vertically attached to the outer periphery of the optical fiber strand, and the organic fiber bundle is inserted into a through hole of the guide plate. A method of producing a fiber-reinforced optical fiber cord having a final outer diameter of 250 μm or less by inserting an uncured thermosetting resin from the outer peripheral surface thereof, forming the cured product into a predetermined shape, and further molding and curing the same. ,
The organic fiber bundle is obtained by curing a plurality of organic fibers having a tensile elastic modulus of 6000 kg / mm 2 or more and a filament diameter of 1/20 to 1/3 of an optical fiber wire diameter by curing a thermosetting resin. ~ 5 layers concentrically bound,
The method for manufacturing a fiber-reinforced optical fiber cord, wherein the organic fiber is a polyphenylene benzobisoxazole (PBO) fiber or a composite fiber in which polyphenylene sulfide (PPS ) is disposed on a skin layer.
JP16462596A 1996-06-25 1996-06-25 Fiber reinforced optical fiber cord and method of manufacturing the same Expired - Lifetime JP3596983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16462596A JP3596983B2 (en) 1996-06-25 1996-06-25 Fiber reinforced optical fiber cord and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16462596A JP3596983B2 (en) 1996-06-25 1996-06-25 Fiber reinforced optical fiber cord and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH1010382A JPH1010382A (en) 1998-01-16
JP3596983B2 true JP3596983B2 (en) 2004-12-02

Family

ID=15796761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16462596A Expired - Lifetime JP3596983B2 (en) 1996-06-25 1996-06-25 Fiber reinforced optical fiber cord and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3596983B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4082372B2 (en) 2004-03-29 2008-04-30 日立電線株式会社 Fiber optic cable
CN105417279A (en) * 2015-12-25 2016-03-23 天津奥林奥克通信科技有限公司 Automatic pay-off device
CN106873105A (en) * 2017-01-25 2017-06-20 湖北同广和新材料有限公司 High-performance small pre-stress thermoplastics type's Intelligent optical fiber rod and preparation method thereof
CN115657242B (en) * 2022-12-14 2023-03-14 江苏中天科技股份有限公司 Small-diameter fiber reinforced optical cable and manufacturing process thereof

Also Published As

Publication number Publication date
JPH1010382A (en) 1998-01-16

Similar Documents

Publication Publication Date Title
KR910001795B1 (en) Reinforced optical fiber and method for preparating the same
JP3176390B2 (en) Method of manufacturing reinforced plastic armored cable
US4677818A (en) Composite rope and manufacture thereof
JPS6290229A (en) Continuous molding method for cylindrical molded material
US5084221A (en) Process for manufacturing a twisted frp structure
WO2005047950A1 (en) Drop optical fiber cable and frp tension member used for the cable
JP3596983B2 (en) Fiber reinforced optical fiber cord and method of manufacturing the same
JP4077300B2 (en) Drop optical fiber cable
JP2659110B2 (en) Fiber reinforced resin composite pipe and method for producing the same
WO2012036031A1 (en) Plastic optical fiber unit and plastic optical fiber cable using same
JP2008179010A (en) Method and apparatus for manufacturing thermoplastic resin-coated frp filament
JP2984021B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP4282128B2 (en) Method for producing aramid fiber reinforced curable resin wire
JP7189651B2 (en) molding
JP4116968B2 (en) FRP tensile body for drop optical fiber cable
JP2869116B2 (en) Fiber-reinforced thermosetting resin-made twisted structure and method for producing the same
JP3940500B2 (en) Reinforced optical fiber cord and manufacturing method thereof
JPS61153608A (en) Optical fiber cord
CN211786213U (en) Air-blowing type optical fiber bundle
JPS6111712A (en) Production of frp-coated optical fiber
CN115657242B (en) Small-diameter fiber reinforced optical cable and manufacturing process thereof
JP2503790Y2 (en) Flexible non-metallic optical fiber cable
JP2849418B2 (en) Tension member for reinforcing optical fiber ribbon and method of manufacturing the same
JPH10245259A (en) Production of reinforcing material for concrete
JP2005283624A (en) Optical fiber cable and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040114

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070917

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080917

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090917

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100917

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110917

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120917

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term