JP3595380B2 - White phosphorescent phosphor - Google Patents

White phosphorescent phosphor Download PDF

Info

Publication number
JP3595380B2
JP3595380B2 JP18788495A JP18788495A JP3595380B2 JP 3595380 B2 JP3595380 B2 JP 3595380B2 JP 18788495 A JP18788495 A JP 18788495A JP 18788495 A JP18788495 A JP 18788495A JP 3595380 B2 JP3595380 B2 JP 3595380B2
Authority
JP
Japan
Prior art keywords
mol
luminance
added
sral
phosphorescent phosphor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18788495A
Other languages
Japanese (ja)
Other versions
JPH0913028A (en
Inventor
義彦 村山
信義 竹内
康充 青木
米一 平田
隆嗣 松沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nemoto and Co Ltd
Original Assignee
Nemoto and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nemoto and Co Ltd filed Critical Nemoto and Co Ltd
Priority to JP18788495A priority Critical patent/JP3595380B2/en
Publication of JPH0913028A publication Critical patent/JPH0913028A/en
Application granted granted Critical
Publication of JP3595380B2 publication Critical patent/JP3595380B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Description

【0001】
【産業上の利用分野】
本発明は白色蓄光性蛍光体、更に詳しくは可視光下では白色の体色を有し、耐光性に優れると共に、極めて長時間にわたって高輝度の残光特性を有する白色蓄光性蛍光体に関するものである。
【0002】
【従来の技術】
一般に蛍光体の残光時間は極めて短く、外部刺激を停止すると速やかにその発光は減衰するが、まれに紫外線等で刺激した後その刺激を停止した後もかなりの長時間(数10分〜数時間)に渡り残光が肉眼で認められるものがあり、これらを通常の蛍光体とは区別して蓄光性蛍光体あるいは燐光体と呼んでいる。
【0003】
この蓄光性蛍光体としては、CaS:Bi(紫青色発光),CaSrS:Bi(青色発光),ZnS:Cu(緑色発光),ZnCdS:Cu(黄色〜橙色発光)等の硫化物蛍光体が知られているが、これらのいずれの硫化物蛍光体も、化学的に不安定であったり、耐光性に劣るなど実用面での問題点が多い。
現在市場でもっぱら用いられる硫化亜鉛系蓄光性蛍光体(ZnS:Cu)も、特に湿気が存在すると紫外線により光分解して黒変したり輝度低下するため、屋外で直接日光に曝されるような用途での使用は困難であり、夜光時計や避難誘導標識、屋内の夜間表示等その用途は限定されていた。
【0004】
またこの硫化亜鉛系蛍光体を夜光時計に用いる場合であっても、肉眼でその時刻を認識可能な残光時間は約30分から2時間程度であり、実用的には、蛍光体に放射性物質を添加しそのエネルギーで刺激して常時発光する自発光性の夜光塗料を用いざるを得ないのが現状であった。
そこで本発明者は、前述のごとき現状に鑑み、市販の硫化物系蛍光体に比べて遥かに長時間の残光特性を有し、更には化学的にも安定であり、かつ長期にわたり耐光性に優れる蓄光性蛍光体として、SrAl :Eu,Dyからなる蓄光性蛍光体を提供している。
【0005】
ただ、前述した硫化亜鉛系蓄光性蛍光体(ZnS:Cu)も、SrAl :Eu,Dyからなる蓄光性蛍光体も、体色が緑色であり、したがって緑色に見えても不都合でない場所にしか用いることができないものであった。
一方、体色を白色にしておくと、そのままでも使用しやすいだけでなく、他の顔料等の添加により所望の色とすることができるので、使用範囲が広がることとなるものの、極めて長時間にわたって高輝度の残光特性を有する蓄光性蛍光体のうちで、体色が白色のものが存在しなかった。
【0006】
【発明が解決しようとする課題】
そこで本発明者は、前述のごとき現状に鑑み、市販の硫化物系蛍光体に比べて遥かに長時間の残光特性を有し、更には化学的にも安定であり、かつ長期にわたり耐光性に優れると共に、通常の可視光下で体色が白色に見える白色蓄光性蛍光体の提供を目的としたものである。
【0007】
【課題を解決するための手段】
前述したような白色蓄光性蛍光体として、請求項1記載の発明は、SrAl24:Eu,Dyからなる蓄光性蛍光体に、Er23SrAl 2 4 :Eu,Dyに対して1〜15重量%添加したことを特徴とする。
請求項2記載の発明は、SrAl24:Eu,Dyからなり、EuをSrに対して、1≦Eu≦10mol%の範囲で添加し、更にEuとDyとを、3≦Dy/Eu≦70の比で添加し、更にSrを30mol%以上とした蓄光性蛍光体に、Er23SrAl 2 4 :Eu,Dyに対して1〜15重量%添加したことを特徴とする。
【0008】
またこれらの白色蓄光性蛍光体の合成に際しては、フラックスとしてたとえば硼酸を 1〜10重量%の範囲で添加することができる。ここで添加量が、 1重量%以下であるとフラックス効果がなくなるし、10重量%を越えると固化し、その後の粉砕、分級作業が困難となる。
【0009】
【実施例】
本発明の発明者らは、SrAl :Eu,Dyからなる蓄光性蛍光体が、耐光性に優れると共に、極めて長時間にわたって高輝度の残光特性を有することを確認している。
このようなSrAl :Eu,Dyからなる蓄光性蛍光体の反射率は、図1に示したように、約520nmの波長にピークを有している。
【0010】
ここにおいて、可視光領域の各波長の反射率がほぼ等しい場合には、可視光下で白色と認識されるものの、このようにピークを有している場合には、ピークの波長に対応した色が認識されることとなる。
したがって、約520nmの波長にピークを有しているSrAl :Eu,Dyからなる蓄光性蛍光体は、可視光下で、緑色として認識されることとなる。
【0011】
そこで、次に、発明者らは、SrAl :Eu,Dyからなる蓄光性蛍光体のピークである約520nmで低い反射率を有し、かつSrAl :Eu,Dyからなる蓄光性蛍光体の反射率が低下し始める500nm程度から高い反射率を有する物質のうちで、極めて長時間にわたって高輝度の残光特性を有する点を疎外しない物質を、種々の実験によって捜した。
【0012】
その結果、Er が好適であることがわかった。
反射率で説明すると、図1に示したように、Er は、約440nm、480nm、620nmに高い反射率を有し、約540nmに一番低い反射率を示しているものである。そして約620nmのピークに起因して、可視光下ではごく薄いピンク色に見えるものである。
【0013】
なお図1に示したように、SrAl :Eu,Dyからなる蓄光性蛍光体に、Er を7重量%添加したものを例にすると、約450nmから650nmの可視光域の間がほぼ平滑化され、可視光下では白色として認識されることとなる。
更に、SrAl :Eu,Dyからなる蓄光性蛍光体に、Er を添加するに際して、添加量を種々変更して、輝度及び白色度を測定した結果を、硫化亜鉛系蓄光性蛍光体(ZnS:Cu)の輝度及び白色度と共に表1に示してある。
【0014】
ここにおける輝度は、400lxの照射を20分間継続した直後の輝度を1として、この輝度との相対輝度として示したものである。また白色度は、完全な白を100として捕らえた時の程度を示したものである。なおEr 量(%)は、SrAl :Eu,Dyからなる蓄光性蛍光体に対するEr の添加量を、重量%で示したものである。
【0015】
更にここで使用するSrAl :Eu,Dyからなる蓄光性蛍光体は、
SrCO :0.83mol%
Al :1.00mol%
Eu:0.010mol%
Dy:0.075mol%
の比率のものであり、最終的には、
(Sr0.83Eu0.02Dy0.15)Al
の蓄光性蛍光体を用いている。
【0016】
【表1】

Figure 0003595380
【0017】
この表から、Er の添加量が増加するにしたがって、輝度が低下していくことがわかる。ただし、硫化亜鉛系蓄光性蛍光体(ZnS:Cu)の輝度を比較対象にすると、Er の添加量が15重量%の場合であっても、10分後に4.91倍の輝度を示しているものである。またEr の添加量を20重量%とした場合であっても、10分後に3.36倍の輝度を有していることが確認されている。したがって、Er を添加した場合であっても、従来から用いられていた硫化亜鉛系蓄光性蛍光体(ZnS:Cu)に比べて、極めて長時間にわたって高輝度の残光特性を有することが確認された。
【0018】
また白色度に関しては、Er の添加量を増やすにしたがって徐々に増加するものの、7重量%程度の場合をピークにして、それ以上添加しても逆に白色度は低下するものである。そして、Er の添加量を20重量%とすると、Er の添加量が0重量%であるSrAl :Eu,Dyからなる蓄光性蛍光体の白色度とほぼ等しくなってしまう。
【0019】
そこで、これら輝度と白色度とを勘案すると、SrAl :Eu,Dyからなる蓄光性蛍光体に対するEr の添加量は、1〜15重量%の範囲が好適であることが確認された。
更に以上の説明では、SrAl :Eu,Dyからなる蓄光性蛍光体として、(Sr0.83Eu0.02Dy0.15)Al を用いた場合で説明したが、Sr、Eu、Dyの比率が他の比率であっても、同様の傾向を示し、Er の添加量は、1〜15重量%の範囲が好適であることが確認された。
【0020】
また更に、30分後輝度、100分後輝度においても、同様の傾向にあることが確認されている。
次に、SrAl :Eu,Dyからなる蓄光性蛍光体において、まず最初に、EuをSrに対する添加量ごとに、EuとDyとの比を変更した場合について実験した。
【0021】
表2は、Euを0.01mol添加し、更にDyを0.05mol〜0.7mol(5≦Dy/Eu≦70)の範囲で変化させた試料の添加量を示したものである。そしてこの各試料に対応した10分後輝度、30分後輝度、100分後輝度及び白色度を、表3に示す。
【0022】
【表2】
Figure 0003595380
【0023】
【表3】
Figure 0003595380
【0024】
ここでは、Euを0.01mol添加し、更にDyを0.05mol〜0.7mol(5≦Dy/Eu≦70)の範囲で変化させた試料のすべてにわたって、硫化亜鉛系蓄光性蛍光体(ZnS:Cu)よりも輝度及び白色度が向上していることが確認された。
表4は、Euを0.02mol添加し、更にDyを0.10mol〜0.8mol(≦Dy/Eu≦40)の範囲で変化させた試料の添加量を示したものである。そしてこの各試料に対応した10分後輝度、30分後輝度、100分後輝度及び白色度を、表5に示す。
【0025】
【表4】
Figure 0003595380
【0026】
【表5】
Figure 0003595380
【0027】
ここでは、Euを0.02mol添加し、更にDyを0.10mol〜0.8mol(≦Dy/Eu≦40)の範囲で変化させた試料のすべてにわたって、硫化亜鉛系蓄光性蛍光体(ZnS:Cu)よりも輝度及び白色度が等しいか若しくは向上していることが確認された。
表6は、Euを0.03mol添加し、更にDyを0.10mol〜0.9mol(3.3≦Dy/Eu≦30)の範囲で変化させた試料の添加量を示したものである 。そしてこの各試料に対応した10分後輝度、30分後輝度、100分後輝度及び白色度を、表7に示す。
【0028】
【表6】
Figure 0003595380
【0029】
【表7】
Figure 0003595380
【0030】
ここでは、Euを0.03mol添加し、更にDyを0.10mol〜0.9mol(3.3≦Dy/Eu≦30)の範囲で変化させた試料のうちで、0.10mol〜0.8mol(3.3≦Dy/Eu≦26.7)の範囲では、硫化亜鉛系蓄光性蛍光体(ZnS:Cu)よりも輝度及び白色度が向上していることが確認された。一方、Euを0.03mol添加し、更にDyを0.9mol(Dy/Eu=30)添加した場合については、輝度において硫化亜鉛系蓄光性蛍光体(ZnS:Cu)よりも劣っている。このことは、SrCO の添加量が少なくなり過ぎたことが原因であると思われる。そこで、実験を行った確認したところ、Srが0.1mol(10mol%)以下になると、輝度において硫化亜鉛系蓄光性蛍光体(ZnS:Cu)よりも劣ってくることが確認された。
【0031】
表8は、Euを0.05mol添加し、更にDyを0.15mol〜0.8mol(3≦Dy/Eu≦16)の範囲で変化させた試料の添加量を示したものである。そしてこの各試料に対応した10分後輝度、30分後輝度、100分後輝度及び白色度を、表9に示す。
【0032】
【表8】
Figure 0003595380
【0033】
【表9】
Figure 0003595380
【0034】
ここでは、Euを0.05mol添加し、更にDyを0.15mol〜0.8mol(3≦Dy/Eu≦16)の範囲で変化させた試料のすべてにわたって、硫化亜鉛系蓄光性蛍光体(ZnS:Cu)よりも輝度及び白色度が等しいか若しくは向上していることが確認された。
表10は、Euを0.1mol添加し、更にDyを0.3mol〜0.7mol(3≦Dy/Eu≦7)の範囲で変化させた試料の添加量を示したものである。そしてこの各試料に対応した10分後輝度、30分後輝度、100分後輝度及び白色度を、表11に示す。
【0035】
【表10】
Figure 0003595380
【0036】
【表11】
Figure 0003595380
【0037】
ここでは、Euを0.1mol添加し、更にDyを0.3mol〜0.7mol(3≦Dy/Eu≦7)の範囲で変化させた試料のすべてにわたって、硫化亜鉛系蓄光性蛍光体(ZnS:Cu)よりも輝度及び白色度が等しいか若しくは向上していることが確認された。
次に、各試料にEr を7重量%添加した場合について測定した。その結果を表12として添付する。
【0038】
【表12】
Figure 0003595380
【0039】
ここでは、各試料共に、輝度が若干低下し、白色度が向上していることが確認できた。このことから、SrAl :Eu,Dyからなり、EuをSrに対して、1≦Eu≦10mol%の範囲で添加し、更にEuとDyとを、3≦Dy/Eu≦70の比で添加した蓄光性蛍光体に、Er を7重量%添加することによって、硫化亜鉛系蓄光性蛍光体(ZnS:Cu)よりも輝度及び白色度が向上していることが確認された。
【0040】
更に同様に、Er を1〜15重量%添加した場合について測定した結果、表12と同様に、輝度が若干低下し、白色度が向上していることが確認できた。
また次に、試料1−1から試料5−3について、Er を1〜15重量%添加した場合について測定した結果、Er 添加に伴なう白色度の向上は見られたものの、Srが0.3mol(30mol%)以下になると、輝度において硫化亜鉛系蓄光性蛍光体(ZnS:Cu)よりも劣ってくることが確認された。
【0041】
【発明の効果】
以上説明したように、本発明は、市販の硫化物系蛍光体に比べて遥かに長時間の残光特性を有し、更には化学的にも安定であり、かつ長期にわたり耐光性に優れると共に、通常の可視光下で体色が白色に見えるものである。
【図面の簡単な説明】
【図1】SrAl :Eu,Dyからなる蓄光性蛍光体の反射率、Er の反射率、及びSrAl :Eu,Dyからなる蓄光性蛍光体にEr を7重量%添加した白色蓄光性蛍光体の反射率を示したグラフである。[0001]
[Industrial applications]
The present invention relates to a white phosphorescent phosphor, and more particularly, to a white phosphorescent phosphor having a white body color under visible light, having excellent light resistance, and having a high luminance afterglow characteristic for an extremely long time. is there.
[0002]
[Prior art]
In general, the afterglow time of the phosphor is extremely short, and its emission is rapidly attenuated when the external stimulus is stopped, but rarely after being stimulated with ultraviolet light or the like, the stimulus is stopped for a considerably long time (several tens of minutes to several For some cases, afterglow is visible to the naked eye over time, and these are called phosphorescent phosphors or phosphorescent phosphors to distinguish them from ordinary phosphors.
[0003]
As the phosphorescent phosphor, sulfide phosphors such as CaS: Bi (purple blue light emission), CaSrS: Bi (blue light emission), ZnS: Cu (green light emission), and ZnCdS: Cu (yellow to orange light emission) are known. However, all of these sulfide phosphors have many problems in practical use, such as being chemically unstable and having poor light resistance.
Zinc sulphide phosphorescent phosphors (ZnS: Cu), which are currently mainly used in the market, are also exposed to direct sunlight outdoors, especially in the presence of moisture, because they are photodegraded by ultraviolet rays to blacken or reduce brightness. It is difficult to use in applications, and its applications such as luminous clocks, evacuation guidance signs, and indoor nighttime display have been limited.
[0004]
Even when this zinc sulfide-based phosphor is used in a luminous timepiece, the afterglow time in which the time can be recognized by the naked eye is about 30 minutes to about 2 hours, and practically, a radioactive substance is added to the phosphor. At present, it is necessary to use a self-luminous luminous paint which is added and stimulated by the energy to emit light constantly.
In view of the above-mentioned situation, the present inventor has a much longer afterglow characteristic than a commercially available sulfide-based phosphor, is chemically stable, and has a long-term light resistance. As a luminous phosphor excellent in luminosity, a luminous phosphor composed of SrAl 2 O 4 : Eu, Dy is provided.
[0005]
However, both the zinc sulfide phosphorescent phosphor (ZnS: Cu) and the phosphorescent phosphor composed of SrAl 2 O 4 : Eu, Dy have a green body color, and therefore are not inconvenient even if they look green. It could only be used for
On the other hand, if the body color is white, not only is it easy to use as it is, but also the desired color can be obtained by adding other pigments, etc. Among the phosphorescent phosphors having a high luminance afterglow characteristic, there was no phosphor having a white body color.
[0006]
[Problems to be solved by the invention]
In view of the above-mentioned situation, the present inventor has a much longer afterglow characteristic than a commercially available sulfide-based phosphor, is chemically stable, and has a long-term light resistance. The object of the present invention is to provide a white phosphorescent phosphor which is excellent in color and has a body color that looks white under ordinary visible light.
[0007]
[Means for Solving the Problems]
As a white phosphorescent phosphors as described above, an invention according to claim 1, SrAl 2 O 4: Eu, the phosphorescent phosphors consisting of Dy, Er 2 O 3 of SrAl 2 O 4: Eu, to Dy 1 to 15% by weight.
The invention according to claim 2 comprises SrAl 2 O 4 : Eu, Dy, wherein Eu is added to Sr in a range of 1 ≦ Eu ≦ 10 mol%, and Eu and Dy are further added to 3 ≦ Dy / Eu. was added at a ratio of ≦ 70, further phosphorescent phosphors was 30 mol% or more of Sr, Er 2 O 3 of SrAl 2 O 4: Eu, characterized in that the addition of 1 to 15 wt% with respect to Dy .
[0008]
In synthesizing these white phosphorescent phosphors, for example, boric acid can be added as a flux in the range of 1 to 10% by weight. Here, if the addition amount is 1% by weight or less, the flux effect is lost, and if it exceeds 10% by weight, it solidifies, and subsequent pulverization and classification work becomes difficult.
[0009]
【Example】
The inventors of the present invention have confirmed that a phosphorescent phosphor made of SrAl 2 O 4 : Eu, Dy has excellent light resistance and has a high luminance afterglow characteristic for an extremely long time.
The reflectance of such a phosphorescent phosphor composed of SrAl 2 O 4 : Eu, Dy has a peak at a wavelength of about 520 nm as shown in FIG.
[0010]
Here, when the reflectance of each wavelength in the visible light region is substantially equal, it is recognized as white under visible light, but if it has such a peak, the color corresponding to the peak wavelength Will be recognized.
Therefore, the phosphorescent phosphor composed of SrAl 2 O 4 : Eu, Dy having a peak at a wavelength of about 520 nm is recognized as green under visible light.
[0011]
Accordingly, next, the inventors, SrAl 2 O 4: Eu, has a low reflectance at about 520nm is the peak of the phosphorescent phosphor comprising a Dy, and SrAl 2 O 4: Eu, phosphorescent consisting Dy Among the substances having a high reflectance from about 500 nm where the reflectance of the luminescent phosphor starts to decrease, a substance that does not alienate a point having a high luminance afterglow characteristic for an extremely long time was searched for by various experiments.
[0012]
As a result, it was found that Er 2 O 3 was suitable.
In terms of reflectance, as shown in FIG. 1, Er 2 O 3 has high reflectance at about 440 nm, 480 nm, and 620 nm, and shows the lowest reflectance at about 540 nm. And, due to the peak at about 620 nm, it looks very pink under visible light.
[0013]
As shown in FIG. 1, when a phosphorescent phosphor composed of SrAl 2 O 4 : Eu, Dy is added with 7 wt% of Er 2 O 3 as an example, a visible light range of about 450 nm to 650 nm is obtained. The space is almost smoothed, and is recognized as white under visible light.
Further, when adding Er 2 O 3 to the phosphorescent phosphor composed of SrAl 2 O 4 : Eu, Dy, the amount of addition was changed variously, and the result of measuring the luminance and whiteness was compared with the zinc sulfide phosphorescent. The luminance and whiteness of the phosphor (ZnS: Cu) are shown in Table 1.
[0014]
The luminance here is shown as a relative luminance with respect to the luminance immediately after the irradiation of 400 lx for 20 minutes is set to 1. Further, the whiteness indicates a degree when perfect white is regarded as 100. The Er 2 O 3 amount (%) indicates the amount of Er 2 O 3 added to the phosphorescent phosphor composed of SrAl 2 O 4 : Eu, Dy in terms of% by weight.
[0015]
Further, the phosphorescent phosphor composed of SrAl 2 O 4 : Eu, Dy used here is:
SrCO 3 : 0.83 mol%
Al 2 O 3 : 1.00 mol%
Eu 2 O 3 : 0.010 mol%
Dy 2 O 3 : 0.075 mol%
And ultimately,
(Sr 0.83 Eu 0.02 Dy 0.15 ) Al 2 O 4
Phosphorescent phosphor is used.
[0016]
[Table 1]
Figure 0003595380
[0017]
From this table, it can be seen that the luminance decreases as the added amount of Er 2 O 3 increases. However, when the luminance of the zinc sulfide-based phosphorescent phosphor (ZnS: Cu) is set as a comparison target, even when the addition amount of Er 2 O 3 is 15% by weight, the luminance of 4.91 times is increased after 10 minutes. It is shown. Further, even when the addition amount of Er 2 O 3 is set to 20% by weight, it is confirmed that the luminance is 3.36 times after 10 minutes. Therefore, even when Er 2 O 3 is added, the phosphor has a high luminance afterglow characteristic for an extremely long time as compared with a conventionally used zinc sulfide phosphorescent phosphor (ZnS: Cu). Was confirmed.
[0018]
The whiteness gradually increases as the amount of Er 2 O 3 added increases, but peaks at about 7% by weight, and conversely, the whiteness decreases when more than 7 wt% is added. . When the addition amount of Er 2 O 3 is set to 20% by weight, the whiteness of the phosphorescent phosphor composed of SrAl 2 O 4 : Eu, Dy, in which the addition amount of Er 2 O 3 is 0% by weight, is almost equal. Would.
[0019]
Considering these luminance and whiteness, it has been confirmed that the addition amount of Er 2 O 3 to the phosphorescent phosphor composed of SrAl 2 O 4 : Eu, Dy is preferably in the range of 1 to 15% by weight. Was done.
Furthermore, in the above description, the case where (Sr 0.83 Eu 0.02 Dy 0.15 ) Al 2 O 4 is used as the phosphorescent phosphor composed of SrAl 2 O 4 : Eu, Dy has been described. Even when the ratio of Eu, Dy and Dy is another ratio, the same tendency is exhibited, and it has been confirmed that the addition amount of Er 2 O 3 is preferably in the range of 1 to 15% by weight.
[0020]
Further, it is confirmed that the same tendency is observed in the luminance after 30 minutes and the luminance after 100 minutes.
Next, in the phosphorescent phosphor composed of SrAl 2 O 4 : Eu, Dy, first, an experiment was conducted in which the ratio of Eu to Dy was changed for each addition amount of Eu to Sr.
[0021]
Table 2 shows the addition amount of the sample in which 0.01 mol of Eu was added and Dy was further changed in the range of 0.05 mol to 0.7 mol (5 ≦ Dy / Eu ≦ 70). Table 3 shows the luminance after 10 minutes, the luminance after 30 minutes, the luminance after 100 minutes, and the whiteness corresponding to each sample.
[0022]
[Table 2]
Figure 0003595380
[0023]
[Table 3]
Figure 0003595380
[0024]
Here, zinc sulfide phosphorescent phosphor (ZnS) was added to all samples in which 0.01 mol of Eu was added and Dy was further changed in the range of 0.05 mol to 0.7 mol (5 ≦ Dy / Eu ≦ 70). : Cu), it was confirmed that the luminance and whiteness were improved.
Table 4 shows the addition amount of the sample in which 0.02 mol of Eu was added and Dy was changed in the range of 0.10 mol to 0.8 mol ( 5 ≦ Dy / Eu ≦ 40). Table 5 shows the luminance after 10 minutes, the luminance after 30 minutes, the luminance after 100 minutes, and the whiteness corresponding to each sample.
[0025]
[Table 4]
Figure 0003595380
[0026]
[Table 5]
Figure 0003595380
[0027]
Here, 0.02 mol of Eu was added, and Dy was changed in the range of 0.10 mol to 0.8 mol ( 5 ≦ Dy / Eu ≦ 40). It was confirmed that the brightness and whiteness were equal or improved as compared with ZnS: Cu).
Table 6 shows the addition amount of the sample in which 0.03 mol of Eu was added and Dy was changed in the range of 0.10 mol to 0.9 mol (3.3 ≦ Dy / Eu ≦ 30). Table 7 shows the luminance after 10 minutes, the luminance after 30 minutes, the luminance after 100 minutes, and the whiteness corresponding to each sample.
[0028]
[Table 6]
Figure 0003595380
[0029]
[Table 7]
Figure 0003595380
[0030]
Here, of the samples in which 0.03 mol of Eu was added and Dy was changed in the range of 0.10 mol to 0.9 mol (3.3 ≦ Dy / Eu ≦ 30), 0.10 mol to 0.8 mol In the range of (3.3 ≦ Dy / Eu ≦ 26.7), it was confirmed that the brightness and the whiteness were improved as compared with the zinc sulfide phosphorescent phosphor (ZnS: Cu). On the other hand, when 0.03 mol of Eu and 0.9 mol of Dy (Dy / Eu = 30) are further added, the luminance is inferior to that of the zinc sulfide phosphorescent phosphor (ZnS: Cu). This may be due to the fact that the amount of SrCO 3 added was too small. Then, it was confirmed by conducting an experiment that it was confirmed that when Sr was 0.1 mol (10 mol%) or less, the luminance was inferior to that of the zinc sulfide phosphorescent phosphor (ZnS: Cu).
[0031]
Table 8 shows the addition amount of the sample in which 0.05 mol of Eu was added and Dy was changed in the range of 0.15 mol to 0.8 mol (3 ≦ Dy / Eu ≦ 16). Table 9 shows the luminance after 10 minutes, the luminance after 30 minutes, the luminance after 100 minutes, and the whiteness corresponding to each sample.
[0032]
[Table 8]
Figure 0003595380
[0033]
[Table 9]
Figure 0003595380
[0034]
Here, 0.05 mol of Eu was added, and Dy was further changed in the range of 0.15 mol to 0.8 mol (3 ≦ Dy / Eu ≦ 16). : Cu), it was confirmed that the brightness and whiteness were equal or improved.
Table 10 shows the addition amount of the sample in which 0.1 mol of Eu was added and Dy was further changed in the range of 0.3 mol to 0.7 mol (3 ≦ Dy / Eu ≦ 7). Table 11 shows the luminance after 10 minutes, the luminance after 30 minutes, the luminance after 100 minutes, and the whiteness corresponding to each sample.
[0035]
[Table 10]
Figure 0003595380
[0036]
[Table 11]
Figure 0003595380
[0037]
Here, the zinc sulfide phosphorescent phosphor (ZnS) was added over all samples in which 0.1 mol of Eu was added and Dy was further changed in the range of 0.3 mol to 0.7 mol (3 ≦ Dy / Eu ≦ 7). : Cu), it was confirmed that the brightness and whiteness were equal or improved.
Next, measurement was performed for a case where Er 2 O 3 was added to each sample at 7% by weight. The results are attached as Table 12.
[0038]
[Table 12]
Figure 0003595380
[0039]
Here, it was confirmed that the brightness of each sample was slightly lowered and the whiteness was improved. From this, SrAl 2 O 4 : Eu, Dy, Eu is added to Sr in the range of 1 ≦ Eu ≦ 10 mol%, and Eu and Dy are further added in a ratio of 3 ≦ Dy / Eu ≦ 70. It was confirmed that by adding Er 2 O 3 to the phosphorescent phosphor added in step ( 2) at 7% by weight, the luminance and whiteness were improved as compared with the zinc sulfide phosphorescent phosphor (ZnS: Cu). .
[0040]
Further, similarly, as a result of a measurement in a case where 1 to 15% by weight of Er 2 O 3 was added, similar to Table 12, it was confirmed that the luminance was slightly lowered and the whiteness was improved.
Next, as for the samples 1-1 to 5-3, when the content of Er 2 O 3 was 1 to 15% by weight, the whiteness was improved with the addition of Er 2 O 3 . However, it was confirmed that when Sr was 0.3 mol (30 mol%) or less, the luminance was inferior to that of the zinc sulfide phosphorescent phosphor (ZnS: Cu).
[0041]
【The invention's effect】
As described above, the present invention has a much longer afterglow characteristic than a commercially available sulfide-based phosphor, is furthermore chemically stable, and has excellent light resistance over a long period of time. The body color looks white under normal visible light.
[Brief description of the drawings]
FIG. 1 shows a reflectivity of a phosphorescent phosphor composed of SrAl 2 O 4 : Eu, Dy, a reflectivity of Er 2 O 3 , and a phosphorescent phosphor composed of SrAl 2 O 4 : Eu, Dy which is made of Er 2 O 3. Is a graph showing the reflectance of a white phosphorescent phosphor to which 7 wt% was added.

Claims (2)

SrAl24:Eu,Dyからなる蓄光性蛍光体に、Er23SrAl 2 4 :Eu,Dyに対して1〜15重量%添加したことを特徴とする白色蓄光性蛍光体。SrAl 2 O 4: Eu, the phosphorescent phosphors consisting of Dy, Er 2 O 3 of SrAl 2 O 4: Eu, a white phosphorescent phosphor, characterized in that the addition of 1 to 15% by weight with respect to Dy. SrAl24:Eu,Dyからなり、EuをSrに対して、1≦Eu≦10mol%の範囲で添加し、更にEuとDyとを、3≦Dy/Eu≦70の比で添加し、更にSrを30mol%以上とした蓄光性蛍光体に、Er23SrAl 2 4 :Eu,Dyに対して1〜15重量%添加したことを特徴とする白色蓄光性蛍光体。SrAl 2 O 4 : Eu, Dy, Eu is added to Sr in a range of 1 ≦ Eu ≦ 10 mol%, and Eu and Dy are further added in a ratio of 3 ≦ Dy / Eu ≦ 70 , more phosphorescent phosphors was 30 mol% or more of Sr, Er 2 O 3 of SrAl 2 O 4: Eu, a white phosphorescent phosphor, characterized in that the addition of 1 to 15% by weight with respect to Dy.
JP18788495A 1995-06-30 1995-06-30 White phosphorescent phosphor Expired - Lifetime JP3595380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18788495A JP3595380B2 (en) 1995-06-30 1995-06-30 White phosphorescent phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18788495A JP3595380B2 (en) 1995-06-30 1995-06-30 White phosphorescent phosphor

Publications (2)

Publication Number Publication Date
JPH0913028A JPH0913028A (en) 1997-01-14
JP3595380B2 true JP3595380B2 (en) 2004-12-02

Family

ID=16213892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18788495A Expired - Lifetime JP3595380B2 (en) 1995-06-30 1995-06-30 White phosphorescent phosphor

Country Status (1)

Country Link
JP (1) JP3595380B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100484097B1 (en) * 1998-09-25 2005-09-02 삼성에스디아이 주식회사 Blue light emitting phosphor for plasma display panel
KR20020094171A (en) * 2001-06-12 2002-12-18 동국산업 주식회사 UV-detecting element
KR100457864B1 (en) * 2002-02-23 2004-11-18 삼성전기주식회사 Phosphor for white LED lamp
JP5149384B2 (en) 2008-07-14 2013-02-20 信越化学工業株式会社 Method for producing long afterglow phosphor
WO2010098426A1 (en) * 2009-02-27 2010-09-02 信越化学工業株式会社 Long-afterglow fluorescent ceramic and process for producing same
CN103013507A (en) * 2012-12-26 2013-04-03 广州有色金属研究院 Ultrafine rare-earth aluminate long-persistence luminescent material and preparation method thereof
CN104804733A (en) * 2015-05-20 2015-07-29 江南大学 Rare-earth strontium aluminate luminous nanorod and preparation method thereof

Also Published As

Publication number Publication date
JPH0913028A (en) 1997-01-14

Similar Documents

Publication Publication Date Title
US5376303A (en) Long Decay phoaphors
EP0395775B1 (en) Phosphor composition used for fluorescent lamp and fluorescent lamp using the same
JP4016597B2 (en) Red-emitting afterglow photoluminescent phosphor and afterglow lamp of this phosphor
US6459197B1 (en) Fluorescent lamp and luminaire with improved illumination light in a low color temperature region
US7670507B2 (en) Phosphor composition for a low-pressure discharge lamp with high color temperature
JPS5842944B2 (en) fluorescent light
JPH06208845A (en) Low-pressure mercury discharge lamp
JPS5919412B2 (en) fluorescent lamp
JP3595380B2 (en) White phosphorescent phosphor
JP3257942B2 (en) Phosphorescent phosphor
CA2409289A1 (en) Phosphor composition for low-pressure gas discharge lamps
JP2979984B2 (en) Afterglow phosphor
JPH11106685A (en) Luminous coating material and display by using the same
JP3257947B2 (en) Phosphorescent phosphor
JP3928684B2 (en) Red phosphorescent phosphor
JP2000345152A (en) Yellow light emitting afterglow photoluminescent phosphor
US4263530A (en) Warm white fluorescent lamp having good efficacy and color rendering
JP2000319651A (en) White phosphor for use at low voltage
JP3345823B2 (en) Afterglow phosphor
WO2011054691A1 (en) Luminophore composition for low pressure discharge lamps
JP2863160B1 (en) Phosphorescent phosphor
JP3405044B2 (en) Light-emitting composition and fluorescent lamp using the same
CA1081306A (en) Low-pressure mercury vapour discharge lamp
US4652793A (en) Cathode-ray tube provided with a luminescent indium orthoborate
JPH0619975B2 (en) Fluorescent lamp emitting light in three wavelength range

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040903

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D03

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term