JP3594720B2 - Combustion control method for regenerative burner device group and combustion control device for regenerative burner device - Google Patents

Combustion control method for regenerative burner device group and combustion control device for regenerative burner device Download PDF

Info

Publication number
JP3594720B2
JP3594720B2 JP1619796A JP1619796A JP3594720B2 JP 3594720 B2 JP3594720 B2 JP 3594720B2 JP 1619796 A JP1619796 A JP 1619796A JP 1619796 A JP1619796 A JP 1619796A JP 3594720 B2 JP3594720 B2 JP 3594720B2
Authority
JP
Japan
Prior art keywords
supply
regenerative burner
exhaust
combustion
burner device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1619796A
Other languages
Japanese (ja)
Other versions
JPH09210345A (en
Inventor
宣昭 花園
二彦 中川
吉寿 児玉
義治 藤原
信之 江口
義男 安部
壽康 由利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP1619796A priority Critical patent/JP3594720B2/en
Publication of JPH09210345A publication Critical patent/JPH09210345A/en
Application granted granted Critical
Publication of JP3594720B2 publication Critical patent/JP3594720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、蓄熱体を備えた複数対の蓄熱式バーナ装置を、所定の切換時間毎に交互に切換え燃焼させるようにした蓄熱式バーナ装置群の燃焼制御方法及び蓄熱式バーナ装置の燃焼制御装置に関する。
【0002】
【従来の技術】
例えば連続焼鈍炉等の加熱炉に使用されている従来の蓄熱式バーナ装置の燃焼制御装置として、例えば特開平6−288519号公報に記載されている技術がある。
この技術は、対をなして蓄熱体を持つ2つの蓄熱式バーナ装置のうち、一方の蓄熱式バーナ装置へ燃料切換弁及び給排気切換弁を介して燃料及び燃焼用空気を供給して燃焼動作させ、燃焼廃ガスを他方の蓄熱式バーナ装置に通して蓄熱動作させ、この他方の蓄熱式バーナ装置の蓄熱体を通過した燃焼廃ガスを給排気切換弁を介して外部へ排出する装置である。そして、この装置は、給排気切換弁から出る燃焼廃ガス排出導管と、燃焼用空気源から給排気切換え弁へ至る燃焼用空気供給導管との間に燃焼廃ガス分岐導管を設けて、蓄熱動作する蓄熱式バーナ装置から外部へ排出される燃焼廃ガスの一部を、燃焼動作する蓄熱式バーナ装置へ供給される燃焼用空気に混入する装置である。
【0003】
この装置によれば、蓄熱体で放熱した後、温度が低下した燃焼廃ガスの一部を燃焼用空気に混合して、燃焼用空気の温度を低下させるようにしたので、蒸気又は噴霧水のような特別な流体を使用する必要がなく、また、燃焼廃ガスは、蒸気又は噴霧水のようにガス通路の内面を酸化したり、加熱対象物にスケルロスを発生させることがない。さらに、燃焼用空気への燃焼廃ガスの混入によるNOx低減効果を確保した上で、バーナ装置本体の過熱による高温熱性の劣化を防止すると共に、高効率過熱特性を維持することができる。
【0004】
【発明が解決しようとする課題】
ところで、上記従来の蓄熱式バーナ装置の燃焼制御装置は、一対の蓄熱式燃焼バーナ装置の切換サイクルを短周期(40〜60秒)に設定しており、燃料切換弁、給排気切換弁の切換え動作が頻繁に行われることによって、弁の寿命が短くなりやすい。
【0005】
ここで、前述した寿命等により弁の動作不良が発生すると、一方の蓄熱式バーナ装置のみの連続した燃焼動作が行われる場合があるが、この状態が長時間連続すると、他方の蓄熱式バーナ装置を通過した高温の燃焼廃ガスが給排気配管、給排気切換弁を通過することにより、それら給排気配管、給排気切換弁が耐熱温度以上に上昇し、熱的腐食や高温劣化等の熱的損傷を受けるおそれがある。
【0006】
このような給排気配管、給排気切換弁との熱的損傷を回避するために、弁の動作不良が発生すると、直ちに蓄熱式バーナ装置の燃焼動作を停止し、動作不良が発生した弁を修理することが考えられるが、加熱炉の加熱能力が大幅に低下するので、焼鈍部品等の生産量が大幅に低減してしまうおそれがある。
そこで、本発明は、上記従来例及び先行技術の未解決の課題に着目してなされたものであり、給排気配管や給排気切換弁等に熱的影響を与えずに各対の蓄熱式バーナ装置のうちの一方を連続して燃焼動作を行うことを可能とし、加熱炉の加熱能力を略一定に保持することが可能な蓄熱式バーナ装置群の燃焼制御方法及び蓄熱式バーナ装置の燃焼制御装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記目的を達成するために、請求項1の発明は、蓄熱体を備えた一対の蓄熱式バーナ装置と、各蓄熱式バーナ装置にそれぞれ接続する一対の給排気配管と、これら給排気配管と接続する給排気切換弁とを複数組備え、各対の前記給排気切換弁に燃焼空気供給手段及び排気ガス吸引手段を接続した構成とし、各対の蓄熱式バーナ装置を所定の切換時間毎に交互に切換え燃焼し、各対の一方の蓄熱式バーナ装置が、前記燃料供給手段から燃料が供給され、且つ前記燃焼空気供給手段から前記給排気切換弁及び前記給排気配管を介して燃焼空気が供給されることにより燃焼動作を行い、この一方の蓄熱式バーナ装置の燃焼動作により発生した排気ガスを加熱炉を介して他方の蓄熱式バーナ装置の前記蓄熱体に導入し、他方の蓄熱式バーナ装置が蓄熱動作を行うようにし、さらにこの他方の蓄熱式バーナ装置を通過した排気ガスを、前記給排気配管及び前記給排気切換弁を介して前記排気ガス吸引手段から外部に排出するようにした蓄熱式バーナ装置群の燃焼制御方法において、所定の切換時間毎の切換え燃焼が不可能となった特定の対の蓄熱式バーナ装置に対して、一方の蓄熱式バーナ装置が連続して燃焼動作を行い、且つ他方の蓄熱式バーナ装置が連続して蓄熱動作を行うように燃焼制御を行うとともに、前記他方の蓄熱式バーナ装置と接続して前記給排気切換弁に向けて排気ガスが流れている前記給排気配管内部に、前記排気ガスと混入する冷却流体を供給することを特徴とする方法である。
【0008】
また、請求項2記載の発明は、蓄熱体を備えた少なくとも一対の蓄熱式バーナ装置と、各蓄熱式バーナ装置に燃料を供給する燃料供給手段と、各蓄熱式バーナ装置にそれぞれ接続する一対の給排気配管と、これら給排気配管と接続し、且つ燃焼空気供給手段及び排気ガス吸引手段と接続する給排気切換弁と、所定の切換時間毎に前記一対の蓄熱式バーナ装置を交互に切換え燃焼させる燃焼制御手段とを備え、前記一対の蓄熱式バーナ装置の切換え燃焼を、一方の蓄熱式バーナ装置が、前記燃料供給手段から燃料が供給され、且つ前記燃焼空気供給手段から前記給排気切換弁及び前記給排気配管を介して燃焼空気が供給されることにより燃焼動作を行い、この一方の蓄熱式バーナ装置の燃焼動作により発生した排気ガスを加熱炉を介して他方の蓄熱式バーナ装置の前記蓄熱体に導入し、他方の蓄熱式バーナ装置が蓄熱動作を行うようにし、さらにこの他方の蓄熱式バーナ装置を通過した排気ガスを、前記給排気配管及び前記給排気切換弁を介して前記排気ガス吸引手段から外部に排出するようにした蓄熱式バーナ装置の燃焼制御装置において、前記一対の給排気配管に、これら配管内部に冷却流体を供給することが可能な冷却流体供給手段を接続し、前記燃焼制御手段は、前記一対の蓄熱式バーナ装置の切換え燃焼が不可能となった時点で、一方の蓄熱式バーナ装置が連続して燃焼動作を行い、且つ他方の蓄熱式バーナ装置が連続して蓄熱動作を行うように制御を行うとともに、前記他方の蓄熱式バーナ装置と接続して前記給排気切換弁に向けて排気ガスが流れている前記給排気配管内部への前記冷却流体の供給が開始するように前記冷却流体供給手段の制御を行うことを特徴とする装置である。
【0009】
また、請求項3記載の発明は、請求項2記載の蓄熱式バーナ装置の燃焼制御装置において、前記一対の給排気配管に、これら配管内部を通過する流体の温度を検出する温度検出手段を配設し、前記燃焼制御手段は、蓄熱動作を行っている他方の蓄熱式バーナ装置側の給排気配管内部の排気ガス温度を前記温度検出手段により検出し、前記排気ガス温度の検出値が前記給排気切換弁及び前記給排気配管の耐熱温度を下回るように、前記冷却流体の供給流量を増大させる制御を前記冷却流体供給手段に対して行うことを特徴とする装置である。
【0010】
さらに、請求項4記載の発明は、請求項2又は3記載の蓄熱式バーナ装置の燃焼制御装置において、前記冷却流体供給手段を、前記一対の給排気配管に供給配管を介して接続する流量調節弁により構成するとともに、この流量調節弁の入力ポートを大気に開放した構造とし、蓄熱動作を行う他方の蓄熱式バーナ装置側の給排気配管内部が前記給排気切換弁に向けて流れる排気ガスにより負圧状態となっていることを利用して冷却空気を前記給排気配管内部に自然吸引することを特徴とする装置である。
【0011】
【発明の実施の形態】
以下、本発明の一実施形態について、図面を参照して説明する。
図1の符号2で示すものは連続焼鈍炉等の加熱炉であり、この加熱炉2内には、長尺なラジアントチューブ4が炉内空気との接触面積が増大するように蛇行状態で配設されている。そして、このラジアントチューブ4の両端開口部は、加熱炉2の炉壁を貫通して一対の蓄熱式バーナ装置6A、6Bと接続している。ここで、図1では加熱炉2内に1本のラジアントチューブ4のみを設置した状態を示しているが、他に多数のラジアントチューブ4が加熱炉2内には設置されており、これら各ラジアントチューブ4に、夫々一対の蓄熱式バーナ装置6A、6Bが接続している(以下、一対の蓄熱式バーナ装置6A、6Bを、第1蓄熱式バーナ装置6A、第2蓄熱式バーナ装置6Bと略称する。)。
【0012】
前記第1及び第2蓄熱式バーナ装置6A、6Bの夫々は、図2に示すように、外周の一部に給排気口8aを設けてラジアントチューブ4の端部開口部を閉塞するように炉壁の外側に配設された給排気室8と、給排気室8を貫通してラジアントチューブ4の端部開口部内に延在し、燃料供給口10aに供給された燃料ガスを先端部のノズル10bから噴出するメインバーナ10と、メインバーナ10と平行にラジアントチューブ4の端部開口部内に延在するパイロットバーナ12と、メインバーナ10bの先端部に同軸に固定され、軸方向に複数の給排気穴14aを設けた給排気盤14と、この給排気盤14に固定されてメインバーナ10よりさらにラジアントチューブ4内に延在し、複数の穴16aと先端ノズル16bを備えた燃焼筒16と、ラジアントチューブ4の内周面に固定されて燃焼筒16の外周を覆う保護筒18と、メインバーナ10の外周に同軸に配設された環状の蓄熱体20とを備えた構造である。
【0013】
一方、第1及び第2蓄熱式バーナ装置6A,6Bの関連機器を図1に基づいて説明すると、第1及び第2蓄熱式バーナ装置6A,6Bの各燃料供給口10aは、燃料配管22a、22bを介して燃料切換弁24と接続し、この燃料切換弁24は、燃料遮断弁26を介装した燃料配管22cを介して燃料供給源28と接続している。また、第1及び第2蓄熱式バーナ装置6A、6Bの各給排気口8aは、給排気配管32A、32B、34A、34Bを介して給排気切換弁36と接続し、この給排気切換弁36は空気ブロア38及び排気ガス吸引ファン40と接続している。なお、前述したパイロットバーナ12も、図示しない燃料遮断弁を介して燃料供給源28と接続している。
【0014】
燃料遮断弁26はスプリングオフセット形の2ポート2位置の電磁開閉弁であり、コントローラ28からの駆動信号SF3のオン・オフ制御によって開閉動作が行われるようになっている。
また、前記燃料切換弁24は、スプリングオフセット形の3ポート2位置の電磁切換弁であり、燃料供給源26と接続する入力ポート24aと、第1蓄熱式バーナ装置6Aの燃料供給口10aと燃料配管22aを介して接続する第1出力ポート24bと、第2蓄熱式バーナ装置6Bの燃料供給口10aと燃料配管22bを介して接続する第2出力ポート24bと、図1における上下方向の移動により第1及び第2出力ポート24a、24bの何れか一方を入力ポート24aと連通させるスプール24dと、後述するコントローラ30からの駆動信号SF1のオン・オフ制御によってスプール24dを移動させるソレノイド24eとを備えた弁である。そして、駆動信号SF1がオフ状態となると、スプール24dが図1の上方に移動して入力ポート24a及び第1出力ポート24bが連通し、駆動信号SF1がオン状態となると、スプール24dが図1の下方に移動して入力ポート24a及び第2出力ポート24cが連通するようになっている。
【0015】
また、前記給排気切換弁36は、スプリングオフセット形の6ポート2位置の電磁切換弁であり、空気ブロア38と接続する燃焼空気入力ポート36aと、排気ガス吸引ファン40と接続する排出ポート36bと、第1及び第2燃焼空気供給ポート36c、36dと、第1及び第2排気ガス入力ポート36e、36fと、図1における上下方向の移動により特定のポートどうしを連通させるスプール36gと、コントローラ30からの駆動信号SF2のオン・オフ制御によってスプール36gを移動させるソレノイド36hとを備えた弁である。
【0016】
そして、駆動信号SF2がオフ状態となるとスプール36gが図1の上方に移動し、燃焼空気入力ポート36a及び第1燃焼空気供給ポート36c、排出ポート36b及び第1排気ガス入力ポート36eが連通する。一方、駆動信号SF2がオン状態となるとスプール36gが図1の下方に移動し、燃焼空気入力ポート36a及び第2燃焼空気供給ポート36d、排出ポート36b及び第2排気ガス入力ポート36fが連通する。
【0017】
なお、前述した給排気配管34Aは、給排気配管32Aから分岐した後、その両端部が第1燃焼空気供給ポート36c及び第2排気ガス入力ポート36fと接続している。また、給排気配管34Bは、給排気配管32Bから分岐した後、その両端部が第2燃焼空気供給ポート36c及び第1排気ガス入力ポート36fと接続している。
【0018】
また、第1及び第2蓄熱式バーナ装置6A、6Bの給排気口8aと接続する給排気配管32A、32Bには、第1及び第2冷却空気用配管42、44の一端部が接続しており、これら第1及び第2冷却空気用配管42、44の他端部は冷却空気用メイン配管46と接続している。そして、第1及び第2冷却空気用配管42、44には、それぞれ冷却空気遮断弁48A、48Bが介装されているとともに、冷却空気用メイン配管46には、冷却空気流量調節弁52が介装されている。さらに、給排気配管32A、32Bの給排気切換弁36側には、夫々第1及び第2流体温度センサ54A、54Bが配設されている。
【0019】
前記冷却空気遮断弁48A、48Bは、スプリングオフセット形の2ポート2位置の電磁開閉弁であり、コントローラ28からの駆動信号SF4、SF5のオン・オフ制御によってそれぞれ開閉動作が行われる。
また、冷却空気流量調節弁52は、コントローラ30からの駆動信号SF6により所定の開度設定が行われる構造とされている。ところで、この冷却空気流量調節弁52は加熱炉2の外部に設置されているが、その入力ポート52aには例えば強制的に冷却空気を供給する供給源が何等接続されておらず、出力ポート52b側が負圧となると、加熱炉2外部の空気を所定の流量で自然的に吸引するようになっている。
【0020】
さらに、第1及び第2流体温度センサ54A、54Bは、例えばPR熱電温度計で構成されており、給排気配管32A、32B内部を通過する流体温度を検出し、その検出値T、Tをコントローラ30に出力する。
そして、燃料切換弁24、燃料遮断弁26、給排気切換弁36、冷却空気遮断弁48A、48Bの弁動作を制御するコントローラ30は、加熱炉2全体を統括するプロセスコンピュータに接続されており、少なくとも加熱炉2内に配設した炉内温度センサの温度検出値を読込み、この温度検出値に基づいて燃料ガス流量、燃焼空気流量及び排気ガス流量を算出し、これに基づいて燃料供給源28、空気ブロア38の流量目標値、排気ガス吸引ファンの吸引量目標値を設定するとともに、加熱炉2内の温度検出値に基づいて第1及び第2蓄熱式バーナ装置6A、6Bの切換えサイクル時間を決定し、さらに他の複数対の蓄熱式バーナ装置の互いに関連的な切り換えタイミングをも決定する。そして、コントローラ30の制御によって所定の切換サイクル時間毎に燃料切換弁24、給排気切換弁36が開閉動作を行うことにより、燃焼動作を行っていた一方の蓄熱式バーナ装置(例えば6A)が蓄熱動作に切り替わり、蓄熱動作を行っていた他方の蓄熱式バーナ装置(例えば6B)が燃焼動作に切り替わる切換燃焼を行う。
【0021】
図1の燃焼状態は、第1蓄熱式バーナ装置6Aが燃焼動作を行い、第2蓄熱式バーナ装置6Bが蓄熱動作を行っている状態を示しており、コントローラ30から燃料切換弁24への駆動信号SF1がオフ状態とされ、入力ポート24a及び第1出力ポート24bとが連通し、燃料供給源28から燃料切換弁24、燃料配管22aを介して燃料供給口10aに供給された燃料ガスが、メインバーナ10のノズル10bから噴出している。また、コントローラ30から給排気切換弁26への駆動信号SF2がオフ状態とされ、燃焼空気入力ポート26a及び第1燃焼空気供給ポート36cが連通し、空気ブロア38から給排気切換弁26、給排気配管34A、32Aを介して給排気口8aに供給されきた燃焼空気が、既に蓄熱されている蓄熱体20内部への通過により予熱された後、燃焼筒16の内部及び外周に供給されて燃焼ガスと混合する。そして、パイロットバーナ12の着火により、燃焼筒16内での一次燃焼と、燃焼筒16の内部から穴16aを通過して外部に流出した燃料ガス及び燃焼空気による二次燃焼とによって第1蓄熱式バーナ装置6Aの燃焼動作が行われている。
【0022】
この第1蓄熱式バーナ装置6Aの燃焼動作による生じた排気ガスは、ラジアントチューブ4内部を通過する際に放熱により加熱炉2内を加熱した後、第2蓄熱式バーナ装置6B内部に流れていく。そして、給排気切換弁36の排出ポート36b及び第1排気ガス入力ポート36eが連通していることから、第2蓄熱式バーナ装置6Bに流れ込んだ排気ガスは、第2蓄熱式バーナ装置6B、給排気配管32B、34B、給排気切換弁36を介して排気ガス吸引ファン40に吸引され、加熱炉2外部に放出される。この際、第2蓄熱式バーナ装置6B内部を通過する排気ガスは、蓄熱体20内部を通過することにより蓄熱動作を行う。
【0023】
そして、切換えサイクル時間が経過すると、コントローラ30から燃料切換弁24への駆動信号SF1がオン状態、給排気切換弁26への駆動信号SF2がオン状態となり、第2蓄熱式バーナ装置6Bは、既に蓄熱が完了している蓄熱体20内部を通過する燃焼空気を予熱した状態で燃焼動作に切り替わり、第1蓄熱式バーナ装置6Aは、自身の蓄熱体20に排気ガスが通過することにより蓄熱動作に切り替わる。そして、第2蓄熱式バーナ装置6Bの燃焼動作による生じた排気ガスは、ラジアントチューブ4内部を通過する際の放熱によって加熱炉2内を加熱する。なお、上述した一対の蓄熱式バーナ装置6A、6Bの正常時の切換燃焼時には、前記冷却空気遮断弁48A、48Bは閉状態に保持されている。
【0024】
ところで、本実施形態のコントローラ30は、何等かの原因により燃料切換弁24及び給排気切換弁36のいずれかの弁に切換動作不良が発生したことを判断すると、一方の蓄熱式バーナ装置のみの連続した燃焼動作を行う異常時燃焼処理を実行する。
この異常時燃焼処理を、図3で示すフローチャートを参照して説明する。なお、この処理を行う前提条件として、弁の切換動作不良が発生した時点で、燃焼動作を行うことが可能な蓄熱式バーナ装置と蓄熱動作を行うことが可能な蓄熱式バーナ装置とを、コントローラ30が判別しているものとする。また、この処理は、所定時間毎のタイマ割込処理として実行される。さらに、以下のステップで示す符号iは、蓄熱動作を行う蓄熱式バーナ装置側の関連機器を表すA又はBの一方であり、例えばi=Aとすると、連続した蓄熱動作は第1蓄熱式バーナ装置6Aで行われるものとする。
【0025】
先ず、ステップS1において、冷却空気遮断弁48iの開動作を行う。次いで、ステップS2に移行し、流体温度センサ54iの温度検出値Tiを読み込む。次いで、ステップS3に移行し、前記温度検出値Tと、予め設定した許容温度値Tmax との比較判定を行う。前記許容温度値Tmax とは、給排気配管32A、32B、34A、34B、給排気切換弁36が、熱的腐食を発生せず、劣化等のおそれがない耐熱温度である。これにより、このステップS3は、給排気配管32iを通過している排気ガスが、耐熱温度以上であるか否かを判別するステップである。
【0026】
このステップS3において、温度検出値Tが許容温度値Tmax を下回っているときには、給排気配管32iを通過している排気ガスが、給排気配管32i、34i、給排気切換弁36に熱的影響を与えないと判断し、そのままタイマ割込処理を終了して通常のメインプログラムに復帰する。
また、このステップS3において、温度検出値Tが許容温度値Tmax を上回っているときには、ステップS4に移行する。
【0027】
そして、ステップS4では、冷却空気流量調節弁52の弁開度を大きく設定する。そして、タイマ割込処理を終了して通常のメインプログラムに復帰する。
次に、例えば、給排気切換弁36に弁動作不良が発生してしまい、第1蓄熱式バーナ装置6Aが連続した燃焼動作を行い、第2蓄熱式バーナ装置6Bが蓄熱動作を行うことにより異常時燃焼処理を実行する場合について説明する。
【0028】
コントローラ30は、冷却空気遮断弁48Bに対する駆動信号SF5をオン状態とし、冷却空気遮断弁48Bを開状態とする(ステップS1)。この際、給排気配管32B内部は、排気ガス吸引ファン40の排気ガス吸引動作によって負圧状態となっているので、この給排気配管32Bと第2冷却空気用配管44及び冷却空気用メイン配管46を介して連通する冷却空気流量調節弁52は、加熱炉2外部の冷却空気を入力ポート52aから流量を調節して吸引し、第2冷却空気用配管44から給排気配管32B内部に供給していく。このため、給排気配管32Bを通過している排気ガスと冷却空気とが混合するので、給排気切換弁36側に向かう排気ガスの温度が低下していく。
【0029】
そして、流体温度センサ54Bで検出した温度検出値Tが許容温度値Tmax を上回ると(ステップS2、ステップS3)、冷却空気流量調節弁52への駆動信号SF6をオン状態として弁開度を大きくする。これにより、第2冷却空気用配管44から給排気配管32B内部に供給される冷却空気の流量が増大するので、給排気切換弁36側に向かう排気ガスの温度が急速に低下していく。
【0030】
そして、流体温度センサ54Bで検出した温度検出値Tが許容温度値Tmax を下回ると(ステップS3)、現在の冷却空気流量調節弁52の弁開度を保持した状態とする。
このように、例えば給排気切換弁36の弁動作不良の発生により第1蓄熱式バーナ装置6Aが連続した燃焼動作を行い、第2蓄熱式バーナ装置6Bが蓄熱動作を行う異常時燃焼処理を実行する際には、給排気切換弁36に向けて排気ガスが流れている第2蓄熱式バーナ装置6Bと接続する給排気配管32B内部に、冷却空気を供給して排気ガスと混入し、排気ガスの温度を給排気配管32B、34B及び給排気切換弁36の耐熱温度より低下させているので、給排気配管32B、34B、給排気切換弁36に熱的腐食、高温劣化等の熱的損傷を与えることがない。この状態で、加熱炉2の加熱能力を一定に保持することができるので、焼鈍部品等の被加熱製品の生産量を低減することがない。
【0031】
そして、コントローラ30は、蓄熱動作を行っている第2蓄熱式バーナ装置6B側の給排気配管32Bの排気ガス温度を温度センサ54Bにより検出し、温度検出値Tが許容温度値Tmax (給排気切換弁36及び給排気配管32A、32B、34A、34Bの耐熱温度)を下回るように、冷却空気流量調節弁52の開度を適宜変更して冷却空気の供給流量を増減させる制御を行っており、給排気切換弁36及び給排気配管32A、32B、34A、34Bを通過する排気ガスの温度を確実に低下させることが可能となるので、排気ガスの給排気系統の熱的損傷を確実に防止する装置を提供することができる。
【0032】
さらに、冷却空気流量調節弁52の入力ポート52aを大気(加熱炉2外部の空気)に開放した構造とし、蓄熱動作を行う第2蓄熱式バーナ装置6B側の給排気配管32B内部が、給排気切換弁36に向けて流れる排気ガスにより負圧状態となっていることを利用して冷却空気を給排気配管32B内部に自然吸引するようにしており、冷却空気を送り込むための強制供給装置や多数の供給配管等が不要となるので、装置コストを大幅に低減することができる。
【0033】
次に、図4に示すものは、24組の蓄熱式バーナ装置6A、6B群を設置し、各組に24個の給排気切換弁36を接続して加熱炉2内を加熱する際に、横軸に示す動作不良が発生した給排気切換弁36と、縦軸示す燃焼負荷(炉内2への投入熱量)の関係を示した図表である。そして、この図表の破線で示す線は、給排気切換弁36の弁動作不良が発生した特定の対の蓄熱式バーナ装置に対して燃焼動作を停止したことを表し、実線で示す線は、給排気切換弁36の弁動作不良が発生した特定の対の蓄熱式バーナ装置に対して、前述した異常時燃焼処理により、一方の第1蓄熱式バーナ装置が連続した燃焼動作を行い、他方の蓄熱式バーナ装置が蓄熱動作を行うようにしたことを表している。
【0034】
この図表から明らかなように、弁動作不良の数の半数(12個)を境界値とし、給排気切換弁36の弁動作不良の数が境界値を下回るときには、弁動作不良を発生した一対の蓄熱式バーナ装置の燃焼動作を停止するとともに、給排気切換弁36の弁動作不良の数が境界値を上回る場合には、本実施形態で示した異常時燃焼処理を実行することにより、燃焼負荷を極端に低下させずに最低限の負荷に保持することができる。
【0035】
このように、上述した燃焼方法を行うことにより、給排気切換弁36及び給排気配管32A、32B、34A、34Bに対する熱的腐食、高温劣化等の熱的損傷を防止しながら、例えば焼鈍部品等の被加熱製品の生産量が極端に低減しない程度に、加熱炉の加熱能力を保持することができる。
なお、上記実施形態では、給排気切換弁36の弁動作不良が発生した場合の異常時燃焼処理について説明したが、本発明の要旨がこれに限るものではなく、燃料切換弁24や他の関連機器の動作不良により一対の蓄熱式バーナ装置6A、6Bの所定切換時間毎の燃料切換動作が行われない場合に、異常時燃焼処理が実行されるものである。
【0036】
また、第1蓄熱式バーナ装置6Aが連続した燃焼動作を行い、第2蓄熱式バーナ装置6Bが蓄熱動作を行う場合の異常時燃焼処理について説明したが、第2蓄熱式バーナ装置6Bが連続した燃焼動作を行い、第1蓄熱式バーナ装置6Aが蓄熱動作を行う場合の異常時燃焼処理であっても、同様の作用効果を得ることができる。
【0037】
また、冷却空気及び排気ガスの混合領域を拡大するために、第1及び第2冷却空気配管42、44の給排気配管32A、32Bに接続する位置を、第1及び第蓄熱式バーナ装置6A、6Bの給排気口8aの近くに位置する方が望ましい。
また、温度センサ54A、54Bの接続位置は上記実施形態で示した位置に限らず、給排気切換弁36に流れ込む排気ガスの温度を測定可能位置であれば、他の位置でも同様の作用効果を得ることができる。
【0038】
さらに、上記実施形態では蓄熱式ラジアントチューブバーナ装置を適用して説明したが、他の蓄熱式バーナ装置にも適用し得るものである。
【0039】
【発明の効果】
以上説明したように、請求項1記載の蓄熱式バーナ装置群の燃焼制御方法によると、切換え燃焼が不可能となった特定の対の蓄熱式バーナ装置の燃焼動作を直ちに停止せず、一方の蓄熱式バーナ装置が連続して燃焼動作を行い、且つ他方の蓄熱式バーナ装置が連続して蓄熱動作を行うように燃焼制御を行うとともに、前記他方の蓄熱式バーナ装置と接続して前記給排気切換弁に向けて排気ガスが流れている前記給排気配管内部に前記排気ガスと混入する冷却流体を供給し、排気ガスの温度を給排気配管及び給排気切換弁の耐熱温度より低下させることが可能な燃焼方法としているので、給排気配管、給排気切換弁等の機器に対する熱的腐食、高温劣化等の熱的損傷を防止しながら、例えば焼鈍部品等の被加熱製品の生産量が極端に低減しない程度に加熱炉の加熱能力を保持することができる。
【0040】
また、請求項2記載の蓄熱式バーナ装置の燃焼制御装置によると、一対の蓄熱式バーナ装置の切換え燃焼が不可能となった時点で、燃焼制御手段は、蓄熱式バーナ装置の燃焼動作を直ちに停止せず、一方の蓄熱式バーナ装置が連続して燃焼動作を行い、且つ他方の蓄熱式バーナ装置が連続して蓄熱動作を行うように制御を行うとともに、他方の蓄熱式バーナ装置と接続した給排気配管内部に冷却流体供給手段から冷却流体を供給して、この冷却流体の混入により排気ガスの温度を給排気配管及び給排気切換弁の耐熱温度より低下させるので、給排気配管、給排気切換弁等の機器に熱的腐食、高温劣化等の熱的損傷を与えない装置構造とすることができる。
【0041】
また、請求項3記載の発明は、請求項2記載の効果を得ることができるとともに、燃焼制御手段は、蓄熱動作を行っている他方の蓄熱式バーナ装置側の給排気配管内部の排気ガス温度を温度検出手段により検出し、前記排気ガス温度の検出値が給排気切換弁及び前記給排気配管の耐熱温度を下回るように、前記冷却流体の供給流量を増大させる制御を前記冷却流体供給手段に対して行っており、給排気切換弁及び前記給排気配管を通過する排気ガスの温度を確実に低下させることが可能となるので、給排気配管、給排気切換弁等の機器の熱的損傷を確実に防止する装置を提供することができる。
【0042】
さらに、請求項4記載の発明は、請求項2又は3記載の効果を得ることができるとともに、冷却流体供給手段を、給排気配管に供給配管を介して接続する流量調節弁の入力ポートを大気に開放した構造とし、蓄熱動作を行う他方の蓄熱式バーナ装置側の給排気配管内部が、前記給排気切換弁に向けて流れる排気ガスにより負圧状態となっていることを利用して冷却空気を給排気配管内部に自然吸引するようにしており、給排気配管内部に冷却流体を供給するための強制供給装置や多数の供給配管等が不要となるので、装置コストを大幅に低減することができる。
【図面の簡単な説明】
【図1】本発明の蓄熱式バーナ装置の燃焼制御装置をを示す概略構成図である。
【図2】蓄熱式バーナ装置の一例を示す断面図である。
【図3】本発明において、一対の蓄熱式バーナ装置のうちの一方の蓄熱式バーナ装置が連続した燃焼動作を行い、他方の蓄熱式バーナ装置が蓄熱動作を行う場合において、他方の蓄熱式バーナ装置側の給排気配管に冷却流体を供給する方法を示すフローチャートである。
【図4】複数組の蓄熱式バーナ装置を備えた加熱炉において、給排気切換弁の弁不良が発生した所定の蓄熱式バーナ装置に対して燃焼動作を停止、又は連続した燃焼動作を行った場合の燃焼負荷の変化状態を示した図表である。
【符号の説明】
2 加熱炉
4 ラジアントチューブ
6A、6B 蓄熱式バーナ装置
8a 蓄熱式バーナ装置の給排気口
10a 蓄熱式バーナ装置の燃料供給口
20 蓄熱体
22a、22b 燃料配管
24 燃料切換弁
30 コントローラ(燃焼制御手段)
32A、32B、34A、34B 給排気配管
36 給排気切換弁
38 空気ブロア(燃焼空気供給手段)
40 排気ガス吸引ファン(排気ガス吸引手段)
42、44 第1及び第2冷却空気用配管(供給配管)
48A、48B 冷却空気遮断弁
54A、54B 温度センサ(温度検出手段)
52 冷却空気流量調節弁(流量調節弁)
52a 入力ポート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a combustion control method for a regenerative burner device group and a combustion control device for a regenerative burner device in which a plurality of pairs of regenerative burner devices provided with a heat storage element are alternately burned at predetermined switching times. About.
[0002]
[Prior art]
For example, as a combustion control device of a conventional regenerative burner device used for a heating furnace such as a continuous annealing furnace, there is a technique described in, for example, Japanese Patent Application Laid-Open No. Hei 6-288519.
According to this technology, a combustion operation is performed by supplying fuel and combustion air to one of two regenerative burner devices having a pair of regenerators via a fuel switching valve and a supply / exhaust switching valve. The combustion waste gas is passed through the other regenerative burner device to perform heat storage, and the combustion waste gas that has passed through the heat storage body of the other regenerative burner device is discharged to the outside via a supply / exhaust switching valve. . In this device, a combustion waste gas branch conduit is provided between a combustion waste gas discharge conduit from a supply / exhaust switching valve and a combustion air supply conduit from a combustion air source to a supply / exhaust switching valve to perform a heat storage operation. This is a device that mixes a part of the combustion waste gas discharged from the regenerative burner device to the outside into the combustion air supplied to the regenerative burner device performing the combustion operation.
[0003]
According to this device, after the heat is released by the heat storage unit, a part of the combustion waste gas whose temperature has decreased is mixed with the combustion air to lower the temperature of the combustion air, so that steam or spray water is used. There is no need to use such a special fluid, and the combustion waste gas does not oxidize the inner surface of the gas passage like steam or spray water and does not generate skeletal loss on the object to be heated. Furthermore, while ensuring the NOx reduction effect by mixing the combustion waste gas into the combustion air, it is possible to prevent high-temperature heat deterioration due to overheating of the burner device main body and maintain high-efficiency overheating characteristics.
[0004]
[Problems to be solved by the invention]
By the way, in the above-mentioned conventional combustion control device of the regenerative burner device, the switching cycle of the pair of regenerative combustion burner devices is set to a short cycle (40 to 60 seconds), and the switching of the fuel switching valve and the supply / exhaust switching valve is performed. Frequent operation tends to shorten the life of the valve.
[0005]
Here, when a malfunction of the valve occurs due to the above-mentioned life or the like, continuous combustion operation of only one regenerative burner device may be performed. The high-temperature combustion waste gas that has passed through passes through the supply / exhaust piping and the supply / exhaust switching valve, and the supply / exhaust piping and the supply / exhaust switching valve rise above the heat-resistant temperature, causing thermal corrosion and high-temperature deterioration. May be damaged.
[0006]
In order to avoid such thermal damage to the supply / exhaust piping and supply / exhaust switching valve, when a malfunction of the valve occurs, the combustion operation of the regenerative burner device is immediately stopped, and the malfunctioning valve is repaired. However, since the heating capacity of the heating furnace is greatly reduced, the production amount of the annealed parts and the like may be significantly reduced.
Therefore, the present invention has been made by focusing on the unsolved problems of the conventional example and the prior art, and each pair of regenerative burners is provided without thermally affecting the supply / exhaust piping, the supply / exhaust switching valve, and the like. A combustion control method for a regenerative burner device group and a combustion control method for a regenerative burner device that enable one of the devices to continuously perform a burning operation and that can maintain the heating capacity of a heating furnace substantially constant. It is intended to provide a device.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an invention according to claim 1 includes a pair of regenerative burner devices provided with a heat storage body, a pair of supply / exhaust pipes respectively connected to the regenerative burner devices, and a connection with the supply / exhaust pipes. A plurality of sets of supply / exhaust switching valves to be connected, a combustion air supply unit and an exhaust gas suction unit are connected to each pair of the supply / exhaust switching valves, and the regenerative burner devices of each pair are alternately switched every predetermined switching time. The fuel is supplied from the fuel supply means, and the combustion air is supplied from the combustion air supply means via the supply / exhaust switching valve and the supply / exhaust pipe. The exhaust gas generated by the combustion operation of this one regenerative burner device is introduced into the heat storage body of the other regenerative burner device through a heating furnace, and the other regenerative burner device is burned. Is heat storage And a regenerative burner configured to discharge the exhaust gas passing through the other regenerative burner device from the exhaust gas suction means to the outside via the supply / exhaust pipe and the supply / exhaust switching valve. In the combustion control method of the device group, one regenerative burner device continuously performs a combustion operation with respect to a specific pair of regenerative burner devices for which switching combustion at a predetermined switching time has become impossible, and The combustion control is performed so that the other regenerative burner device continuously performs a heat storage operation, and the supply / exhaust gas is connected to the other regenerative burner device and exhaust gas flows toward the supply / exhaust switching valve. The method is characterized in that a cooling fluid mixed with the exhaust gas is supplied into a pipe.
[0008]
According to a second aspect of the present invention, there is provided at least a pair of regenerative burner devices having a heat storage body, a fuel supply unit for supplying fuel to each regenerative burner device, and a pair of regenerative burner devices connected to the respective regenerative burner devices. A supply / exhaust pipe, a supply / exhaust switching valve connected to the supply / exhaust pipe and connected to the combustion air supply means and the exhaust gas suction means, and alternately switches the pair of regenerative burners at predetermined switching times. Combustion control means for causing the pair of regenerative burner devices to perform switching combustion, wherein one of the regenerative burner devices is supplied with fuel from the fuel supply means, and the supply / exhaust switching valve is supplied from the combustion air supply means. The combustion operation is performed by supplying the combustion air through the supply / exhaust pipe, and the exhaust gas generated by the combustion operation of one regenerative burner device is supplied to the other via a heating furnace. The exhaust gas that has been introduced into the heat storage body of the thermal burner device and the other heat storage burner device performs a heat storage operation, and the exhaust gas that has passed through the other heat storage burner device is supplied to the supply / exhaust pipe and the supply / exhaust switching. In the combustion control device of the regenerative burner device configured to discharge the exhaust gas from the exhaust gas suction means to the outside via a valve, a cooling fluid capable of supplying a cooling fluid to the pair of supply / exhaust pipes inside the pipes When the switching control of the pair of regenerative burner devices becomes impossible, one of the regenerative burner devices continuously performs a combustion operation, and The supply / exhaust pipe, which controls the continuous burner device to perform a continuous heat storage operation, and in which exhaust gas flows toward the supply / exhaust switching valve connected to the other heat storage burner device. A device characterized in that the supply of cooling fluid to the part performs control of the cooling fluid supplying means to start.
[0009]
According to a third aspect of the present invention, in the combustion control device for a regenerative burner device according to the second aspect, a temperature detecting means for detecting a temperature of a fluid passing through the inside of the pair of supply and exhaust pipes is provided. The combustion control means detects the exhaust gas temperature inside the supply / exhaust pipe on the other regenerative burner device side performing the heat storage operation by the temperature detection means, and the detected value of the exhaust gas temperature indicates the supply temperature. An apparatus for controlling the cooling fluid supply means to increase a supply flow rate of the cooling fluid so as to be lower than a heat-resistant temperature of an exhaust switching valve and the supply / exhaust pipe.
[0010]
Further, the invention according to claim 4 is the combustion control device for a regenerative burner device according to claim 2 or 3, wherein the cooling fluid supply means is connected to the pair of supply / exhaust pipes via a supply pipe. In addition to being constituted by a valve, the input port of the flow control valve is open to the atmosphere, and the inside of the supply / exhaust pipe of the other regenerative burner device performing the heat storage operation is exhausted by exhaust gas flowing toward the supply / exhaust switching valve. The apparatus is characterized in that the cooling air is naturally sucked into the supply / exhaust pipe by utilizing the negative pressure state.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
Reference numeral 2 in FIG. 1 denotes a heating furnace such as a continuous annealing furnace, in which a long radiant tube 4 is arranged in a meandering state so as to increase a contact area with the air in the furnace. Is established. Openings at both ends of the radiant tube 4 penetrate the furnace wall of the heating furnace 2 and are connected to a pair of regenerative burner devices 6A and 6B. Here, FIG. 1 shows a state in which only one radiant tube 4 is installed in the heating furnace 2. However, a large number of other radiant tubes 4 are installed in the heating furnace 2. A pair of regenerative burner devices 6A and 6B are connected to the tube 4 (hereinafter, a pair of regenerative burner devices 6A and 6B are abbreviated as a first regenerative burner device 6A and a second regenerative burner device 6B, respectively). Yes.)
[0012]
As shown in FIG. 2, each of the first and second regenerative burner devices 6A and 6B is provided with a supply / exhaust port 8a at a part of the outer periphery so as to close the end opening of the radiant tube 4. A supply / exhaust chamber 8 disposed outside the wall, and a fuel gas that extends through the supply / exhaust chamber 8 into the end opening of the radiant tube 4 and is supplied to the fuel supply port 10a. A main burner 10 squirting from the main burner 10b, a pilot burner 12 extending parallel to the main burner 10 into an end opening of the radiant tube 4, and a plurality of feeders fixed coaxially to a tip end of the main burner 10b. A supply / exhaust plate 14 having an exhaust hole 14a, a combustion tube 16 fixed to the supply / exhaust plate 14 and extending further into the radiant tube 4 than the main burner 10 and having a plurality of holes 16a and a tip nozzle 16b. A protecting cylinder 18 which is fixed to the inner peripheral surface of the radiant tube 4 covering the outer periphery of the combustion liner 16, a structure in which an annular regenerator 20 disposed coaxially on the outer periphery of the main burner 10.
[0013]
On the other hand, the related devices of the first and second regenerative burner devices 6A and 6B will be described with reference to FIG. 1. Each fuel supply port 10a of the first and second regenerative burner devices 6A and 6B has a fuel pipe 22a, The fuel switching valve 24 is connected to the fuel supply source 28 via a fuel pipe 22c having a fuel cutoff valve 26 interposed therebetween. Further, each of the supply / exhaust ports 8a of the first and second regenerative burner devices 6A, 6B is connected to a supply / exhaust switching valve 36 via supply / exhaust piping 32A, 32B, 34A, 34B. Is connected to the air blower 38 and the exhaust gas suction fan 40. The above-described pilot burner 12 is also connected to a fuel supply source 28 via a fuel cutoff valve (not shown).
[0014]
The fuel shutoff valve 26 is a spring offset type two-port two-position solenoid valve, and a drive signal S from a controller 28 is provided. F3 The opening / closing operation is performed by the on / off control of.
The fuel switching valve 24 is a spring offset type three-port two-position electromagnetic switching valve, and has an input port 24a connected to a fuel supply source 26, a fuel supply port 10a of the first regenerative burner device 6A and a fuel supply port 10a. The first output port 24b connected via the pipe 22a, the second output port 24b connected via the fuel pipe 22b to the fuel supply port 10a of the second regenerative burner device 6B, and the vertical movement in FIG. A spool 24d for communicating one of the first and second output ports 24a and 24b with the input port 24a, and a drive signal S from a controller 30 described later. F1 And a solenoid 24e for moving the spool 24d by ON / OFF control of the valve. Then, the drive signal S F1 Is turned off, the spool 24d moves upward in FIG. 1, the input port 24a and the first output port 24b communicate, and the drive signal S F1 Is turned on, the spool 24d moves downward in FIG. 1, and the input port 24a and the second output port 24c communicate with each other.
[0015]
The supply / exhaust switching valve 36 is a spring-offset 6-port 2-position electromagnetic switching valve, and includes a combustion air input port 36a connected to an air blower 38, and an exhaust port 36b connected to an exhaust gas suction fan 40. , A first and second combustion air supply ports 36c and 36d, first and second exhaust gas input ports 36e and 36f, a spool 36g for communicating specific ports by vertical movement in FIG. Drive signal S from F2 And a solenoid 36h for moving a spool 36g by ON / OFF control of the solenoid valve.
[0016]
Then, the drive signal S F2 Is turned off, the spool 36g moves upward in FIG. 1, and the combustion air input port 36a, the first combustion air supply port 36c, the exhaust port 36b, and the first exhaust gas input port 36e communicate with each other. On the other hand, the driving signal S F2 Is turned on, the spool 36g moves downward in FIG. 1, and the combustion air input port 36a, the second combustion air supply port 36d, the discharge port 36b, and the second exhaust gas input port 36f communicate with each other.
[0017]
Note that the supply / exhaust pipe 34A described above branches off from the supply / exhaust pipe 32A, and both ends thereof are connected to the first combustion air supply port 36c and the second exhaust gas input port 36f. After branching off from the supply / exhaust pipe 32B, both ends of the supply / exhaust pipe 34B are connected to the second combustion air supply port 36c and the first exhaust gas input port 36f.
[0018]
Also, one ends of first and second cooling air pipes 42 and 44 are connected to supply and exhaust pipes 32A and 32B connected to the supply and exhaust ports 8a of the first and second regenerative burner devices 6A and 6B. The other ends of the first and second cooling air pipes 42 and 44 are connected to a cooling air main pipe 46. The first and second cooling air pipes 42 and 44 are provided with cooling air cutoff valves 48A and 48B, respectively, and the cooling air main pipe 46 is provided with a cooling air flow control valve 52. Is equipped. Further, first and second fluid temperature sensors 54A and 54B are disposed on the supply / exhaust switching valve 36 side of the supply / exhaust pipes 32A and 32B, respectively.
[0019]
The cooling air shutoff valves 48A and 48B are two-port two-position solenoid on / off valves of a spring offset type, and drive signals S from the controller 28 are provided. F4 , S F5 The opening / closing operation is performed by the on / off control of.
The cooling air flow control valve 52 is provided with a drive signal S from the controller 30. F6 Thus, a predetermined opening is set. By the way, the cooling air flow control valve 52 is installed outside the heating furnace 2, but its input port 52a is not connected to any supply source for forcedly supplying cooling air, for example, and the output port 52b When the pressure on the side becomes negative, air outside the heating furnace 2 is naturally sucked at a predetermined flow rate.
[0020]
Further, the first and second fluid temperature sensors 54A and 54B are constituted by, for example, PR thermoelectric thermometers, detect the temperature of the fluid passing through the supply / exhaust pipes 32A and 32B, and detect the detected value T thereof. A , T B Is output to the controller 30.
The controller 30 that controls the valve operation of the fuel switching valve 24, the fuel cutoff valve 26, the supply / exhaust switching valve 36, and the cooling air cutoff valves 48A and 48B is connected to a process computer that controls the entire heating furnace 2. At least a temperature detection value of an in-furnace temperature sensor disposed in the heating furnace 2 is read, and a fuel gas flow rate, a combustion air flow rate, and an exhaust gas flow rate are calculated based on the temperature detection values. , The target value of the flow rate of the air blower 38 and the target value of the suction amount of the exhaust gas suction fan, and based on the detected temperature value in the heating furnace 2, the switching cycle time of the first and second regenerative burner devices 6A and 6B. Is determined, and the switching timings of the other pairs of the regenerative burner devices are also determined. The fuel switching valve 24 and the supply / exhaust switching valve 36 open and close at predetermined switching cycle times under the control of the controller 30, so that one of the regenerative burners (eg, 6A) performing the combustion operation stores heat. The operation is switched to another operation, and the other regenerative burner device (for example, 6B) performing the heat storage operation performs the switching combustion in which the operation is switched to the combustion operation.
[0021]
The combustion state in FIG. 1 shows a state in which the first regenerative burner device 6A performs a combustion operation and the second regenerative burner device 6B performs a heat storage operation, and the driving from the controller 30 to the fuel switching valve 24 is performed. Signal S F1 Is turned off, the input port 24a communicates with the first output port 24b, and the fuel gas supplied from the fuel supply source 28 to the fuel supply port 10a via the fuel switching valve 24 and the fuel pipe 22a is supplied to the main burner. They are ejected from ten nozzles 10b. Further, a drive signal S from the controller 30 to the supply / exhaust switching valve 26 is provided. F2 Is turned off, the combustion air input port 26a and the first combustion air supply port 36c communicate, and the air is supplied from the air blower 38 to the supply / exhaust port 8a via the supply / exhaust switching valve 26 and the supply / exhaust piping 34A, 32A. After the combustion air is preheated by passing through the heat storage body 20 already stored, the combustion air is supplied to the inside and the outer periphery of the combustion cylinder 16 and mixed with the combustion gas. The ignition of the pilot burner 12 causes primary combustion in the combustion cylinder 16 and secondary combustion with fuel gas and combustion air flowing from the inside of the combustion cylinder 16 to the outside through the hole 16 a and the first heat storage type. The combustion operation of the burner device 6A is being performed.
[0022]
The exhaust gas generated by the combustion operation of the first regenerative burner device 6A heats the inside of the heating furnace 2 by heat radiation when passing through the radiant tube 4, and then flows into the second regenerative burner device 6B. . Since the exhaust port 36b of the supply / exhaust switching valve 36 and the first exhaust gas input port 36e communicate with each other, the exhaust gas flowing into the second regenerative burner device 6B is supplied to the second regenerative burner device 6B. The exhaust gas is sucked by the exhaust gas suction fan 40 via the exhaust pipes 32B and 34B and the supply / exhaust switching valve 36, and is discharged to the outside of the heating furnace 2. At this time, the exhaust gas passing through the inside of the second regenerative burner device 6B performs a heat storage operation by passing through the inside of the heat storage body 20.
[0023]
When the switching cycle time has elapsed, the drive signal S from the controller 30 to the fuel switching valve 24 is output. F1 Is ON, the drive signal S to the supply / exhaust switching valve 26 F2 Is turned on, the second regenerative burner device 6B switches to the combustion operation in a state where the combustion air passing through the heat storage body 20 in which the heat storage has already been completed is preheated, and the first regenerative burner device 6A When the exhaust gas passes through the heat storage body 20, the operation is switched to the heat storage operation. Then, the exhaust gas generated by the combustion operation of the second regenerative burner device 6B heats the inside of the heating furnace 2 by heat radiation when passing through the inside of the radiant tube 4. Note that the cooling air shutoff valves 48A and 48B are kept closed during the normal switching combustion of the pair of regenerative burner devices 6A and 6B described above.
[0024]
When the controller 30 of the present embodiment determines that a switching operation failure has occurred in one of the fuel switching valve 24 and the supply / exhaust switching valve 36 for some reason, the controller 30 of only one of the regenerative burner devices is used. An abnormal time combustion process for performing a continuous combustion operation is executed.
This abnormal combustion process will be described with reference to the flowchart shown in FIG. As a precondition for performing this process, a regenerative burner device capable of performing a combustion operation and a regenerative burner device capable of performing a heat storage operation at the time of occurrence of a valve switching operation failure include a controller. It is assumed that 30 has been determined. This process is executed as a timer interrupt process at predetermined time intervals. Further, reference numeral i shown in the following steps is one of A and B representing related equipment on the side of the regenerative burner device performing the heat storage operation. For example, if i = A, the continuous heat storage operation is performed by the first regenerative burner. It is assumed that the processing is performed by the device 6A.
[0025]
First, in step S1, the opening operation of the cooling air cutoff valve 48i is performed. Next, the process proceeds to step S2, where the temperature detection value Ti of the fluid temperature sensor 54i is read. Next, the process proceeds to step S3, wherein the temperature detection value T 1 And a preset allowable temperature value T max Is compared with. The allowable temperature value T max This is a heat-resistant temperature at which the supply / exhaust pipes 32A, 32B, 34A, 34B and the supply / exhaust switching valve 36 do not cause thermal corrosion and are not likely to deteriorate. Accordingly, step S3 is a step of determining whether or not the exhaust gas passing through the supply / exhaust pipe 32i is at or above the allowable temperature limit.
[0026]
In this step S3, the temperature detection value T 1 Is the allowable temperature value T max , It is determined that the exhaust gas passing through the supply / exhaust pipe 32i does not thermally affect the supply / exhaust pipes 32i, 34i and the supply / exhaust switching valve 36, and the timer interrupt processing is terminated as it is. To return to the normal main program.
In this step S3, the temperature detection value T 1 Is the allowable temperature value T max If it exceeds, the process proceeds to step S4.
[0027]
Then, in step S4, the valve opening of the cooling air flow control valve 52 is set large. Then, the timer interrupt processing ends, and the process returns to the normal main program.
Next, for example, a malfunction occurs in the supply / exhaust switching valve 36, and the first regenerative burner device 6A performs a continuous combustion operation, and the second regenerative burner device 6B performs a heat storage operation. The case where the time combustion process is executed will be described.
[0028]
The controller 30 outputs a drive signal S to the cooling air shutoff valve 48B. F5 Is turned on, and the cooling air cutoff valve 48B is opened (step S1). At this time, since the inside of the supply / exhaust pipe 32B is in a negative pressure state due to the exhaust gas suction operation of the exhaust gas suction fan 40, the supply / exhaust pipe 32B, the second cooling air pipe 44, and the cooling air main pipe 46 The cooling air flow control valve 52, which communicates with the cooling air flow rate control valve 52, adjusts the flow rate of the cooling air outside the heating furnace 2 from the input port 52a, sucks the cooling air, and supplies the cooling air from the second cooling air pipe 44 into the supply / exhaust pipe 32B. Go. Therefore, the exhaust gas passing through the supply / exhaust pipe 32B and the cooling air are mixed, so that the temperature of the exhaust gas toward the supply / exhaust switching valve 36 decreases.
[0029]
Then, the temperature detection value T detected by the fluid temperature sensor 54B B Is the allowable temperature value T max (Steps S2 and S3), the drive signal S to the cooling air flow control valve 52 F6 Is turned on to increase the valve opening. As a result, the flow rate of the cooling air supplied from the second cooling air pipe 44 to the inside of the supply / exhaust pipe 32B increases, so that the temperature of the exhaust gas flowing toward the supply / exhaust switching valve 36 decreases rapidly.
[0030]
Then, the temperature detection value T detected by the fluid temperature sensor 54B B Is the allowable temperature value T max (Step S3), the state is maintained in which the current opening degree of the cooling air flow control valve 52 is maintained.
In this manner, for example, the abnormal-time combustion process in which the first regenerative burner device 6A performs the continuous combustion operation and the second regenerative burner device 6B performs the heat storage operation due to the occurrence of the valve operation failure of the supply / exhaust switching valve 36 is performed. At the time, the cooling air is supplied to the inside of the supply / exhaust pipe 32B connected to the second regenerative burner device 6B in which the exhaust gas flows toward the supply / exhaust switching valve 36 and mixed with the exhaust gas. Temperature is lower than the heat-resistant temperature of the supply / exhaust piping 32B, 34B and the supply / exhaust switching valve 36, so that the thermal damage such as thermal corrosion and high temperature deterioration may occur on the supply / exhaust piping 32B, 34B, the supply / exhaust switching valve 36. I will not give. In this state, the heating capacity of the heating furnace 2 can be kept constant, so that the production amount of a product to be heated such as an annealed part is not reduced.
[0031]
Then, the controller 30 detects the exhaust gas temperature of the supply / exhaust pipe 32B on the side of the second regenerative burner device 6B performing the heat storage operation by the temperature sensor 54B, and detects the temperature detection value T. B Is the allowable temperature value T max The control for changing the opening degree of the cooling air flow control valve 52 as appropriate to decrease or decrease the supply flow rate of the cooling air so as to fall below (the heat-resistant temperature of the supply / exhaust switching valve 36 and the supply / exhaust piping 32A, 32B, 34A, 34B). Since the temperature of the exhaust gas passing through the supply / exhaust switching valve 36 and the supply / exhaust piping 32A, 32B, 34A, 34B can be reliably reduced, thermal damage to the exhaust gas supply / exhaust system can be prevented. It is possible to provide a device for surely preventing the occurrence.
[0032]
Further, the input port 52a of the cooling air flow control valve 52 is configured to be open to the atmosphere (air outside the heating furnace 2), and the inside of the supply / exhaust pipe 32B on the side of the second regenerative burner device 6B that performs the heat storage operation is supplied / exhausted. By utilizing the fact that the exhaust gas flowing toward the switching valve 36 is in a negative pressure state, the cooling air is naturally sucked into the supply / exhaust pipe 32B, and a forced supply device for sending the cooling air and a large number of devices are provided. Since the supply pipe or the like is not required, the apparatus cost can be significantly reduced.
[0033]
Next, as shown in FIG. 4, 24 sets of regenerative burner devices 6A and 6B are installed, and 24 sets of supply / exhaust switching valves 36 are connected to each set to heat the inside of the heating furnace 2. 5 is a chart showing the relationship between the supply / exhaust switching valve 36 in which an operation failure has occurred shown on the horizontal axis and the combustion load (the amount of heat input into the furnace 2) shown on the vertical axis. The broken line in this table indicates that the combustion operation has been stopped for the specific pair of regenerative burners in which the valve operation failure of the supply / exhaust switching valve 36 has occurred. For the specific pair of regenerative burners in which the exhaust gas switching valve 36 has malfunctioned, one of the first regenerative burners performs the continuous combustion operation by the above-described abnormal combustion processing, and the other regenerative burner operates. This shows that the thermal burner device performs a heat storage operation.
[0034]
As is apparent from this chart, half of the number of valve operation failures (12) is set as the boundary value, and when the number of valve operation failures of the supply / exhaust switching valve 36 falls below the boundary value, a pair of valve operation failures occurs. When the combustion operation of the regenerative burner device is stopped and the number of valve operation failures of the supply / exhaust switching valve 36 exceeds the boundary value, the abnormal-time combustion processing described in the present embodiment is executed to reduce the combustion load. Can be maintained at a minimum load without extremely lowering the load.
[0035]
In this way, by performing the above-described combustion method, while preventing thermal damage such as thermal corrosion and high-temperature deterioration to the supply / exhaust switching valve 36 and the supply / exhaust piping 32A, 32B, 34A, 34B, for example, annealed parts The heating capacity of the heating furnace can be maintained to such an extent that the production amount of the product to be heated does not extremely decrease.
In the above-described embodiment, the abnormal-time combustion process when the valve operation failure of the supply / exhaust switching valve 36 occurs has been described. However, the gist of the present invention is not limited to this, and the fuel switching valve 24 and other related When the fuel switching operation of the pair of regenerative burner devices 6A and 6B is not performed at every predetermined switching time due to a malfunction of the equipment, the abnormal-time combustion process is performed.
[0036]
In addition, the abnormal-time combustion process when the first regenerative burner device 6A performs a continuous combustion operation and the second regenerative burner device 6B performs a heat storage operation has been described. However, the second regenerative burner device 6B performs a continuous combustion operation. The same operation and effect can be obtained even in the abnormal combustion process when the first regenerative burner device 6A performs the heat operation by performing the combustion operation.
[0037]
Further, in order to expand the mixing area of the cooling air and the exhaust gas, the positions of the first and second cooling air pipes 42, 44 connected to the supply / exhaust pipes 32A, 32B are changed to the first and the first regenerative burner devices 6A, It is desirable to be located near the supply / exhaust port 8a of 6B.
Further, the connection position of the temperature sensors 54A and 54B is not limited to the position shown in the above-described embodiment, and the same effect can be obtained at other positions as long as the temperature of the exhaust gas flowing into the supply / exhaust switching valve 36 can be measured. Obtainable.
[0038]
Further, in the above embodiment, the description has been made by applying the regenerative radiant tube burner device, but the present invention can be applied to other regenerative burner devices.
[0039]
【The invention's effect】
As described above, according to the combustion control method of the regenerative burner device group of the first aspect, the combustion operation of the specific pair of regenerative burner devices for which the switching combustion has become impossible is not immediately stopped. Combustion control is performed so that the regenerative burner device continuously performs a combustion operation, and the other regenerative burner device continuously performs a heat storage operation, and the supply / exhaust gas is connected to the other regenerative burner device. A cooling fluid mixed with the exhaust gas is supplied to the inside of the supply / exhaust pipe through which the exhaust gas flows toward the switching valve, and the temperature of the exhaust gas is made lower than the heat-resistant temperature of the supply / exhaust pipe and the supply / exhaust switching valve. Because of the possible combustion method, while preventing thermal damage such as thermal corrosion and high temperature deterioration of equipment such as supply / exhaust piping and supply / exhaust switching valves, the production volume of products to be heated such as annealed parts is extremely low. Does not reduce It is possible to retain the heating capacity of the heating furnace each time.
[0040]
Further, according to the combustion control device of the regenerative burner device, when the switching combustion of the pair of regenerative burner devices becomes impossible, the combustion control means immediately starts the combustion operation of the regenerative burner device. Without stopping, one of the regenerative burners was controlled to perform the combustion operation continuously, and the other regenerative burner was controlled to perform the thermal storage operation continuously, and connected to the other regenerative burner. Cooling fluid is supplied from the cooling fluid supply means into the supply / exhaust pipe, and the temperature of the exhaust gas is lowered below the heat-resistant temperature of the supply / exhaust pipe and the supply / exhaust switching valve by mixing the cooling fluid. A device structure that does not cause thermal damage such as thermal corrosion and high-temperature deterioration to devices such as the switching valve can be provided.
[0041]
According to the third aspect of the present invention, the effect of the second aspect can be obtained, and the combustion control means can control the temperature of the exhaust gas in the supply / exhaust pipe on the side of the other regenerative burner device performing the heat storage operation. The temperature of the exhaust gas is detected by a temperature detecting means, and the control of increasing the supply flow rate of the cooling fluid to the cooling fluid supplying means is performed so that the detected value of the exhaust gas temperature is lower than the heat-resistant temperature of the supply / exhaust switching valve and the supply / exhaust pipe. Since the temperature of the exhaust gas passing through the supply / exhaust switching valve and the supply / exhaust piping can be reliably reduced, thermal damage to equipment such as the supply / exhaust piping and the supply / exhaust switching valve can be prevented. It is possible to provide a device for surely preventing the occurrence.
[0042]
Further, the invention according to claim 4 can obtain the effect according to claim 2 or 3, and connects the cooling fluid supply means to the air supply / exhaust pipe via the supply pipe with the input port of the flow control valve to the atmosphere. Cooling air by utilizing the fact that the inside of the supply / exhaust pipe on the side of the other regenerative burner device that performs the heat storage operation is in a negative pressure state due to the exhaust gas flowing toward the supply / exhaust switching valve. Is naturally sucked into the supply / exhaust piping, eliminating the necessity of a forced supply device for supplying cooling fluid to the inside of the supply / exhaust piping, and a large number of supply pipings. it can.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a combustion control device of a regenerative burner device of the present invention.
FIG. 2 is a sectional view showing an example of a regenerative burner device.
FIG. 3 is a diagram illustrating a configuration of a regenerative burner according to an embodiment of the present invention, in which one of a pair of regenerative burners performs a continuous combustion operation and the other regenerative burner performs a thermal storage operation; It is a flowchart which shows the method of supplying a cooling fluid to the supply / exhaust piping on the apparatus side.
FIG. 4 In a heating furnace provided with a plurality of sets of regenerative burners, the combustion operation was stopped or continued for a predetermined regenerative burner in which a supply / exhaust switching valve failed. 6 is a chart showing a change state of a combustion load in the case.
[Explanation of symbols]
2 heating furnace
4 Radiant tube
6A, 6B regenerative burner device
8a Supply / exhaust port of regenerative burner device
10a Fuel supply port of regenerative burner device
20 heat storage
22a, 22b fuel pipe
24 Fuel switching valve
30 Controller (combustion control means)
32A, 32B, 34A, 34B Supply and exhaust piping
36 Supply / exhaust switching valve
38 air blower (combustion air supply means)
40 exhaust gas suction fan (exhaust gas suction means)
42, 44 First and second cooling air piping (supply piping)
48A, 48B cooling air shutoff valve
54A, 54B Temperature sensor (temperature detecting means)
52 Cooling air flow control valve (flow control valve)
52a input port

Claims (4)

蓄熱体を備えた一対の蓄熱式バーナ装置と、各蓄熱式バーナ装置にそれぞれ接続する一対の給排気配管と、これら給排気配管と接続する給排気切換弁とを複数組備え、各対の前記給排気切換弁に燃焼空気供給手段及び排気ガス吸引手段を接続した構成とし、各対の蓄熱式バーナ装置を所定の切換時間毎に交互に切換え燃焼し、各対の一方の蓄熱式バーナ装置が、前記燃料供給手段から燃料が供給され、且つ前記燃焼空気供給手段から前記給排気切換弁及び前記給排気配管を介して燃焼空気が供給されることにより燃焼動作を行い、この一方の蓄熱式バーナ装置の燃焼動作により発生した排気ガスを加熱炉を介して他方の蓄熱式バーナ装置の前記蓄熱体に導入し、他方の蓄熱式バーナ装置が蓄熱動作を行うようにし、さらにこの他方の蓄熱式バーナ装置を通過した排気ガスを、前記給排気配管及び前記給排気切換弁を介して前記排気ガス吸引手段から外部に排出するようにした蓄熱式バーナ装置群の燃焼制御方法において、
所定の切換時間毎の切換え燃焼が不可能となった特定の対の蓄熱式バーナ装置に対して、一方の蓄熱式バーナ装置が連続して燃焼動作を行い、且つ他方の蓄熱式バーナ装置が連続して蓄熱動作を行うように燃焼制御を行うとともに、前記他方の蓄熱式バーナ装置と接続して前記給排気切換弁に向けて排気ガスが流れている前記給排気配管内部に、前記排気ガスと混入する冷却流体を供給することを特徴とする蓄熱式バーナ装置群の燃焼制御方法。
A pair of regenerative burner devices provided with a heat storage body, a pair of supply / exhaust pipes respectively connected to each regenerative burner device, and a plurality of sets of supply / exhaust switching valves connected to these supply / exhaust pipes are provided. Combustion air supply means and exhaust gas suction means are connected to the supply / exhaust switching valve, and the regenerative burner devices of each pair are alternately switched and burned every predetermined switching time, and one regenerative burner device of each pair is used. The combustion operation is performed by supplying fuel from the fuel supply means and supplying combustion air from the combustion air supply means through the supply / exhaust switching valve and the supply / exhaust pipe. Exhaust gas generated by the combustion operation of the device is introduced into the heat storage body of the other regenerative burner device through a heating furnace, and the other regenerative burner device performs a heat storage operation. The exhaust gas passing through the burner apparatus, the combustion control method for regenerative burner unit group which is adapted to discharge to the outside from the exhaust gas suction means via the supply and exhaust pipe and the supply and exhaust change-over valve,
For a specific pair of regenerative burner devices in which switching combustion at a predetermined switching time becomes impossible, one regenerative burner device continuously performs a burning operation, and the other regenerative burner device continuously performs a burning operation. While performing combustion control to perform a heat storage operation, the exhaust gas and the exhaust gas flow inside the supply / exhaust pipe in which the exhaust gas flows toward the supply / exhaust switching valve by being connected to the other regenerative burner device. A combustion control method for a regenerative burner device group, characterized by supplying a cooling fluid to be mixed.
蓄熱体を備えた少なくとも一対の蓄熱式バーナ装置と、各蓄熱式バーナ装置に燃料を供給する燃料供給手段と、各蓄熱式バーナ装置にそれぞれ接続する一対の給排気配管と、これら給排気配管と接続し、且つ燃焼空気供給手段及び排気ガス吸引手段と接続する給排気切換弁と、所定の切換時間毎に前記一対の蓄熱式バーナ装置を交互に切換え燃焼させる燃焼制御手段とを備え、前記一対の蓄熱式バーナ装置の切換え燃焼を、一方の蓄熱式バーナ装置が、前記燃料供給手段から燃料が供給され、且つ前記燃焼空気供給手段から前記給排気切換弁及び前記給排気配管を介して燃焼空気が供給されることにより燃焼動作を行い、この一方の蓄熱式バーナ装置の燃焼動作により発生した排気ガスを加熱炉を介して他方の蓄熱式バーナ装置の前記蓄熱体に導入し、他方の蓄熱式バーナ装置が蓄熱動作を行うようにし、さらにこの他方の蓄熱式バーナ装置を通過した排気ガスを、前記給排気配管及び前記給排気切換弁を介して前記排気ガス吸引手段から外部に排出するようにした蓄熱式バーナ装置の燃焼制御装置において、
前記一対の給排気配管に、これら配管内部に冷却流体を供給することが可能な冷却流体供給手段を接続し、
前記燃焼制御手段は、前記一対の蓄熱式バーナ装置の切換え燃焼が不可能となった時点で、一方の蓄熱式バーナ装置が連続して燃焼動作を行い、且つ他方の蓄熱式バーナ装置が連続して蓄熱動作を行うように制御を行うとともに、前記他方の蓄熱式バーナ装置と接続して前記給排気切換弁に向けて排気ガスが流れている前記給排気配管内部への前記冷却流体の供給が開始するように前記冷却流体供給手段の制御を行うことを特徴とする蓄熱式バーナ装置の燃焼制御装置。
At least a pair of regenerative burner devices provided with a heat storage body, fuel supply means for supplying fuel to each regenerative burner device, a pair of supply / exhaust pipes respectively connected to each regenerative burner device, A supply / exhaust switching valve connected to and connected to combustion air supply means and exhaust gas suction means; and combustion control means for alternately switching and burning the pair of regenerative burners at predetermined switching times. The combustion of the regenerative burner device is performed by switching the combustion of one of the regenerative burner devices through the supply of fuel from the fuel supply means and the combustion air from the combustion air supply means via the supply / exhaust switching valve and the supply / exhaust pipe. Is supplied, a combustion operation is performed, and the exhaust gas generated by the combustion operation of one regenerative burner device is passed through a heating furnace to the heat storage element of the other regenerative burner device. And the other regenerative burner device performs a heat storage operation. Further, the exhaust gas passing through the other regenerative burner device is supplied to the exhaust gas suction means via the supply / exhaust pipe and the supply / exhaust switching valve. In the combustion control device of the regenerative burner device to be discharged from the outside,
The pair of supply / exhaust pipes is connected to a cooling fluid supply unit capable of supplying a cooling fluid inside these pipes,
The combustion control means is configured such that when the switching combustion of the pair of regenerative burner devices becomes impossible, one of the regenerative burner devices continuously performs the combustion operation, and the other regenerative burner device continuously performs the combustion operation. Supply of the cooling fluid to the inside of the supply / exhaust pipe through which exhaust gas flows toward the supply / exhaust switching valve by being connected to the other regenerative burner device. The combustion control device for a regenerative burner device, wherein the control unit controls the cooling fluid supply unit to start.
前記一対の給排気配管に、これら配管内部を通過する流体の温度を検出する温度検出手段を配設し、
前記燃焼制御手段は、蓄熱動作を行っている他方の蓄熱式バーナ装置側の給排気配管内部の排気ガス温度を前記温度検出手段により検出し、前記排気ガス温度の検出値が前記給排気切換弁及び前記給排気配管の耐熱温度を下回るように、前記冷却流体の供給流量を増大させる制御を前記冷却流体供給手段に対して行うことを特徴とする請求項2記載の蓄熱式バーナ装置の燃焼制御装置。
In the pair of supply and exhaust pipes, a temperature detecting means for detecting a temperature of a fluid passing through these pipes is provided,
The combustion control means detects the exhaust gas temperature inside the supply / exhaust pipe on the other regenerative burner device side performing the heat storage operation by the temperature detection means, and the detected value of the exhaust gas temperature is used as the supply / exhaust switching valve. 3. The combustion control of the regenerative burner device according to claim 2, wherein control for increasing the supply flow rate of the cooling fluid is performed on the cooling fluid supply means so as to be lower than a heat-resistant temperature of the supply / exhaust pipe. apparatus.
前記冷却流体供給手段を、前記一対の給排気配管に供給配管を介して接続する流量調節弁により構成するとともに、この流量調節弁の入力ポートを大気に開放した構造とし、蓄熱動作を行う他方の蓄熱式バーナ装置側の給排気配管内部が前記給排気切換弁に向けて流れる排気ガスにより負圧状態となっていることを利用して冷却空気を前記給排気配管内部に自然吸引することを特徴とする請求項2又は3記載の蓄熱式バーナ装置の燃焼制御装置。The cooling fluid supply means is constituted by a flow control valve connected to the pair of supply / exhaust pipes via a supply pipe, and the input port of the flow control valve is configured to be open to the atmosphere to perform the heat storage operation. Cooling air is naturally sucked into the supply / exhaust pipe by utilizing the fact that the inside of the supply / exhaust pipe on the side of the regenerative burner device is in a negative pressure state due to the exhaust gas flowing toward the supply / exhaust switching valve. The combustion control device for a regenerative burner device according to claim 2 or 3.
JP1619796A 1996-01-31 1996-01-31 Combustion control method for regenerative burner device group and combustion control device for regenerative burner device Expired - Fee Related JP3594720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1619796A JP3594720B2 (en) 1996-01-31 1996-01-31 Combustion control method for regenerative burner device group and combustion control device for regenerative burner device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1619796A JP3594720B2 (en) 1996-01-31 1996-01-31 Combustion control method for regenerative burner device group and combustion control device for regenerative burner device

Publications (2)

Publication Number Publication Date
JPH09210345A JPH09210345A (en) 1997-08-12
JP3594720B2 true JP3594720B2 (en) 2004-12-02

Family

ID=11909794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1619796A Expired - Fee Related JP3594720B2 (en) 1996-01-31 1996-01-31 Combustion control method for regenerative burner device group and combustion control device for regenerative burner device

Country Status (1)

Country Link
JP (1) JP3594720B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4801185B2 (en) * 2009-04-21 2011-10-26 中外炉工業株式会社 Thermal storage combustion device
JP5849615B2 (en) * 2011-10-31 2016-01-27 Jfeスチール株式会社 Radiant tube furnace control method and control apparatus
JP7311482B2 (en) * 2020-12-11 2023-07-19 中外炉工業株式会社 Regenerative burner, replacement unit for regenerative burner, and replacement method for replacement unit for regenerative burner

Also Published As

Publication number Publication date
JPH09210345A (en) 1997-08-12

Similar Documents

Publication Publication Date Title
JP3931619B2 (en) Combustion device control method
JP3594720B2 (en) Combustion control method for regenerative burner device group and combustion control device for regenerative burner device
JP4801185B2 (en) Thermal storage combustion device
JP4757596B2 (en) Thermal storage burner device and its operation method
JP4059100B2 (en) Boiler monitoring method and apparatus
KR100715418B1 (en) Bfg pre-heating apparatus having non-routine heat exchange detection apparatus
JP2936449B2 (en) Furnace operation method of heating furnace provided with regenerative alternating combustion burner system
JPH11337052A (en) Temperature control method for furnace with heat storage burner
JP4191359B2 (en) Boiler with continuous combustion
JP3674969B2 (en) Heating chamber pressure control device for heating device
KR930001172B1 (en) Combustion control device for hot water supplier
JP3425705B2 (en) Method of controlling regenerative burner group
KR100347574B1 (en) Equipment for preventing thermal damage of valves in regenerative combustion system
JP2022091171A (en) Boiler device
JP3869653B2 (en) Abnormality detection method and apparatus for gas switching valve of regenerative burner
JP3677797B2 (en) Heating chamber pressure control device for heating device
TW201833505A (en) Regenerative burner system
JP3048874B2 (en) Combustion switching method for regenerative burner units
KR0157169B1 (en) Valve control method
JPH1026339A (en) Thermal storage type combustion burner and its controlling method
JPH1061941A (en) Device and method for alternate combustion control of heat storage type burner
JPH10185180A (en) Temperature control method for regenerative burner combustion system
JPH09101022A (en) Operating method of heat storage type burner furnace
JP3079628B2 (en) Combustion appliance safety device
JP3491443B2 (en) Pilot burner ignition method for non-oxidizing heating device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040817

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110910

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120910

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees