JP3593785B2 - Four-wheel drive vehicles - Google Patents

Four-wheel drive vehicles Download PDF

Info

Publication number
JP3593785B2
JP3593785B2 JP08635296A JP8635296A JP3593785B2 JP 3593785 B2 JP3593785 B2 JP 3593785B2 JP 08635296 A JP08635296 A JP 08635296A JP 8635296 A JP8635296 A JP 8635296A JP 3593785 B2 JP3593785 B2 JP 3593785B2
Authority
JP
Japan
Prior art keywords
motor
pump
hydraulic
discharge amount
specific discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08635296A
Other languages
Japanese (ja)
Other versions
JPH09272355A (en
Inventor
純 渡辺
頼人 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP08635296A priority Critical patent/JP3593785B2/en
Publication of JPH09272355A publication Critical patent/JPH09272355A/en
Application granted granted Critical
Publication of JP3593785B2 publication Critical patent/JP3593785B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Motor Power Transmission Devices (AREA)
  • Arrangement And Driving Of Transmission Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、油圧式四輪駆動車に関する。
【0002】
【従来の技術】
従来、パートタイム式のように手動で二輪駆動と四輪駆動の機械的な連結を切替える四輪駆動車の場合、その切替え操作が面倒である他、タイトコーナーブレーキング現象などの不具合を生じ乗用車には不向きである。これに対しセンタデフを用いたフルタイム式四輪駆動車はタイトコーナーブレーキング現象は解消できるが、センタデフに差動制限装置が必要になり装置が複雑になる。又、パートタイム、フルタイムに関わらず現在の乗用車に用いられている駆動方式ではプロペラシャフトを有し、これが前輪駆動車に対する重量の増加、車室内スペースへの悪影響、燃費の悪化、音振の悪化をもたらす。又後輪駆動車の場合も重量増、燃費の悪化を免れない。
【0003】
そこで、例えば特開平3−224830号公報のように、プロペラシャフトを有してはいるが、後輪への伝達トルクをトルク制御手段によりその上限を規定することで後輪側の構成部材の重量軽減を図っている。
【0004】
また、前記のような種々の弊害の一掃を狙い、プロペラシャフトによる主駆動軸から従動軸への駆動力伝達の代わりに、油圧ポンプ/モータを用いて駆動力の伝達を行なうものが考えられている。例えば特開平1−223030号公報は低μ路などで前輪がスリップしたときのみ後輪に駆動力が伝達されるもので、後輪への駆動力の伝達は油圧配管を通して行ない、重量、車室内スペースの問題の解消を図っている。
【0005】
しかし、プロペラシャフトを有したままでは、重量の軽減にも限界が有り、また車室内スペースへの悪影響は改善されない。また、上記のような従来の油圧式四輪駆動車にあっては、前進時と後進時の車軸の回転方向の違いによる油の流れ方向の逆転に対応するため、構成として油路は全て高価な高圧配管とならざるを得ず、また同様に種々の弁手段も両方向に対応するように設けざるを得ないため構成が複雑になるという問題点が有る。
【0006】
そこで本出願人は、特願平6−049146号公報及び図4に示す特願平6−262639号公報のような簡単な構成にて前後進に対応でき、必要時に従動軸側へ必要なだけの駆動力の伝達を行う油圧式四輪駆動車を提案している。これはまた、異径タイヤ等による走行時の前後輪の回転数差で発生する引きずりによる燃費悪化を防止するため、図5に示すごとく、直進時通常走行時の吐出流量の関係をポンプ吐出量<モータ最大吸入流量(最大傾転時の流量)とし、小さい回転数差における不要な圧力の発生を防止する、いわゆる不感帯を設けている。
【0007】
【発明が解決しようとする課題】
しかしながら、従来の構成にあっては、斜板の傾転方向を片方向としているため前進/後進に係わりなく斜板の最大傾転位置(=最大固有吐出量)が同一となり、その走行頻度から考えて燃費に影響を与える心配のない後進時まで不感帯が設定されてしまう。積雪後の駐車場からの脱出時(概して段差脱出となり易い)などは、一般に変速ギア比が一番大きく設定されていて大きな駆動力の得られる後進側で行なうことが日常有効な手段として用いられているが、前述のように後進側も不感帯が設定されていると前輪がある程度空転後にはじめて駆動力が後輪に伝達されることになるため、発進初期からその大きな駆動力を四輪で有効に路面に作用させることができないという問題点があった。
【0008】
また、ギア比の変更、片傾転モータの最大傾転位置変更ないしはポンプの固有吐出量変更を行なうことで前進/後進時の流量関係を変更することは可能であるが、この場合は装置も複雑になり大型化、コスト増が避けられず、非現実的である。
【0009】
本発明は、このような問題点に着目してなされたもので、前進時は不感帯を設けて異径タイヤによる燃費悪化を防止し、後進時は不感帯を無くし積雪段差脱出時等は初期から四輪で駆動力を有効に路面に伝えることができ、装置の大型/複雑化、コスト増を伴うことなくモータ最大固有吐出量つまり不感帯の設定が前後別に可能である流体圧式四輪駆動車を提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明は、上述の課題を解決するために、請求項1は、主原動機により駆動される第一車軸と、第一車軸と同期的にギアを介して駆動されるポンプと、第二の車軸とギアを介して連結されると共に、ポンプからの流体圧力に応じて駆動される可変容量型のモータと、互いの吐出口と吸込口とを連通する油路とを有する流体圧式四輪駆動車において、車両前進時は、ポンプ固有吐出量×ポンプ駆動ギア比<モータ最大固有吐出量×モータ駆動ギア比、車両後進時は、ポンプ固有吐出量×ポンプ駆動ギア比≧モータ最大固有吐出量×モータ駆動ギア比と設定する。
【0011】
また、請求項2に係る流体圧式四輪駆動車は、モータが、両傾転の可変容量モータで構成され、最大傾転位置を前/後進の各側で別個に調整することによりモータ固有吐出量を変更する。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。
【0013】
図1は、本発明の一実施例を示す図であり、前輪駆動車をベースにした四輪駆動車の場合を示す。
【0014】
まず構成を説明すると、図1に示すように、エンジン1の出力は変速機2を介して差動装置3に入力された後、前車軸4に伝えられ前輪5を駆動する。そして流体圧供給手段である油圧ポンプ12は前輪側差動装置3のリングギア28よりギア9を介して増速されて駆動される。
【0015】
一方後輪側も差動装置6を有し、それに後車軸7、後輪8が連結されている。油圧モータ13は差動装置6のリングギア30及びギア10を介して後車軸7により増速されて駆動される。
【0016】
油圧ポンプ12は吸入制限型ピストンポンプであり、流量はある回転数より飽和し、その後減少する特性を持つ。
【0017】
油圧ポンプ12の吐出口は油路14により油圧モータ13の吸入口へと導かれ、油圧ポンプ12の吸入口は油路15により油圧モータ13の吐出口と連通されている。ここで油圧ポンプ12は吸入絞り型ピストンポンプで有ることから回転方向が逆転してもその吐出方向は変わらない。従って、前進時と後進時で高圧ラインと低圧ラインが入れ替わらないため、油路14における配管部は高圧配管で構成し、油路15は低圧配管で構成することが可能となる。
【0018】
油圧モータ13の容量制御手段23の構成をさらに図2を用いて説明する。図2に示すように、両傾転の可変容量モータである本油圧モータ13は容量制御手段23内の斜板27の最大傾転位置規制手段24により最大固有吐出量が決められ、前進側/後進側で別々に設定可能である。そこで、これら油圧ポンプ12と油圧モータ13がギア9,10で増速されて吐出あるいは吸入する流量は前進側は同じ車輪速に対しては後輪側の油圧モータ13の方が前輪側の油圧ポンプ12より大きくなるように油圧モータ13の最大固有吐出量、ギア比が設定され、後進側については同流量あるいは油圧ポンプ12の吐出流量の方が大きくなるように設定されている。
【0019】
油圧モータ13は本出願人が先に提案した特願平6−262639号公報に記載されたものと同様な機能を持つ構成である。つまり、回転数差の生じない通常走行時は、油圧ポンプ12からの供給流量と油圧モータ13の回転数に応じ斜板27の角度を付勢バネ25に抗して自動的に調整し、ある回転数差(不感帯)以上の回転数差が生じた場合は斜板27が最大傾転位置規制手段24に当接し油路14に高い圧力(=駆動力)を発生する。
【0020】
前後進の切り換えは、高圧油路14と連通した高圧側圧力導入油路17からの圧力を油圧モータ13の容量制御手段23内の容量制御ピストン26に作用させる時の油路を前後進切換弁22で選択することにより行なう。
【0021】
また、油路14と油路15を連通する連通油路16,18を有し、連通油路16には油圧の上限(=後輪に伝達される駆動力の上限)を定めるリリーフ弁19が介設され、連通油路18には駆動力の立ち上がりの勾配を調整する手段としてオリフィス21が介設されている。
【0022】
油路15の油圧ポンプ12の吸入口の近いところにはリザーバタンク11からの油路33が導かれている。
【0023】
次に作用を説明する。
【0024】
まず、駆動力の伝達を必要としない、前車軸4と後車軸7との間に回転数差が生じない通常の走行時には、前車軸4、後車軸7の回転に連通し、ギア9,10により増速されて油圧ポンプ12、油圧モータ13は駆動されるが、油圧モータ13の最大吸入流量(最大傾転時の吸入流量)が油圧ポンプ12の吐出量を上回るため、高圧配管14の圧力は付勢バネ25に抗し斜板27が傾転するために発生する分のみであり、ほとんど発生しておらず後輪へ駆動力は伝達されない。前述のごとく、油圧ポンプ12からの供給流量と回転数に応じた斜板角を自動的に調整し維持する。
【0025】
次に低μ路での発進時など前輪5がスリップし前車軸4と後車軸7との間に回転数差が生じた場合の前進時の場合の作用を図3により説明する。前述のように前進側は不感帯が設けられているため、前輪5がスリップし前車軸4と後車軸7との回転数差がある程度(不感帯)以上に生じてから油圧ポンプ12からの吐出量が油圧モータ13の斜板27が最大傾転位置規制手段24に当接するまで傾いた場合の最大吸入量を上回り、その抵抗が負荷となり油圧14での圧力を上昇させる。そのとき油圧モータ13は圧力に応じたトルクを発生し、それは差動装置6を介して後輪8に伝達される。
【0026】
このとき、連通油路16内のリリーフ弁19により発生圧力(駆動力)の上限が規制され駆動力の立ち上がり勾配は連通油路18内のオリフィス21からのリーク量により調整される。
【0027】
後進時の場合は不感帯が設けられていないか、あるいは常時油圧ポンプ12の吐出流量が油圧モータ13の最大吸入流量を上回る設定となっているため、回転数差発生初期より(あるいは発生と同時に)後輪へ駆動力が伝達される。従って、積雪段差脱出時などは前輪空転を抑制し後進時の駆動力を有効に四輪で用いることができ、脱出性能を従来例に比べ向上させることが可能となる。
【0028】
本実施の形態のごとく油圧モータ13が両傾転の可変容量モータであることにより、本効果は何ら装置の複雑化、大型化、コスト増を伴うことなく得ることができる。
【0029】
【発明の効果】
以上説明してきたように、第一の発明によれば、その構成を、主原動機により駆動される第一車軸と、第一車軸と同期的にギアを介して駆動されるポンプと、第二の車軸とギアを介して連結されると共に、ポンプからの流体圧力に応じて駆動される可変容量型のモータと、互いの吐出口と吸込口とを連通する油路とを有し、車両前進時は、ポンプ固有吐出量×ポンプ駆動ギア比<モータ最大固有吐出量×モータ駆動ギア比、車両後進時は、ポンプ固有吐出量×ポンプ駆動ギア比≧モータ最大固有吐出量×モータ駆動ギア比と設定することにより、前進時は不感帯を設けて異径タイヤによる燃費悪化を防止し、後進時は不感帯を無くし積雪段差脱出時等は初期から四輪で駆動力を有効に路面に伝えることができる流体圧式四輪駆動車が得られる。
【0030】
また、第二の発明によれば、油圧モータが、両傾転の可変容量モータで構成されるため、最大傾転位置を前/後進の各側で別個に調整することができ、装置の大型/複雑化、コスト増を伴うことなくモータ最大固有吐出量つまり不感帯の設定が前後別個に可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態における油圧システムの回路概略図である。
【図2】本発明の実施の形態における油圧モータの概要図である。
【図3】本発明の実施の形態における回転数差と後輪発生駆動力の関係を示す図である。
【図4】従来例における油圧モータの概要図である。
【図5】従来例における回転数差と後輪発生駆動力の関係を示す図である。
【符号の説明】
1 主原動機
2 変速機
3 前輪側差動装置
4 前車軸
5 前車輪
6 後輪側差動装置
7 後車軸
8 後車輪
9,10 ギア
11 リザーバタンク
12 駆動側油圧ポンプ
13 従動側油圧モータ
14 高圧側油路
15 低圧側油路
16,18 連通油路
17 高圧側圧力導入油路
19 リリーフ弁
20 低圧側圧力導入油路
21 オリフィス
22 前後進切換弁
23 容量制御手段
24a 前進側斜板最大位置規制手段
24b 後進側斜板最大位置規制手段
25 付勢バネ
26 容量制御用ピストン
27 油圧モータ斜板
28 前輪側差動装置リングギア
30 後輪側差動装置リングギア
33 タンク油路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a hydraulic four-wheel drive vehicle.
[0002]
[Prior art]
Conventionally, in the case of a four-wheel drive vehicle that manually switches the mechanical connection between two-wheel drive and four-wheel drive, such as a part-time system, the switching operation is troublesome, and passenger cars suffer from problems such as tight corner braking phenomenon Not suitable for On the other hand, a full-time four-wheel drive vehicle using a center differential can eliminate the tight corner braking phenomenon, but requires a differential limiting device in the center differential, which complicates the device. The drive system used in current passenger cars, whether part-time or full-time, has a propeller shaft, which increases the weight of the front-wheel drive vehicle, adversely affects the cabin space, deteriorates fuel efficiency, and reduces noise and vibration. Brings worse. Also, in the case of a rear-wheel drive vehicle, an increase in weight and deterioration in fuel efficiency are unavoidable.
[0003]
Thus, for example, as disclosed in JP-A-3-224830, although the propeller shaft is provided, the torque transmitted to the rear wheels is regulated by a torque control means to define the upper limit thereof, so that the weight of the rear-wheel-side components can be reduced. We are trying to reduce it.
[0004]
Further, in order to eliminate the various adverse effects as described above, instead of transmitting the driving force from the main driving shaft to the driven shaft by the propeller shaft, a driving force is transmitted by using a hydraulic pump / motor. I have. For example, in Japanese Patent Application Laid-Open No. 1-223030, the driving force is transmitted to the rear wheel only when the front wheel slips on a low μ road or the like. We are working to eliminate space issues.
[0005]
However, with the propeller shaft, there is a limit in reducing the weight, and the adverse effect on the vehicle interior space is not improved. Also, in the conventional hydraulic four-wheel drive vehicle as described above, in order to cope with the reversal of the oil flow direction due to the difference in the rotation direction of the axle between forward and reverse, all the oil paths are expensive as a configuration. Therefore, there is a problem that the structure becomes complicated because various high pressure pipes have to be provided so as to correspond to both directions.
[0006]
Therefore, the present applicant can cope with forward / reverse movement with a simple configuration as disclosed in Japanese Patent Application No. 6-49146 and Japanese Patent Application No. 6-262639 shown in FIG. Has proposed a hydraulic four-wheel drive vehicle that transmits the driving force. In addition, as shown in FIG. 5, the relationship between the discharge flow rate during straight running and the normal flow rate is determined by the pump discharge rate, as shown in FIG. <Motor maximum suction flow rate (flow rate at maximum tilt) is provided, and a so-called dead zone is provided to prevent generation of unnecessary pressure at a small difference in rotation speed.
[0007]
[Problems to be solved by the invention]
However, in the conventional configuration, since the tilt direction of the swash plate is one-way, the maximum tilt position (= maximum specific discharge amount) of the swash plate becomes the same regardless of forward / reverse, and The dead zone is set until the vehicle reverses without worrying about affecting fuel efficiency. When the vehicle escapes from the parking lot after snow accumulation (in general, the vehicle easily escapes from a step), it is generally used as a daily effective means to perform the operation on the reverse side where a large gear ratio is set and a large driving force is obtained. However, as described above, if the dead side is also set on the reverse side, the driving force will be transmitted to the rear wheel only after the front wheels have slipped to some extent, so that the large driving force is effective for the four wheels from the beginning of starting There was a problem that it could not act on the road surface.
[0008]
Further, it is possible to change the flow rate relationship during forward / reverse movement by changing the gear ratio, changing the maximum tilt position of the single tilt motor, or changing the specific discharge amount of the pump. It becomes complicated and inevitably increases in size and cost, making it impractical.
[0009]
The present invention has been made in view of such a problem, and a dead zone is provided at the time of forward movement to prevent deterioration of fuel efficiency due to tires having different diameters. Provided is a hydraulic four-wheel drive vehicle that can effectively transmit the driving force to the road surface with wheels and can set the maximum specific discharge rate of the motor, that is, the dead zone separately for front and rear, without increasing the size and complexity of the device and increasing the cost. It is intended to be.
[0010]
[Means for Solving the Problems]
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention has a first axle driven by a main motor, a pump driven through gears in synchronization with the first axle, and a second axle. Fluid-type four-wheel drive vehicle having a variable displacement motor connected to the gears via a gear and driven according to the fluid pressure from the pump, and an oil passage communicating the discharge port and the suction port of each other. When the vehicle moves forward, the pump specific discharge amount × the pump drive gear ratio <the maximum motor specific discharge amount × the motor drive gear ratio, and when the vehicle moves backward, the pump specific discharge amount × the pump drive gear ratio ≧ the motor maximum specific discharge amount × motor. Set the drive gear ratio.
[0011]
Further, in the hydraulic four-wheel drive vehicle according to the second aspect, the motor is constituted by a double displacement variable displacement motor, and the maximum displacement position is separately adjusted on each side of the forward / reverse drive so that the motor-specific discharge is achieved. Change the amount.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0013]
FIG. 1 is a view showing an embodiment of the present invention, and shows a case of a four-wheel drive vehicle based on a front wheel drive vehicle.
[0014]
First, the configuration will be described. As shown in FIG. 1, the output of the engine 1 is input to a differential 3 via a transmission 2 and then transmitted to a front axle 4 to drive a front wheel 5. The hydraulic pump 12, which is a fluid pressure supply unit, is driven at an increased speed via the gear 9 from the ring gear 28 of the front wheel differential device 3.
[0015]
On the other hand, the rear wheel also has a differential device 6, to which a rear axle 7 and a rear wheel 8 are connected. The hydraulic motor 13 is driven at an increased speed by the rear axle 7 via the ring gear 30 and the gear 10 of the differential device 6.
[0016]
The hydraulic pump 12 is a suction-restricted type piston pump, and has a characteristic that the flow rate is saturated at a certain number of revolutions and then decreases.
[0017]
The discharge port of the hydraulic pump 12 is guided to the suction port of the hydraulic motor 13 by an oil path 14, and the suction port of the hydraulic pump 12 is connected to the discharge port of the hydraulic motor 13 by an oil path 15. Here, since the hydraulic pump 12 is a suction throttle type piston pump, its discharge direction does not change even if the rotation direction is reversed. Therefore, the high-pressure line and the low-pressure line are not switched between forward and reverse, so that the piping in the oil passage 14 can be constituted by high-pressure piping, and the oil passage 15 can be constituted by low-pressure piping.
[0018]
The configuration of the capacity control means 23 of the hydraulic motor 13 will be further described with reference to FIG. As shown in FIG. 2, the maximum displacement of the hydraulic motor 13, which is a variable displacement motor with double tilt, is determined by the maximum tilt position restricting means 24 of the swash plate 27 in the displacement control means 23. It can be set separately on the reverse side. Therefore, the hydraulic pump 13 and the hydraulic motor 13 are increased in speed by the gears 9 and 10, and the flow rate of discharge or suction is higher for the forward wheel than for the front wheel for the same wheel speed. The maximum specific discharge amount and the gear ratio of the hydraulic motor 13 are set so as to be larger than the pump 12, and the same flow rate or the discharge flow rate of the hydraulic pump 12 is set to be larger on the reverse side.
[0019]
The hydraulic motor 13 has a function similar to that described in Japanese Patent Application No. 6-262639 previously proposed by the present applicant. That is, during normal traveling with no rotation speed difference, the angle of the swash plate 27 is automatically adjusted against the urging spring 25 according to the supply flow rate from the hydraulic pump 12 and the rotation speed of the hydraulic motor 13. When a rotational speed difference equal to or greater than the rotational speed difference (dead zone) occurs, the swash plate 27 abuts the maximum tilt position regulating means 24 and generates a high pressure (= driving force) in the oil passage 14.
[0020]
The forward / backward switching is performed by switching the oil passage when the pressure from the high pressure side pressure introducing oil passage 17 communicating with the high pressure oil passage 14 is applied to the displacement control piston 26 in the displacement control means 23 of the hydraulic motor 13. The selection is made at step 22.
[0021]
The oil passages 14 and 15 have communication oil passages 16 and 18 that communicate with each other. The communication oil passage 16 includes a relief valve 19 that determines the upper limit of the hydraulic pressure (= the upper limit of the driving force transmitted to the rear wheels). An orifice 21 is provided in the communication oil passage 18 as a means for adjusting the gradient of the rise of the driving force.
[0022]
An oil passage 33 from the reservoir tank 11 is guided near the suction port of the hydraulic pump 12 in the oil passage 15.
[0023]
Next, the operation will be described.
[0024]
First, during normal traveling, in which no transmission of driving force is required and there is no difference in rotational speed between the front axle 4 and the rear axle 7, the gears 9 and 10 communicate with the rotation of the front axle 4 and the rear axle 7. , The hydraulic pump 12 and the hydraulic motor 13 are driven. However, since the maximum suction flow rate (the suction flow rate at the time of maximum tilt) of the hydraulic motor 13 exceeds the discharge rate of the hydraulic pump 12, the pressure of the high-pressure pipe 14 is increased. Is generated only because the swash plate 27 tilts against the urging spring 25, and hardly occurs, and the driving force is not transmitted to the rear wheels. As described above, the swash plate angle according to the supply flow rate from the hydraulic pump 12 and the rotation speed is automatically adjusted and maintained.
[0025]
Next, a description will be given, with reference to FIG. 3, of an operation at the time of forward traveling when the front wheel 5 slips and a rotational speed difference occurs between the front axle 4 and the rear axle 7, such as when starting on a low μ road. As described above, since the dead zone is provided on the forward side, the amount of discharge from the hydraulic pump 12 is reduced after the front wheel 5 slips and the rotational speed difference between the front axle 4 and the rear axle 7 occurs to some extent (dead zone). The swash plate 27 of the hydraulic motor 13 exceeds the maximum suction amount when the swash plate 27 is tilted until the swash plate 27 comes into contact with the maximum tilt position restricting means 24, and the resistance becomes a load to increase the pressure at the hydraulic pressure 14. At that time, the hydraulic motor 13 generates a torque corresponding to the pressure, which is transmitted to the rear wheel 8 via the differential device 6.
[0026]
At this time, the upper limit of the generated pressure (driving force) is regulated by the relief valve 19 in the communication oil passage 16, and the rising gradient of the driving force is adjusted by the amount of leakage from the orifice 21 in the communication oil passage 18.
[0027]
In the case of reverse travel, there is no dead zone, or the discharge flow rate of the hydraulic pump 12 is always set to exceed the maximum suction flow rate of the hydraulic motor 13, so that the rotational speed difference is generated from the initial stage (or simultaneously). Driving force is transmitted to the rear wheels. Therefore, when the vehicle escapes from a snowy step, the front wheels can be prevented from spinning, and the driving force during reverse travel can be effectively used by the four wheels, so that the escape performance can be improved as compared with the conventional example.
[0028]
Since the hydraulic motor 13 is a double displacement variable displacement motor as in the present embodiment, this effect can be obtained without complicating the device, increasing the size, and increasing the cost.
[0029]
【The invention's effect】
As described above, according to the first aspect, the configuration is such that the first axle driven by the main prime mover, the pump driven through gears in synchronization with the first axle, It has a variable displacement motor that is connected to the axle via gears and that is driven according to the fluid pressure from the pump, and an oil passage that communicates the discharge port and the suction port with each other. Is set as pump specific discharge amount × pump drive gear ratio <motor maximum specific discharge amount × motor drive gear ratio. When the vehicle is moving backward, pump specific discharge amount × pump drive gear ratio ≧ motor maximum specific discharge amount × motor drive gear ratio. By doing so, a dead zone is provided to prevent fuel efficiency deterioration due to different diameter tires when moving forward, a dead zone is eliminated when moving backward, and four wheels can effectively transmit driving force to the road surface from the beginning when exiting a snowy step A pressure type four-wheel drive vehicle is obtained.
[0030]
Further, according to the second invention, since the hydraulic motor is constituted by a double displacement variable displacement motor, the maximum displacement position can be separately adjusted on each side of the forward / reverse travel, and the device is large-sized. / The motor maximum specific discharge amount, that is, the dead zone can be set separately before and after without increasing complexity and cost.
[Brief description of the drawings]
FIG. 1 is a schematic circuit diagram of a hydraulic system according to an embodiment of the present invention.
FIG. 2 is a schematic diagram of a hydraulic motor according to an embodiment of the present invention.
FIG. 3 is a diagram illustrating a relationship between a rotational speed difference and a rear wheel generating driving force according to the embodiment of the present invention.
FIG. 4 is a schematic diagram of a hydraulic motor in a conventional example.
FIG. 5 is a diagram showing a relationship between a rotational speed difference and a rear wheel generating driving force in a conventional example.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 Main motor 2 Transmission 3 Front wheel differential 4 Front axle 5 Front wheel 6 Rear wheel differential 7 Rear axle 8 Rear wheel 9,10 Gear 11 Reservoir tank 12 Drive hydraulic pump 13 Drive hydraulic motor 14 High pressure Side oil passage 15 Low pressure side oil passages 16 and 18 Communication oil passage 17 High pressure side pressure introduction oil passage 19 Relief valve 20 Low pressure side pressure introduction oil passage 21 Orifice 22 Forward / reverse switching valve 23 Capacity control means 24a Forward side swash plate maximum position regulation Means 24b Reverse side swash plate maximum position regulating means 25 Bias spring 26 Capacity control piston 27 Hydraulic motor swash plate 28 Front wheel side differential ring gear 30 Rear wheel side differential ring gear 33 Tank oil passage

Claims (2)

主原動機により駆動される第一車軸と、第一車軸と同期的にギアを介して駆動されるポンプと、第二の車軸とギアを介して連結されると共に、前記ポンプからの流体圧力に応じて駆動される可変容量型のモータと、互いの吐出口と吸込口とを連通する油路とを有する流体圧式四輪駆動車において、
車両前進時は、
ポンプ固有吐出量×ポンプ駆動ギア比<モータ最大固有吐出量×モータ駆動ギア比
車両後進時は、
ポンプ固有吐出量×ポンプ駆動ギア比≧モータ最大固有吐出量×モータ駆動ギア比
と設定されることを特徴とする油圧式四輪駆動車。
A first axle driven by a main motor, a pump driven through gears in synchronization with the first axle, and a second axle connected through gears and responsive to fluid pressure from the pump. In a fluid type four-wheel drive vehicle having a variable displacement type motor driven and a hydraulic passage communicating the discharge port and the suction port of each other,
When the vehicle is moving forward,
Pump specific discharge amount x pump drive gear ratio <motor maximum specific discharge amount x motor drive gear ratio
A hydraulic four-wheel drive vehicle, wherein: pump specific discharge amount × pump drive gear ratio ≧ motor maximum specific discharge amount × motor drive gear ratio.
前記モータが、両傾転の可変容量モータで構成され、最大傾転位置を前/後進の各側で別個に調整することによりモータ固有吐出量を変更することを特徴とする請求項1に記載の流体圧式四輪駆動車。2. The motor according to claim 1, wherein the motor is a double displacement variable displacement motor, and the motor-specific discharge amount is changed by separately adjusting a maximum displacement position on each side of forward / reverse travel. Hydraulic four-wheel drive vehicle.
JP08635296A 1996-04-09 1996-04-09 Four-wheel drive vehicles Expired - Fee Related JP3593785B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08635296A JP3593785B2 (en) 1996-04-09 1996-04-09 Four-wheel drive vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08635296A JP3593785B2 (en) 1996-04-09 1996-04-09 Four-wheel drive vehicles

Publications (2)

Publication Number Publication Date
JPH09272355A JPH09272355A (en) 1997-10-21
JP3593785B2 true JP3593785B2 (en) 2004-11-24

Family

ID=13884498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08635296A Expired - Fee Related JP3593785B2 (en) 1996-04-09 1996-04-09 Four-wheel drive vehicles

Country Status (1)

Country Link
JP (1) JP3593785B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019048346A (en) * 2017-09-08 2019-03-28 トヨタ自動車株式会社 Clamp device

Also Published As

Publication number Publication date
JPH09272355A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
JP3129793B2 (en) Vehicle drive
JP4327284B2 (en) Four-wheel drive vehicle
GB2265124A (en) Four-wheel-drive vehicle.
JP3593785B2 (en) Four-wheel drive vehicles
WO1998004428A1 (en) Travelling equipment for hydraulic four-wheel drive vehicle
JP3817769B2 (en) Vehicle wheel driving force distribution control device
JP2555489B2 (en) Power transmission device for four-wheel drive vehicle
JP3795812B2 (en) Drive assembly for a four-wheel drive vehicle
JPS63258223A (en) Four-wheel driving system
JP3196484B2 (en) Four-wheel drive vehicles
JP3196485B2 (en) Four-wheel drive vehicles
JP3942658B2 (en) Hydraulic drive
JPH09175204A (en) Hydraulic transmission for vehicle
JP3237379B2 (en) Four-wheel drive vehicles
JP3198794B2 (en) Four-wheel drive vehicles
JPH1134676A (en) Apparatus for driving working vehicle
JP2544295B2 (en) 4-wheel drive vehicle
JPH05246259A (en) Four wheel drive vehicle
JPH0971142A (en) Power transmission device for four-wheel drive vehicle
JPH0820253A (en) Four-wheel drive vehicle
JPH0820252A (en) Four-wheel drive vehicle
JP3376761B2 (en) Fluid pressure drive for vehicles
JP3904630B2 (en) Four-wheel drive vehicle
JPH05169996A (en) Four-wheel drive vehicle
JPH0899552A (en) Four wheel drive

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040810

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees