JP3591829B2 - Ceramic-metal composite members - Google Patents

Ceramic-metal composite members Download PDF

Info

Publication number
JP3591829B2
JP3591829B2 JP2001053281A JP2001053281A JP3591829B2 JP 3591829 B2 JP3591829 B2 JP 3591829B2 JP 2001053281 A JP2001053281 A JP 2001053281A JP 2001053281 A JP2001053281 A JP 2001053281A JP 3591829 B2 JP3591829 B2 JP 3591829B2
Authority
JP
Japan
Prior art keywords
ceramic
layer
thermal
metal composite
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001053281A
Other languages
Japanese (ja)
Other versions
JP2002256410A (en
Inventor
義弘 潮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001053281A priority Critical patent/JP3591829B2/en
Publication of JP2002256410A publication Critical patent/JP2002256410A/en
Application granted granted Critical
Publication of JP3591829B2 publication Critical patent/JP3591829B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5127Cu, e.g. Cu-CuO eutectic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5144Metallising, e.g. infiltration of sintered ceramic preforms with molten metal with a composition mainly composed of one or more of the metals of the iron group
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00482Coating or impregnation materials
    • C04B2111/00577Coating or impregnation materials applied by spraying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications

Description

【0001】
【発明の属する技術分野】
本発明は、対向する主面を有するセラミック基材の主面に金属の溶射層を被着したセラミックス−金属複合部材に関する。
【0002】
【従来の技術】
一般に、セラミックスは、金属材料よりも剛性に優れ、軽量かつ低熱膨張性である等、構造材料として優れた特性を有することが知られている。これらの特性から、例えば半導体製造装置等に使用され、高精度に制御することが要求される各種精密機械部材への適用が試みられている。
【0003】
しかしながら、セラミックスは極めて硬いことから加工効率に劣り、それが原因で多種の寸法を有する部材や複雑形状の部材に対しては製造コストが高くなるという問題点があった。その上、セラミックスは脆性材料であることから、加工時に欠けや割れを発生し易く、例えセラミックスが精密機械部材に適用されても、金属材料のように簡単な微修正加工が容易に施せないという問題点があった。
【0004】
一方、例えば直径が250〜500mmで厚さが10〜20mm程度の金属製構造体では、ナノ(nm)オーダーの寸法精度を有する安価な部材を得ることは極めて困難であった。
【0005】
即ち、ナノオーダーの寸法精度を得るためには極めて慎重な加工を行なわなければならず、製造コストが大となる。また、金属製構造体に快削性の材料を用いると加工性には優れるものの、快削性の材料は基本的に柔らかく剛性が低いので、加工後に加工機械から取り外すと特に上記のような大型の部材では変形を生じ易く、その結果所望の寸法精度が得られないという欠点があった。
【0006】
そこで、セラミックスの軽量で剛性に優れた特性を有するとともに難加工性の短所を補う対策として、セラミックス基材の主面にセラミックスの特性を損なわないような厚さの金属層を設け、この金属層を微修正加工することにより、セラミックスと金属の特性を併せ持つ複合部材を製作することが試みられている。
【0007】
即ち、セラミックスが有する軽量かつ高剛性等の特性と、金属が有する快削性を併せ持つ複合部材を得んとするものである。
【0008】
また、従来よりセラミックス基材の表面への金属層形成技術としては、溶射法の他にめっき法や物理的気相成長法(PVD:Physical Vapor Deposition)、化学的気相成長法(CVD:Chemical Vapor Deposition)等が知られている。
【0009】
それらのうち、溶射法は、金属,セラミックス,プラスチック等の材料をプラズマ,ガス燃焼熱,アーク熱,レーザ加熱,誘導加熱等の方法により高温で溶融し、空気圧や急激な温度変化による大気の体積膨張で生じる圧力を利用して、溶滴として母材に吹き付け溶射材料を被覆する方法である。
【0010】
この溶射法による成膜メカニズムは、上述した溶滴が母材に衝突し扁平化し、瞬間的に溶滴から母材に熱が移動して溶滴が凝固する際に熱収縮を起し、母材主面の凹凸に食い込みアンカー効果で接合するものである。そして、そのような溶滴の粒子が次々と積み重なり、上述した衝突、変形、熱移動を繰り返して層状に被着されることになる。
【0011】
次に、めっき法は大型複雑形状部材に適用可能ではあるものの、合金層の組成が層厚方向で均一にならないという問題点がある。他方、PVD法やCVD法においては、大型複雑形状のセラミック基材の表面に数百μmの合金層を形成させることは、製造コストおよび設備的にも難しい等の問題点があった。
【0012】
一方、当初適用された金属層の材料は、加工し易さに注目して選定されたものではなく、セラミックスとの密着性のみに主眼をおいたものであり、例えば、銅(Cu),ニッケル(Ni),鉄(Fe)等の純金属から成る皮膜が形成されていた。そのため、金属層を微修正加工する際、セラミックスより加工性に優れるものの、研削剤等の加工液を使用しなければならず、金属層の錆や、部材の汚染等を嫌うようなクリーン度が要求される精密部材としては不適当であった。
【0013】
他方、セラミックスの表面に高精度加工が必要な部分のみにメタライズ層を形成した後、ショットブラスト加工によりメタライズ層の表面を粗面化し、その上に溶射法で銅合金の金属層を形成することにより、快削性を有し、容易に微修正加工が可能であるセラミック部材が提案されている(従来例1;特開平8−91967号公報参照)。このセラミック部材によれば、図6に示すように、セラミックス基材102の主面に加工性の優れた銅合金層103を所定の厚さに容易に被着形成することができ、加工液を使用しなくとも被着した銅合金層103を機械加工することが可能となる。
【0014】
【発明が解決しようとする課題】
しかしながら、上記従来例1の銅合金層103はせいぜい厚さが500μm程度であり、上述した直径が250〜500mmで厚さが10〜20mm程度の金属製構造体に相当するような大型のセラミック基材に被着させる金属溶射層の厚さは、加工取り代を考慮するとセラミック基材の剛性を損なわない範囲で厚さ数mmの単位で形成することが必要となる。
【0015】
そこで、上記従来例1のセラミック基材102に数mm以上の厚さの溶射による銅合金層103を被着させると、セラミック基材102より金属である銅合金層103の方が一般的に熱膨張が大となる。例えば、セラミック基材102の熱膨張係数は、アルミナ(Al)セラミックスでは約7×10−6/℃(室温〜800℃)であり、セラミック基材102主面に被着されたモリブデン(Mo)−マンガン(Mn)合金から成るメタライズ層は約7.5×10−6/℃(室温〜800℃)であり、銅(Cu)合金やステンレス鋼から成る溶射層は約15×10−6〜20×10−6/℃(室温〜800℃)と大きく相違している。
【0016】
そのため、例えば、セラミック基材102の焼成変形を考慮して円盤状のセラミック基材102の主面の周縁の全周に厚さ2mm以上のリング状の溶射層を被着すると、溶射層の熱収縮応力がセラミック基材102の中心方向に作用し、溶射層がセラミック基材102の外周部から剥離するという問題点があった。これは、残留応力を有する溶射層に外部からの温度サイクルによる熱応力が加わると、セラミック基材102の主面より容易に界面剥離を起すことに起因する。
【0017】
また、得られたセラミック部材を機械加工する際、溶射層の残留応力からセラミック部材の外周部においてセラミック基材102と溶射層との界面が剥がれて口を開くという問題点もあった。
【0018】
本発明は、上記従来技術の問題点に鑑みてなされたものであり、その目的は、大型のセラミック基材の主面に数mmの厚さの厚い溶射層を被着したセラミックス−金属複合部材において、溶射時、外部から温度サイクル等による熱応力が加わた際、または機械加工した際に、セラミック基材の主面から容易に界面剥離を起すことのないセラミックス−金属複合部材を提供することにある。
【0019】
【課題を解決するための手段】
本発明のセラミックス−金属複合部材は、対向する主面を有するセラミック基材の前記両主面の少なくとも一方の周縁の全周に、厚さが2mm以上でありかつ前記セラミック基材の厚さの1/5以下である、銅合金またはステンレス鋼から成る溶射層が被着されたセラミックス−金属複合部材であって、前記セラミック基材は、前記主面の前記周縁の全周が0.3mm以上の深さの段差状に薄肉化されているとともに、その薄肉部に上面が前記主面よりも上に突出しかつ側面が段差に接するように前記溶射層が被着されていることを特徴とする。また、本発明のセラミックス−金属複合部材は、好ましくは、前記段差の底面にメタライズ層が被着されていることを特徴とする。また、本発明のセラミックス−金属複合部材は、好ましくは、前記段差の側面の形状が、前記段差の深さ方向に向かって前記溶射層の幅が小さくなるような階段状であることを特徴とする。また、本発明のセラミックス−金属複合部材は、好ましくは、前記段差の側面の形状が、前記セラミック基材の内部側へ窪んだ曲面であることを特徴とする。また、本発明のセラミックス−金属複合部材は、好ましくは、前記段差の側面の形状が、前記段差の深さ方向に向かって前記溶射層の幅が漸次広がった形状であることを特徴とする。
【0020】
本発明は、上記の構成により、溶射層の熱収縮応力が圧縮力に強いセラミック基材の段差に作用して溶射層が係止されるため、セラミック基材の主面から溶射層が界面剥離し難くなるという作用効果を有する。
【0021】
本発明において、好ましくは、前記段差の深さが0.3mm以上であることを特徴とする。
【0022】
本発明は、上記の構成により、溶射層が段差に係止されてセラミック基材の主面から溶射層が界面剥離し難くなるという作用効果がさらに向上する。
【0023】
【発明の実施の形態】
本発明のセラミックス−金属複合部材を図面に基き以下に詳細に説明する。図1は、本発明のセラミックス−金属複合部材について実施の形態の例を示す断面図であり、図2は図1のセラミックス−金属複合部材の要部を拡大した断面図である。図1及び図2において、1は、セラミック基材2と、銅合金またはステンレス鋼から成る溶射層3とから主として構成されたセラミックス−金属複合部材である。
【0024】
本発明のセラミック基材2は、両主面の少なくとも一方の周縁の全周に、厚さが2mm以上でありかつセラミック基材2の厚さの1/5以下である、銅合金またはステンレス鋼から成る溶射層3が被着されており、またセラミック基材2は、その主面の周縁の全周が段差状に薄肉化されているとともに、その薄肉部に上面が主面よりも上に突出しかつ側面が段差4(段差4の内側面5)に接するように溶射層3が被着されている。
【0025】
また、好ましくは、段差4の深さが0.3mm以上である。つまり、溶射層3の側面が段差4と0.3mm以上接しているのであり、この0.3mm以上の接触部が段差4との係合部7を構成している。
【0026】
本発明の溶射層3は、Mo−Mn合金から成るメタライズ層と、Niから成るめっき層と、Ni−Al合金から成る溶射層を順次被着した下地層8を介して被着されている。
【0027】
また、セラミック基材2の主面の周縁の全周に設けたリング状の段差4は、その内側面5において溶射層3と0.3mm以上接するような係合部7を有するのがよい。係合部7の深さが0.3mm未満では、溶射層3の熱収縮応力は係合部7以外の部分で大きく作用し、溶射層3に発生する内部応力とも相俟ってセラミック基材2の外周部から溶射層3の界面剥離を起こし易くなる。溶射層3の上面が主面と同じ位置かその下にあると、セラミック基材2主面の周縁の全周での溶射層3の加工代が確保できなくなる。その結果、溶射層3の研削加工による所定寸法の微修正加工を容易に行なうことができず、精密加工をすることが困難となる。
【0028】
従って、段差4の深さは、下地層8の厚さを考慮すると約0.3mm以上、厳密には0.35mm以上あれば良い。
【0029】
本発明のセラミック基材2は、例えば、アルミナ(Al)セラミックス等から成り、アルミナ(Al),シリカ(SiO),マグネシア(MgO),カルシア(CaO)等の原料粉末に適宜有機バインダ、溶剤等を添加混合した後、この混合物を例えば従来周知のプレス成形法により所定形状に成形し、得られた成形体を約1600℃の高温で焼成することにより製作される。
【0030】
また、本発明の銅合金またはステンレス鋼から成る溶射層3は、その厚さ6が2mm以上でありかつセラミック基材2の厚さの1/5以下であり、その上面がセラミック基材2の主面から上に突出しかつ側面が段差4に接していることが必要である。
【0031】
即ち、銅合金またはステンレス鋼から成る溶射層3の厚さが2mm未満では、直径が250mmを超えるような大型のセラミック基材2では、各種寸法や複雑形状に対応して研削加工により所定寸法に近づけた後、高精度に微修正加工する被加工物としては厚さ不足となり、不適当である。溶射層3の厚さがセラミック基材2の厚さの1/5を超えると、溶射層3の内部に発生する熱応力によりセラミック基材2の外周部から溶射層3が界面剥離を起こし易くなる。更に、溶射層3は、セラミック基材2の主面より突出して研削加工代を形成していることが必要である。
【0032】
また、セラミック基材2の少なくとも段差4の底面(薄肉部)にはメタライズ層が被着される。即ち、メタライズ層は段差4の内側面5にも形成することができる。このメタライズ層は、Mo粉末とMn粉末と若干のSiOを含有する金属ペーストを、セラミック基材2の段差4の底面に塗布すると共にこれを高温で焼成することにより、セラミック基材2の段差4の底面に焼き付けられ被着される。この場合、Mo−Mn合金中のMnおよびSiO成分がセラミック基材2中の例えばアルミナ質焼結体と化合し、セラミック基材2の主面とメタライズ層との界面にAlとMnとガラスとの複合酸化物を形成することにより強固に被着するものと考えられる。
【0033】
このメタライズ層は、セラミック基材2に強固に被着して銅合金またはステンレス鋼から成る溶射層3をNiめっき層と、Ni−Al合金から成る溶射層を介して、セラミック基材2に接合させるための下地金属皮膜として機能する。そして、メタライズ層の厚さは、上記複合酸化物の形成によりセラミック基材2との密着強度を向上させ、メタライズ層自体の強度を向上させて、メタライズ層自体のクラック等によるセラミック基材2との界面剥離を防止するという観点から、12〜25μmの範囲が好ましい。
【0034】
また、メタライズ層の上面には、Niめっき層が従来周知の電解めっき法や無電解めっき法により被着される。このNiめっき層は、メタライズ層にNi−Al合金から成る溶射層を強固に被着させるための下地金属皮膜として機能する。また、このNiめっき層は、メタライズ層とNi−Al合金から成る溶射層との間に発生する両者の熱膨張差に起因する熱応力を良好に吸収緩和するものである。
【0035】
更に、Niめっき層は、接合時のアンカー効果を得るため、その上面が算術平均粗さRaで約0.5〜3μm程度に粗面化されているのが良い。また、Niめっき層は、メタライズ層とNi−Al合金から成る溶射層の両方にそれぞれ強固に被着させるために、その厚さを0.5〜15μm程度とすることが好ましい。
【0036】
次に、Niめっき層の上面に被着されたNi−Al合金から成る溶射層は、銅合金またはステンレス鋼から成る溶射層3を被着させるための下地金属層として機能する。また、Ni−Al合金から成る溶射層は、Niめっき層との良好な接合性および溶射層自体に発生する内部応力の抑制という点から、その厚さは5〜1500μm程度が好ましい。さらに、Ni−Al合金から成る溶射層は、Niめっき層との接着性から、Niの含有率が80〜95重量%であり、Alの含有率が5〜20重量%である組成範囲が好ましい。
【0037】
そして、Mo−Mn合金から成るメタライズ層と、Niめっき層と、Ni−Al合金から成る溶射層を順次被着した下地層8を介することにより、銅合金またはステンレス鋼から成る溶射層3を強固に被着できる。
【0038】
因みに、銅合金またはステンレス鋼から成る溶射層3の熱膨張係数が約15×10−6〜20×10−6/℃(室温〜800℃)であるのに対して、セラミック基材2の熱膨張係数は約7×10−6/℃(室温〜800℃)と大きく異なる。しかしながら、セラミック基材2と溶射層3との間には、セラミック基材2側から熱膨張係数が約7.5×10−6/℃(室温〜800℃)のメタライズ層と、熱膨張係数が約13×10−6/℃(室温〜800℃)のNiめっき層と、熱膨張係数が約15×10−6〜18×10−6/℃(室温〜800℃)のNi−Al合金から成る溶射層が順次被着されている。
【0039】
従って、本発明の溶射層3が例えば−40〜80℃の温度サイクルに繰返し曝されたり、溶射時の温度変化に対しても、セラミック基材2と溶射層3との間に発生する両者の熱膨張差による応力は、下地層8により良好に吸収緩和される。また、セラミック基材2の周縁の全周に段差4を設け、段差の内側面5で溶射層3の側面を所定深さで係合させていることから、段差4の内側面5で溶射層3の熱収縮応力が効果的に係止される。その結果、溶射層3の研削加工時においても溶射層3がセラミック基材2から界面剥離したりすることは無い。
【0040】
本発明のセラミック基材2は対向する主面を有する形状のものであればよく、円盤状、直方体状、平板状、その他平面視形状が複雑形状でもよい。
【0041】
【実施例】
本発明の実施例について以下に説明する。
【0042】
(実施例)
先ず、純度99重量%のアルミナ質焼結体から成る、直径250mm、厚さ20mmの円盤状のセラミック基材2を用意した。そのセラミック基材2の両主面の周縁の全周に、図2に示すような内側面5が略垂直面とされた、幅4mmで各種深さ(下記表1参照)のリング状の段差4を研削加工により形成した。
【0043】
次いで、セラミック基材2の段差4の底面に、MoとMnとSiOをそれぞれ89重量%、6重量%、5重量%の割合で含有する金属ペーストを、10〜15μmの厚さとなるように印刷塗布し、乾燥後、加湿したフォーミングガス中で1400℃の温度で焼成した。こうしてセラミック基材2の段差4の底面(薄肉部)にMo−Mn合金から成るメタライズ層を被着させた。
【0044】
その後、メタライズ層上にNiめっき層を電解めっき法により約2μmの厚さで被着させ、次いでサンドブラスト法でNiめっき層の表面をRaが10μm程度となるように粗面化した。
【0045】
次に、Niめっき層の表面に、Ni(95重量%)−Al(15重量%)合金の溶射層を、アーク溶射法により被着した。その際、溶射ガン電流は30A、電圧は150V、吐出圧力は49MPaの溶射条件にて、約50μmの厚さに被着した。
【0046】
引き続いて、メタライズ層、Niめっき層、溶射層を下地層8として、その上にCu(59重量%)−Zn(38重量%)−Pd(3重量%)合金の銅合金、あるいはFe(74重量%)−Cr(18重量%)−Ni(8重量%)合金のステンレス鋼から成る溶射層を、フレームワイヤ溶射法により被着した。その際、溶射ガン電流が30A、電圧が150V、吐出圧力が49MPa(メガパスカル)の溶射条件にて、溶射層3を2mmと4mmの厚さに被着形成した。
【0047】
一方、比較例として、段差4を設けずに、上記実施例と同一寸法のセラミック基材2に、幅4mmで厚さ2μmの上記と同一組成の銅合金から成る溶射層3を上記と同様の下地層8を介して被着した試料を作製した。
【0048】
かくして、得られた評価用試料を用いて、先ず溶射層3を形成した時点での溶射層3とセラミック基材2との密着状態を光学機器を用いて検査したが、本発明品では全く界面剥離が認められなかった。それに対して、比較例品では溶射層3を形成した段階でセラミック基材2と銅合金から成る溶射層3との界面で剥離が認められた。
【0049】
次に、溶射工程での溶射層3のはみ出し部である盛り上りを機械加工してセラミック基材2の外周寸法と同一寸法にした後、溶射層3のセラミック基材2からの剥離を光学機器を用いて検査した。その結果を表1に示す。
【0050】
【表1】

Figure 0003591829
【0051】
表1より明らかなように、比較例の試料番号12では、厚さ2mmの銅合金から成る溶射層3を幅4mmでリング状にセラミック基材2の主面の周縁の全周に形成しただけで、セラミック基材2との界面に剥離が認められた。
【0052】
一方、セラミック基材2に段差4を設けても、係合部7が本発明の範囲外である試料番号1では、溶射層3の機械加工後のセラミック基材2との界面に剥離が認められた。また、試料番号11は溶射層3がセラミック基材2の主面より突出せず、溶射層3を研削加工して精密加工する研削代が得られなかった。
【0053】
それらに対して、本発明品ではいずれも剥離が認められず、溶射工程の熱履歴にも、その後の機械加工にも十分耐えうる接合強度を有していることが分かった。
【0054】
なお、本発明は上記実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更を行なうことは可能である。例えば、図3に示すように、段差4の内側面5の形状を、深さ方向に向かって溶射層3の幅が小さくなるような階段状にして設ける構成としてもよい。この場合、深さ方向に向かって溶射層3の幅が大きくなるようにすることもできる。即ち、深さ方向に向かって溶射層3が内側面5の内部に食い込んでいくような構成とし得る。また、図4に示すように、段差4の内側面5の形状を曲面的に中窪み状とした構成とし得る。さらに、図5に示すように、段差4の内側面5の形状を深さ方向に向かって溶射層3の幅が漸次広がるような形状、即ち内側面5の形状が逆テーパー状となるような構成とし得る。
【0055】
これら図3〜図5の構成においては、溶射層3の内側面5に対する接触面積が向上するとともに、係止の度合いが強化されるため、上記実施例と同等以上の作用効果が得られる。
【0056】
【発明の効果】
本発明は、対向する主面を有するセラミック基材の両主面の少なくとも一方の周縁の全周に、厚さが2mm以上でありかつセラミック基材の厚さの1/5以下である、銅合金またはステンレス鋼から成る溶射層が被着されたセラミックス−金属複合部材であって、セラミック基材は、主面の周縁の全周が段差状に薄肉化されているとともに、その薄肉部に上面が主面よりも上に突出しかつ側面が段差に接するように溶射層が被着されていることから、溶射層の熱収縮応力が圧縮力に強いセラミック基材の段差に作用して溶射層が係止される。そのため、大型のセラミック基材の主面に2mm以上の厚さの溶射層を被着しても、溶射時、外部から温度サイクル等による熱応力が加わった際、または機械加工した際に、セラミック基材の主面から容易に界面剥離を起すことのない、軽量で高剛性を有し快削性を有するセラミックス−金属複合部材が得られる。その結果、直径が250mm以上の大型の構造体にナノオーダーの寸法精度を有する安価な部材を提供することができる。
【0057】
本発明は、好ましくは段差の深さが0.3mm以上であることにより、溶射層が段差に係止されてセラミック基材主面から溶射層が界面剥離し難くなるという作用効果がさらに向上する。
【図面の簡単な説明】
【図1】本発明のセラミックス−金属複合部材について実施の形態の例を示す断面図である。
【図2】本発明のセラミックス−金属複合部材の要部拡大断面図である。
【図3】本発明のセラミックス−金属複合部材について実施の形態の他の例を示す要部拡大断面図である。
【図4】本発明のセラミックス−金属複合部材について実施の形態の他の例を示す要部拡大断面図である。
【図5】本発明のセラミックス−金属複合部材について実施の形態の他の例を示す要部拡大断面図である。
【図6】従来のセラミックス−金属複合部材を示す断面図である。
【符号の説明】
1:セラミックス−金属複合部材
2:セラミック基材
3:溶射層
4:段差
5:内側面
6:溶射層の厚さ
7:係合部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a ceramic-metal composite member in which a metal sprayed layer is applied to a main surface of a ceramic base material having an opposing main surface.
[0002]
[Prior art]
In general, ceramics are known to have excellent properties as structural materials, such as higher rigidity, lighter weight and lower thermal expansion than metal materials. Because of these characteristics, application to various precision machine members that are used in, for example, semiconductor manufacturing equipment and require high-precision control has been attempted.
[0003]
However, since ceramics are extremely hard, they are inferior in processing efficiency, and as a result, there is a problem in that the manufacturing cost increases for members having various dimensions and members having complicated shapes. In addition, since ceramics are brittle materials, they tend to chip and crack during processing, and even if ceramics are applied to precision machine parts, simple fine correction processing like metal materials cannot be performed easily. There was a problem.
[0004]
On the other hand, for example, with a metal structure having a diameter of 250 to 500 mm and a thickness of about 10 to 20 mm, it has been extremely difficult to obtain an inexpensive member having dimensional accuracy on the order of nanometers (nm).
[0005]
In other words, in order to obtain dimensional accuracy on the order of nanometers, extremely careful processing must be performed, and the production cost increases. Although the use of a free-cutting material for a metal structure provides excellent workability, the free-cutting material is basically soft and low in rigidity. The member described above has a drawback that deformation tends to occur, and as a result, desired dimensional accuracy cannot be obtained.
[0006]
Therefore, as a countermeasure against the disadvantages of the lightweight and rigidity of ceramics and the difficult processability, a metal layer is provided on the main surface of the ceramic substrate so as not to impair the characteristics of ceramics. It has been attempted to produce a composite member having both the characteristics of ceramics and metal by fine-tuning the material.
[0007]
That is, it is an object to obtain a composite member having both the characteristics of ceramics such as light weight and high rigidity and the free cutting properties of metal.
[0008]
Conventionally, as a technique for forming a metal layer on the surface of a ceramic base material, in addition to a thermal spraying method, a plating method, a physical vapor deposition method (PVD), and a chemical vapor deposition method (CVD). Vapor Deposition) is known.
[0009]
Among them, the thermal spraying method melts materials such as metals, ceramics, and plastics at high temperatures by methods such as plasma, gas combustion heat, arc heat, laser heating, and induction heating. This is a method in which the base material is sprayed as droplets using the pressure generated by expansion to coat the sprayed material.
[0010]
The film forming mechanism by this thermal spraying method is such that the above-described droplet collides with the base material and flattens, heat is instantaneously transferred from the droplet to the base material, and thermal contraction occurs when the droplet solidifies. It cuts into irregularities on the main surface of the material and joins it with the anchor effect. Then, the particles of such droplets are successively stacked, and are repeatedly deposited, deposited, and layered by repeating the above-described collision, deformation, and heat transfer.
[0011]
Next, although the plating method can be applied to large-sized complicated-shaped members, there is a problem that the composition of the alloy layer is not uniform in the layer thickness direction. On the other hand, in the PVD method and the CVD method, there is a problem that it is difficult to form an alloy layer of several hundred μm on the surface of a large-sized complicated-shaped ceramic base material in terms of manufacturing cost and equipment.
[0012]
On the other hand, the material of the metal layer initially applied was not selected with attention to ease of processing, but focused solely on the adhesion to ceramics. For example, copper (Cu), nickel A film made of a pure metal such as (Ni) and iron (Fe) was formed. Therefore, when finely modifying the metal layer, although it has better workability than ceramics, it is necessary to use a working fluid such as an abrasive, and a cleanness that dislikes the rust of the metal layer and contamination of the members is required. It was unsuitable as a required precision member.
[0013]
On the other hand, after forming a metallized layer only on the portion of the ceramic surface that requires high-precision processing, the surface of the metallized layer is roughened by shot blasting, and a copper alloy metal layer is formed thereon by thermal spraying. Accordingly, there has been proposed a ceramic member having a free-cutting property and capable of easily performing fine correction processing (conventional example 1; see JP-A-8-91967). According to this ceramic member, as shown in FIG. 6, the copper alloy layer 103 having excellent workability can be easily formed on the main surface of the ceramic base material 102 to a predetermined thickness. It becomes possible to machine the deposited copper alloy layer 103 without using it.
[0014]
[Problems to be solved by the invention]
However, the copper alloy layer 103 of Conventional Example 1 has a thickness of at most about 500 μm, and is a large ceramic base having a diameter of about 250 to 500 mm and a thickness of about 10 to 20 mm corresponding to a metal structure. The thickness of the metal sprayed layer to be applied to the material needs to be formed in units of several mm in a range that does not impair the rigidity of the ceramic base material in consideration of the machining allowance.
[0015]
Therefore, when the copper alloy layer 103 formed by thermal spraying with a thickness of several mm or more is applied to the ceramic substrate 102 of the above-described conventional example 1, the copper alloy layer 103, which is a metal, is generally more thermally than the ceramic substrate 102. Expansion is large. For example, the coefficient of thermal expansion of the ceramic substrate 102 is about 7 × 10 −6 / ° C. (room temperature to 800 ° C.) for alumina (Al 2 O 3 ) ceramics, and the molybdenum deposited on the main surface of the ceramic substrate 102 The metallized layer made of (Mo) -manganese (Mn) alloy is about 7.5 × 10 −6 / ° C. (room temperature to 800 ° C.), and the sprayed layer made of copper (Cu) alloy or stainless steel is made about 15 × 10 6 −6 to 20 × 10 −6 / ° C. (room temperature to 800 ° C.).
[0016]
Therefore, for example, when a ring-shaped sprayed layer having a thickness of 2 mm or more is applied to the entire periphery of the main surface of the disc-shaped ceramic base 102 in consideration of the firing deformation of the ceramic base 102, the heat of the sprayed layer is reduced. There is a problem that the contraction stress acts in the center direction of the ceramic base material 102 and the sprayed layer is separated from the outer peripheral portion of the ceramic base material 102. This is because when a thermal stress due to an external temperature cycle is applied to the thermal sprayed layer having the residual stress, the interface peels off more easily from the main surface of the ceramic base material 102.
[0017]
Further, when the obtained ceramic member is machined, there is also a problem that the interface between the ceramic base material 102 and the sprayed layer is peeled off at the outer peripheral portion of the ceramic member due to residual stress of the sprayed layer and the mouth is opened.
[0018]
The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a ceramic-metal composite member in which a large thermal spray layer having a thickness of several mm is applied to a main surface of a large ceramic base material. A ceramic-metal composite member that does not easily cause interface delamination from the main surface of the ceramic base material when thermal stress is applied from the outside by a temperature cycle or the like during thermal spraying, or when machining is performed. It is in.
[0019]
[Means for Solving the Problems]
The ceramic-metal composite member of the present invention has a thickness of 2 mm or more and a thickness of at least one of the peripheral edges of at least one of the two main surfaces of the ceramic base having the opposing main surfaces. A ceramic-metal composite member to which a thermal spray layer made of a copper alloy or stainless steel is applied, which is 1/5 or less, wherein the entire circumference of the peripheral edge of the main surface is 0.3 mm or more. And the thermal spray layer is applied to the thin portion so that the upper surface protrudes above the main surface and the side surface is in contact with the step. . Further, the ceramic-metal composite member of the present invention is preferably characterized in that a metallized layer is applied to the bottom surface of the step. Further, the ceramic-metal composite member of the present invention is preferably characterized in that the shape of the side surface of the step is step-shaped such that the width of the sprayed layer decreases in the depth direction of the step. I do. Further, in the ceramic-metal composite member of the present invention, preferably, the shape of the side surface of the step is a curved surface depressed toward the inside of the ceramic base material. The ceramic-metal composite member of the present invention is preferably characterized in that the shape of the side surface of the step is a shape in which the width of the sprayed layer gradually increases in the depth direction of the step.
[0020]
According to the present invention, since the thermal shrinkage stress of the thermal spray layer acts on the step of the ceramic substrate having a strong compressive force and locks the thermal spray layer, the thermal spray layer is interfacially separated from the main surface of the ceramic substrate. It has the effect of being difficult to perform.
[0021]
In the present invention, preferably, the depth of the step is 0.3 mm or more.
[0022]
According to the present invention, with the above configuration, the function and effect that the thermal sprayed layer is locked to the step and the thermal sprayed layer is less likely to be separated from the main surface of the ceramic base material at the interface is further improved.
[0023]
BEST MODE FOR CARRYING OUT THE INVENTION
The ceramic-metal composite member of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a sectional view showing an example of an embodiment of the ceramic-metal composite member of the present invention, and FIG. 2 is an enlarged sectional view of a main part of the ceramic-metal composite member of FIG. 1 and 2, reference numeral 1 denotes a ceramic-metal composite member mainly composed of a ceramic substrate 2 and a sprayed layer 3 made of a copper alloy or stainless steel.
[0024]
The ceramic substrate 2 of the present invention is a copper alloy or stainless steel having a thickness of 2 mm or more and a thickness of 1/5 or less of the thickness of the ceramic substrate 2 over at least one peripheral edge of both main surfaces. The ceramic substrate 2 has a main surface whose entire periphery is thinned in a stepped shape, and whose upper surface is higher than the main surface. The thermal spray layer 3 is applied so as to project and the side surface is in contact with the step 4 (the inner side surface 5 of the step 4).
[0025]
Preferably, the depth of the step 4 is 0.3 mm or more. That is, the side surface of the thermal spray layer 3 is in contact with the step 4 by 0.3 mm or more, and the contact portion of 0.3 mm or more constitutes the engaging portion 7 with the step 4.
[0026]
The thermal spray layer 3 of the present invention is applied via a base layer 8 on which a metallized layer made of a Mo—Mn alloy, a plating layer made of Ni, and a thermal spray layer made of a Ni—Al alloy are sequentially applied.
[0027]
The ring-shaped step 4 provided on the entire periphery of the main surface of the ceramic base 2 preferably has an engagement portion 7 that contacts the sprayed layer 3 by 0.3 mm or more on the inner surface 5. When the depth of the engagement portion 7 is less than 0.3 mm, the thermal shrinkage stress of the thermal sprayed layer 3 largely acts on portions other than the engagement portion 7, and together with the internal stress generated in the thermal sprayed layer 3, the ceramic base material may be used. 2, the thermal sprayed layer 3 is apt to peel off from the outer peripheral portion. If the upper surface of the thermal spray layer 3 is at the same position as or below the main surface, it is not possible to secure a processing allowance for the thermal spray layer 3 over the entire periphery of the peripheral surface of the ceramic substrate 2 main surface. As a result, it is not possible to easily perform a fine correction processing of a predetermined dimension by grinding the thermal sprayed layer 3, and it becomes difficult to perform precision processing.
[0028]
Therefore, the depth of the step 4 may be about 0.3 mm or more, more specifically, 0.35 mm or more in consideration of the thickness of the underlayer 8.
[0029]
The ceramic substrate 2 of the present invention is made of, for example, alumina (Al 2 O 3 ) ceramics or the like, and raw material powder such as alumina (Al 2 O 3 ), silica (SiO 2 ), magnesia (MgO), and calcia (CaO) After appropriately adding and mixing an organic binder, a solvent, and the like, the mixture is formed into a predetermined shape by, for example, a conventionally known press molding method, and the obtained molded body is fired at a high temperature of about 1600 ° C.
[0030]
The thermal sprayed layer 3 made of the copper alloy or stainless steel of the present invention has a thickness 6 of 2 mm or more and 1/5 or less of the thickness of the ceramic substrate 2, and the upper surface of the ceramic substrate 2 It is necessary to project upward from the main surface and to contact the side surface of the step 4.
[0031]
That is, when the thickness of the thermal sprayed layer 3 made of a copper alloy or stainless steel is less than 2 mm, in the case of a large ceramic base material 2 having a diameter exceeding 250 mm, it is formed into a predetermined size by grinding in accordance with various dimensions and complicated shapes. After approaching, the thickness of the workpiece to be fine-corrected with high precision becomes insufficient, which is inappropriate. When the thickness of the thermal spray layer 3 exceeds 5 of the thickness of the ceramic substrate 2, the thermal spray generated inside the thermal spray layer 3 causes the thermal spray layer 3 to easily cause interface peeling from the outer peripheral portion of the ceramic substrate 2. Become. Further, it is necessary that the thermal spray layer 3 protrudes from the main surface of the ceramic base material 2 to form a grinding allowance.
[0032]
A metallized layer is applied to at least the bottom surface (thin portion) of the step 4 of the ceramic substrate 2. That is, the metallized layer can also be formed on the inner side surface 5 of the step 4. This metallized layer is formed by applying a metal paste containing Mo powder, Mn powder and a small amount of SiO 2 to the bottom surface of the step 4 of the ceramic base 2 and firing the same at a high temperature, thereby forming the step of the ceramic base 2. 4 is baked and applied to the bottom surface. In this case, the Mn and SiO 2 components in the Mo—Mn alloy combine with, for example, an alumina sintered body in the ceramic substrate 2, and Al 2 O 3 is added to the interface between the main surface of the ceramic substrate 2 and the metallized layer. It is considered that the composite oxide is firmly adhered by forming a composite oxide of Mn and glass.
[0033]
This metallized layer is firmly adhered to the ceramic substrate 2 and joined to the ceramic substrate 2 via a Ni plating layer and a thermal spray layer made of a Ni-Al alloy. It functions as a base metal film to make it work. The thickness of the metallized layer is improved by increasing the adhesion strength with the ceramic substrate 2 by forming the composite oxide, improving the strength of the metallized layer itself, and increasing the thickness of the metallized layer by cracking the metallized layer itself. Is preferably in the range of 12 to 25 μm from the viewpoint of preventing interfacial peeling.
[0034]
On the upper surface of the metallized layer, a Ni plating layer is applied by a conventionally well-known electrolytic plating method or electroless plating method. The Ni plating layer functions as a base metal film for firmly applying a thermal sprayed layer made of a Ni-Al alloy to the metallized layer. The Ni plating layer satisfactorily absorbs and relaxes the thermal stress caused by the difference in thermal expansion between the metallized layer and the thermal spray layer made of the Ni-Al alloy.
[0035]
Further, in order to obtain an anchor effect at the time of joining, the upper surface of the Ni plating layer is preferably roughened to an arithmetic average roughness Ra of about 0.5 to 3 μm. The thickness of the Ni plating layer is preferably about 0.5 to 15 μm in order to firmly adhere to both the metallized layer and the sprayed layer made of the Ni—Al alloy.
[0036]
Next, the thermal spray layer made of a Ni-Al alloy deposited on the upper surface of the Ni plating layer functions as a base metal layer for depositing the thermal spray layer 3 made of a copper alloy or stainless steel. Further, the thickness of the thermal sprayed layer made of the Ni-Al alloy is preferably about 5 to 1500 µm from the viewpoints of good bondability with the Ni plating layer and suppression of internal stress generated in the thermal sprayed layer itself. Further, the thermal sprayed layer made of a Ni-Al alloy has a composition range in which the Ni content is 80 to 95% by weight and the Al content is 5 to 20% by weight from the viewpoint of the adhesiveness with the Ni plating layer. .
[0037]
Then, the thermal sprayed layer 3 made of a copper alloy or a stainless steel is strengthened by interposing an underlayer 8 on which a metallized layer made of an Mo—Mn alloy, a Ni plating layer, and a thermal sprayed layer made of a Ni—Al alloy are sequentially applied. Can be adhered to.
[0038]
Incidentally, the thermal expansion coefficient of the thermal sprayed layer 3 made of a copper alloy or stainless steel is about 15 × 10 −6 to 20 × 10 −6 / ° C. (room temperature to 800 ° C.), The coefficient of expansion differs greatly from about 7 × 10 −6 / ° C. (room temperature to 800 ° C.). However, a metallized layer having a thermal expansion coefficient of about 7.5 × 10 −6 / ° C. (room temperature to 800 ° C.) from the ceramic substrate 2 side, and a thermal expansion coefficient Is about 13 × 10 −6 / ° C. (room temperature to 800 ° C.) and a Ni—Al alloy whose thermal expansion coefficient is about 15 × 10 −6 to 18 × 10 −6 / ° C. (room temperature to 800 ° C.) Are sequentially applied.
[0039]
Therefore, the thermal sprayed layer 3 of the present invention is repeatedly exposed to a temperature cycle of, for example, −40 to 80 ° C., and even if the temperature changes during thermal spraying, both of the two generated between the ceramic base material 2 and the thermal sprayed layer 3 are formed. The stress due to the difference in thermal expansion is favorably absorbed and alleviated by the underlayer 8. In addition, since the step 4 is provided on the entire circumference of the peripheral edge of the ceramic base material 2 and the side surface of the sprayed layer 3 is engaged with the inner surface 5 of the step at a predetermined depth, the sprayed layer is formed on the inner surface 5 of the step 4. 3 is effectively locked. As a result, even when the thermal spraying layer 3 is ground, the thermal spraying layer 3 does not peel off from the ceramic substrate 2 at the interface.
[0040]
The ceramic substrate 2 of the present invention may have a shape having an opposing main surface, and may have a disk shape, a rectangular parallelepiped shape, a flat plate shape, or a complicated shape in plan view.
[0041]
【Example】
An embodiment of the present invention will be described below.
[0042]
(Example)
First, a disk-shaped ceramic substrate 2 having a diameter of 250 mm and a thickness of 20 mm made of an alumina sintered body having a purity of 99% by weight was prepared. A ring-shaped step having a width of 4 mm and various depths (see Table 1 below) having an inner surface 5 substantially vertical as shown in FIG. 2 around the entire periphery of both main surfaces of the ceramic substrate 2. 4 was formed by grinding.
[0043]
Then, the bottom surface of the step 4 of the ceramic substrate 2, Mo and Mn and SiO 2, respectively 89 wt%, 6 wt%, the metal paste in a proportion of 5 wt%, so as to have a thickness of 10~15μm After printing, coating and drying, it was baked at 1400 ° C. in a humidified forming gas. In this manner, a metallized layer made of a Mo—Mn alloy was applied to the bottom surface (thin portion) of the step 4 of the ceramic substrate 2.
[0044]
Thereafter, a Ni plating layer was applied on the metallized layer to a thickness of about 2 μm by electrolytic plating, and then the surface of the Ni plating layer was roughened by sandblasting so that Ra was about 10 μm.
[0045]
Next, a sprayed layer of a Ni (95% by weight) -Al (15% by weight) alloy was applied to the surface of the Ni plating layer by an arc spraying method. At this time, under a spraying condition of a spraying gun current of 30 A, a voltage of 150 V, and a discharge pressure of 49 MPa, the coating was applied to a thickness of about 50 μm.
[0046]
Subsequently, a metallized layer, a Ni plating layer, and a thermal spray layer are used as an underlayer 8 and a Cu (59% by weight) -Zn (38% by weight) -Pd (3% by weight) alloy copper alloy or Fe (74% by weight) is formed thereon. (% By weight) -Cr (18% by weight) -Ni (8% by weight) A sprayed layer made of a stainless steel was applied by a flame wire spraying method. At that time, under the spraying conditions of a spraying gun current of 30 A, a voltage of 150 V, and a discharge pressure of 49 MPa (megapascal), the sprayed layer 3 was formed in a thickness of 2 mm and 4 mm.
[0047]
On the other hand, as a comparative example, a thermal spray layer 3 made of a copper alloy having the same composition as described above and having a width of 4 mm and a thickness of 2 μm was formed on a ceramic base material 2 having the same dimensions as the above example without providing the step 4. A sample attached via the underlayer 8 was produced.
[0048]
Using the obtained evaluation sample, the adhesion between the sprayed layer 3 and the ceramic substrate 2 at the time when the sprayed layer 3 was first formed was inspected using an optical instrument. No peeling was observed. On the other hand, in the comparative example, peeling was observed at the interface between the ceramic base material 2 and the thermal spray layer 3 made of a copper alloy at the stage when the thermal spray layer 3 was formed.
[0049]
Next, after the protrusion, which is the protruding portion of the thermal spray layer 3 in the thermal spraying step, is machined to have the same dimension as the outer peripheral dimension of the ceramic substrate 2, the thermal spray layer 3 is separated from the ceramic substrate 2 by optical equipment. Inspection was performed using Table 1 shows the results.
[0050]
[Table 1]
Figure 0003591829
[0051]
As is clear from Table 1, in the sample No. 12 of the comparative example, the sprayed layer 3 made of a copper alloy having a thickness of 2 mm was formed in a ring shape with a width of 4 mm over the entire periphery of the main surface of the ceramic base 2. As a result, delamination was observed at the interface with the ceramic substrate 2.
[0052]
On the other hand, even when the step 4 is provided on the ceramic base material 2, in the sample No. 1 in which the engaging portion 7 is out of the range of the present invention, peeling is recognized at the interface with the ceramic base material 2 after the mechanical processing of the thermal sprayed layer 3. Was done. Further, in sample 11, the thermal sprayed layer 3 did not protrude from the main surface of the ceramic substrate 2, and a grinding allowance for precision processing by grinding the thermal sprayed layer 3 was not obtained.
[0053]
In contrast, none of the products of the present invention showed any peeling, indicating that they had a bonding strength enough to withstand both the thermal history of the thermal spraying process and the subsequent machining.
[0054]
It should be noted that the present invention is not limited to the above embodiment, and various changes can be made without departing from the spirit of the present invention. For example, as shown in FIG. 3, the inner surface 5 of the step 4 may be provided in a step-like shape such that the width of the sprayed layer 3 decreases in the depth direction. In this case, the width of the sprayed layer 3 can be increased in the depth direction. That is, a configuration in which the sprayed layer 3 bites into the inner side surface 5 in the depth direction can be adopted. Further, as shown in FIG. 4, the shape of the inner side surface 5 of the step 4 may be formed as a curved concave shape. Further, as shown in FIG. 5, the shape of the inner surface 5 of the step 4 is formed such that the width of the sprayed layer 3 gradually increases in the depth direction, that is, the shape of the inner surface 5 becomes reverse tapered. It may be configured.
[0055]
3 to 5, the contact area of the sprayed layer 3 with the inner side surface 5 is improved, and the degree of engagement is strengthened. Therefore, the same or more advantageous effects as in the above embodiment can be obtained.
[0056]
【The invention's effect】
The present invention relates to a copper substrate having a thickness of not less than 2 mm and not more than 1/5 of the thickness of the ceramic base material on the entire periphery of at least one peripheral edge of both main surfaces of the ceramic base material having opposing main surfaces. A ceramic-metal composite member on which a sprayed layer made of an alloy or stainless steel is adhered, wherein the ceramic substrate has a main surface whose entire periphery is reduced in a stepped shape, and whose thin portion has an upper surface. Is projected above the main surface and the thermal spray stress is applied so that the side surface touches the step, so that the thermal contraction stress of the thermal spray layer acts on the step of the ceramic base material that is strong in compressive force, and the thermal spray layer is Locked. Therefore, even if a thermal spray layer with a thickness of 2 mm or more is applied to the main surface of a large ceramic substrate, the thermal stress is applied during thermal spraying, from the outside, due to a temperature cycle, or when machining is performed. A lightweight, high-rigidity, free-cutting ceramic-metal composite member that does not easily cause interface delamination from the main surface of the base material can be obtained. As a result, it is possible to provide an inexpensive member having a nanometer-order dimensional accuracy for a large structure having a diameter of 250 mm or more.
[0057]
In the present invention, preferably, when the depth of the step is 0.3 mm or more, the effect that the sprayed layer is locked to the step and the sprayed layer is less likely to be peeled off from the main surface of the ceramic base material is further improved. .
[Brief description of the drawings]
FIG. 1 is a sectional view showing an example of an embodiment of a ceramic-metal composite member of the present invention.
FIG. 2 is an enlarged sectional view of a main part of the ceramic-metal composite member of the present invention.
FIG. 3 is a main part enlarged sectional view showing another example of the embodiment of the ceramic-metal composite member of the present invention.
FIG. 4 is an enlarged sectional view of a main part showing another example of the embodiment of the ceramic-metal composite member of the present invention.
FIG. 5 is an enlarged sectional view of a main part showing another example of the embodiment of the ceramic-metal composite member of the present invention.
FIG. 6 is a cross-sectional view showing a conventional ceramic-metal composite member.
[Explanation of symbols]
1: Ceramic-metal composite member 2: Ceramic substrate 3: Thermal spray layer 4: Step 5: Inner surface 6: Thermal spray layer thickness 7: Engagement portion

Claims (5)

対向する主面を有するセラミック基材の前記両主面の少なくとも一方の周縁の全周に、厚さが2mm以上でありかつ前記セラミック基材の厚さの1/5以下である、銅合金またはステンレス鋼から成る溶射層が被着されたセラミックス−金属複合部材であって、前記セラミック基材は、前記主面の前記周縁の全周が0.3mm以上の深さの段差状に薄肉化されているとともに、その薄肉部に上面が前記主面よりも上に突出しかつ側面が段差に接するように前記溶射層が被着されていることを特徴とするセラミックス−金属複合部材。A copper alloy having a thickness of 2 mm or more and a thickness of 1/5 or less of the thickness of the ceramic base material over the entire periphery of at least one peripheral edge of the two main surfaces of the ceramic base material having opposing main surfaces. A ceramic-metal composite member on which a sprayed layer made of stainless steel is applied, wherein the ceramic substrate is thinned into a stepped shape having a depth of 0.3 mm or more over the entire periphery of the main surface. A ceramic-metal composite member, wherein the sprayed layer is applied to the thin portion so that the upper surface protrudes above the main surface and the side surface contacts the step. 前記段差の底面にメタライズ層が被着されていることを特徴とする請求項1記載のセラミックス−金属複合部材。  The ceramic-metal composite member according to claim 1, wherein a metallized layer is applied to a bottom surface of the step. 前記段差の側面の形状が、前記段差の深さ方向に向かって前記溶射層の幅が小さくなるような階段状であることを特徴とする請求項1または請求項2記載のセラミックス−金属複合部材。  The ceramic-metal composite member according to claim 1 or 2, wherein the shape of the side surface of the step is a step-like shape such that the width of the sprayed layer decreases in the depth direction of the step. . 前記段差の側面の形状が、前記セラミック基材の内部側へ窪んだ曲面であることを特徴とする請求項1または請求項2記載のセラミックス−金属複合部材。  The ceramic-metal composite member according to claim 1, wherein a shape of a side surface of the step is a curved surface depressed inward of the ceramic base. 前記段差の側面の形状が、前記段差の深さ方向に向かって前記溶射層の幅が漸次広がった形状であることを特徴とする請求項1または請求項2記載のセラミックス−金属複合部材。  The ceramic-metal composite member according to claim 1, wherein a shape of a side surface of the step is a shape in which a width of the sprayed layer gradually increases in a depth direction of the step.
JP2001053281A 2001-02-28 2001-02-28 Ceramic-metal composite members Expired - Fee Related JP3591829B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001053281A JP3591829B2 (en) 2001-02-28 2001-02-28 Ceramic-metal composite members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001053281A JP3591829B2 (en) 2001-02-28 2001-02-28 Ceramic-metal composite members

Publications (2)

Publication Number Publication Date
JP2002256410A JP2002256410A (en) 2002-09-11
JP3591829B2 true JP3591829B2 (en) 2004-11-24

Family

ID=18913765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001053281A Expired - Fee Related JP3591829B2 (en) 2001-02-28 2001-02-28 Ceramic-metal composite members

Country Status (1)

Country Link
JP (1) JP3591829B2 (en)

Also Published As

Publication number Publication date
JP2002256410A (en) 2002-09-11

Similar Documents

Publication Publication Date Title
JP5809901B2 (en) Laminate and method for producing laminate
EP0147360A2 (en) Method for bonding ceramics and metals
RU2209256C2 (en) Method of application of metal adhesive layer (variants) and metal adhesive layer for realization of this method (variants)
JPH0510309B2 (en)
US20130098867A1 (en) Method for Selective Metallization on a Ceramic Substrate
EP0146493A2 (en) Method for bonding ceramics and metals
WO2005090637A1 (en) Metal material for foundry machine part, member for contact with molten aluminum, and process for producing the same
JP5154141B2 (en) Rare earth oxide-containing thermal spray substrate and laminate
JP2013245375A (en) Method for manufacturing flanged target
JP3591829B2 (en) Ceramic-metal composite members
JP3995994B2 (en) Constituent member of jig for semiconductor manufacturing apparatus and manufacturing method thereof
JP3610311B2 (en) Ceramics-metal composite member
JPS60181269A (en) Target for sputtering
JPH065376Y2 (en) Mold for molding glass products
KR101254618B1 (en) Ceramic coating method for corrosion resistant member
JP4394666B2 (en) Constituent member of jig for semiconductor manufacturing apparatus and manufacturing method thereof
JPH08133762A (en) Optical element forming die and its production
JPS6028903B2 (en) Surface treatment method for metal materials
JP6562914B2 (en) Baking jig and method for manufacturing the baking jig
JP2004059397A (en) Plasma resistant member
KR101113934B1 (en) Method of forming hole in difficult-to-work material and difficult-to-work material having hole formed by the method
JPH0472793B2 (en)
TWI814429B (en) wafer support
JP2002167679A (en) Thermal spray coating on surface of ceramic base material
JP5532064B2 (en) Rare earth oxide-containing thermal spray substrate manufacturing method and laminate manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070903

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees