JP3591390B2 - Transmission control device for continuously variable transmission - Google Patents

Transmission control device for continuously variable transmission Download PDF

Info

Publication number
JP3591390B2
JP3591390B2 JP27365299A JP27365299A JP3591390B2 JP 3591390 B2 JP3591390 B2 JP 3591390B2 JP 27365299 A JP27365299 A JP 27365299A JP 27365299 A JP27365299 A JP 27365299A JP 3591390 B2 JP3591390 B2 JP 3591390B2
Authority
JP
Japan
Prior art keywords
target
hysteresis
calculating
value
accelerator pedal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27365299A
Other languages
Japanese (ja)
Other versions
JP2001099290A (en
Inventor
雅人 古閑
充 渡辺
哲 滝沢
正俊 赤沼
茂樹 島中
寛泰 田中
潤也 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP27365299A priority Critical patent/JP3591390B2/en
Publication of JP2001099290A publication Critical patent/JP2001099290A/en
Application granted granted Critical
Publication of JP3591390B2 publication Critical patent/JP3591390B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、車両などに採用される無段変速機の変速制御装置の改良に関し、特に、駆動力の目標値に応じた変速制御に関するものである。
【0002】
【従来の技術】
車両に採用される無段変速機の変速制御装置としては、車速とアクセルペダルの踏み込み量に基づいて変速比を制御するものが従来から広く採用されており、近年では、ABS(アンチロックブレーキシステム)やTCS(トラクションコントロールシステム)が普及してきたため、エンジンや無段変速機の制御を、ABSやTCSの作動状態を含めた車両の目標駆動力に基づいて行うものが知られており、例えば、本願出願人が提案した特開平11−63188号公報等がある。
【0003】
これは、車両の駆動力を統合制御する指令装置を備え、この指令装置が車両の運転状態に基づいて目標駆動力を求め、この目標駆動力に応じた変速比や目標エンジントルクを演算するとともに、これら目標駆動力または目標駆動力に応じた目標変速比、目標エンジントルクを変速制御装置やエンジン制御装置へ指令し、各制御装置は指令装置からの目標値に基づいて、自動無段変速機やエンジンの制御を行うものである。
【0004】
また、目標駆動力に応じた変速比を設定する無段変速機としては、本願出願人が提案した特願平10−289613号があり、運転状態に応じて求めた目標駆動力と車速から目標入力軸回転数を求め、予め設定したマップにより、この目標入力軸回転数を、擬似的なアクセルペダル操作量であるアクセル踏度換算値に変換し、このアクセル踏度換算値に基づいて最終的な目標変速比を求めることで、従来の無段変速機の変速制御装置を用いながら、運転状態と目標駆動力に応じた変速比を決定することを可能にしている。
【0005】
また、自動変速機の変速制御やエンジン制御を行う際に、アクセルペダル操作量にヒステリシスを設けるものが、従来から知られており、運転者のアクセルペダル操作に対して、制御指令が過大に変動するのを防いでいる。
【0006】
【発明が解決しようとする課題】
しかしながら、上記従来の無段変速機の変速制御装置にあっては、目標駆動力と運転状態に応じた目標入力軸回転数からアクセル踏度換算値を求める際に、所定のヒステリシスを設けることが考えられるが、アクセル踏度換算値は、目標入力軸回転数に対して一意で対応しているため、車速によってはアクセル踏度換算値の最大値が異なり、所定のヒステリシスを設定すると、例えば、低車速時ではヒステリシスの割合が過大になってしまい、実際のアクセル踏み込み量が少量の場合では変速しない等、不感帯が広くなって運転者に違和感を与えてしまう。一方、低車速時に合わせてヒステリシスを設定すると、高車速時には不感帯が狭くなりすぎて、僅かなアクセル踏み込み量に対しても変速が行われてしまい、高速走行時などでは、運転者に違和感を与えてしまうという問題があった。
【0007】
そこで本発明は、上記問題点に鑑みてなされたもので、目標入力軸回転数に対して一意で対応する擬似的なアクセルペダル操作量を用いて、目標駆動力を実現するように変速制御を行う際に、運転者へ違和感を与えることなく、円滑な変速制御を行うことを目的とする。
【0008】
【課題を解決するための手段】
第1の発明は、運転状態に応じて目標駆動力を演算する目標駆動力演算手段と、前記目標駆動力に基づいて目標入力軸回転数または目標変速比を演算する第1目標値演算手段と、前記第1目標値演算手段の出力に対応した擬似的なアクセルペダル操作量換算値を演算する擬似操作量換算値演算手段と、運転状態に応じてヒステリシスを設定するヒステリシス設定手段と、前記アクセルペダル操作量換算値に対して前記ヒステリシスを与えたものを補正アクセルペダル操作量換算値として演算する補正手段と、前記補正アクセルペダル操作量換算値に基づいて目標入力軸回転数または目標変速比を演算する第2目標値演算手段と、この第2目標値演算手段の出力に基づいて変速比を制御する変速制御手段とを備え、前記ヒステリシス設定手段は、低車速時には前記ヒステリシスを小さく設定する一方、高車速時にはヒステリシスを大きく設定する。
【0010】
また、第2の発明は、運転状態に応じて目標駆動力を演算する目標駆動力演算手段と、前記目標駆動力に基づいて目標入力軸回転数または目標変速比を演算する第1目標値演算手段と、前記第1目標値演算手段の出力に対応した擬似的なアクセルペダル操作量換算値を演算する擬似操作量換算値演算手段と、運転状態に応じてヒステリシスを設定するヒステリシス設定手段と、前記アクセルペダル操作量換算値に対して前記ヒステリシスを与えたものを補正アクセルペダル操作量換算値として演算する補正手段と、前記補正アクセルペダル操作量換算値に基づいて目標入力軸回転数または目標変速比を演算する第2目標値演算手段と、この第2目標値演算手段の出力に基づいて変速比を制御する変速制御手段とを備え、前記ヒステリシス設定手段は、各車速毎のアクセルペダル操作量換算値の最大値に、予め設定した比率を乗じて前記ヒステリシスを演算する。
【0011】
【発明の効果】
したがって、発明は、目標駆動力に応じた変速制御を行う際に、擬似的なアクセルペダル操作量換算値を、目標入力軸回転数または目標変速比に対応付けて制御を行う場合、車速毎に目標入力軸回転数の最大値、換言すれば、アクセルペダル操作量換算値の最大値も異なるので、前記従来例のようにヒステリシスを固定にすると、低車速時ではアクセル踏み込み量を大きく変化させないと変速せず、高車速時では、僅かなアクセル踏み込み量の変化に応じて変速が生じてしまうのに対し、アクセルペダル操作量換算値に付与するヒステリシスを運転状態に応じて変更するようにしたため、車速にかかわらず運転者の意図に応じた変速を行いながらも目標駆動力を得ることが可能となる。
【0012】
そして、低車速時にはヒステリシスを小さく、高車速時にはヒステリシスを大きく設定するようにしたため、低車速時には、ヒステリシスが小さいため、不感帯も小さくなって、アクセル踏み込み量の微小な変化に対しても補正アクセルペダル操作量換算値を迅速に立ち上がって変速比を変化させることができ、また、高車速時には、車速の増大に応じてヒステリシスも増大するため、不感帯も徐々に大きくなって、アクセル踏み込み量の僅かな変化に応じて変速比が過大に変動するのを防ぐことができ、運転性を向上することができる。
【0013】
【発明の実施の形態】
以下、本発明の一実施形態を添付図面に基づいて説明する。
【0014】
図1は、無段変速機としてトロイダル型無段変速機を採用した一例を示しており、エンジン1の制御を行うエンジン制御コントローラ4と、無段変速機10を制御する変速制御コントローラ2は、LAN等の通信手段を介して接続されている。
【0015】
エンジン制御コントローラ4は、車両の運転状態などに応じて目標駆動力tFdを演算し、この目標駆動力tFdに基づいてエンジン1の燃料噴射量や点火時期等を制御するとともに、LAN等の通信手段を介して目標駆動力tFdを変速制御コントローラ2へ送出し、変速制御コントローラ2は目標駆動力tFdに基づいて無段変速機10の変速比を制御する。
【0016】
無段変速機10は、ロックアップクラッチL/Uを備えたトルクコンバータT/Cを介してエンジン1に連結され、変速制御コントローラ2の指令値に応動するアクチュエータとしてのステップモータ3が、図示しない変速制御弁等の油圧制御装置を介して変速比を連続的に制御するものである。
【0017】
変速制御コントローラ2は、エンジン制御コントローラ4から読み込んだ目標駆動力tFdに加え、アクセル踏み込み量センサ5から、運転者のアクセルペダル操作に応動するアクセル踏み込み量APSを読み込むとともに、無段変速機10の入力軸回転センサ6が検出した入力軸回転数Ntと、出力軸回転センサ7が検出した出力軸回転数Noをそれぞれ読み込んで、目標駆動力tFdに応じた変速比となるようにステップモータ3の制御を行う。
【0018】
なお、アクセル踏み込み量センサ5は、例えば、アクセルペダルの解放状態をアクセル踏み込み量APS=0°として検出する一方、アクセルペダルの全開状態をアクセル踏み込み量APS=90°として検出する。
【0019】
ここで、エンジン制御コントローラ4は、図2に示すように構成され、変速比検出部33は、無段変速機10の入力軸回転数Ntと出力軸回転数Noの比から実際の変速比を演算し、車速検出部34は無段変速機10の出力軸回転数Noに所定の定数(ファイナルギア比やタイヤ半径等)を乗じて車速VSPを演算する。
【0020】
そして、目標駆動力決定部31は、車速VSPとアクセル踏み込み量APSより、図5に示すマップに基づいて、アクセル踏み込み量APSをパラメータとして、検出した車速VSPに応じた目標駆動力tFdを演算する。
【0021】
目標エンジントルク決定部32は、この目標駆動力tFdと変速比検出部33が検出した実際の変速比に応じて目標エンジントルクtTeを決定する。
【0022】
そして、エンジントルク制御部36は、目標エンジントルク決定部32が決定した目標エンジントルクtTeとなるように、燃料噴射量や点火時期などの制御を行う。
【0023】
一方、LANを介してエンジン制御コントローラ4に接続された変速制御コントローラ2は、同じく図2に示すように、上記目標駆動力tFdに基づいて目標変速比tRTOを決定する。
【0024】
図2において、変速制御コントローラ2は、無段変速機10の入力軸回転数Ntと、出力軸回転数Noの比から実際の変速比を演算する変速比検出部21と、同じく出力軸回転数Noに所定の定数を乗じて車速VSPを演算する車速検出部22と、LANを介して読み込んだ目標駆動力tFdと、上記アクセル踏み込み量APS及び車速VSPから目標変速比tRTOを演算する目標変速比決定部23と、この目標変速比tRTOと実際の変速比が一致するようにステップモータ3を駆動する変速比制御部24から構成される。
【0025】
さらに、目標変速比決定部23の詳細は、図3に示すように構成される。
【0026】
まず、目標入力軸回転数演算部231(第1目標値演算手段)は、上記エンジン制御コントローラ4から読み込んだ目標駆動力tFdをパラメータとして、図6に示すマップによって車速VSPに応じた目標入力軸回転数tNtを演算する。
【0027】
次に、疑似アクセル開度演算部232(擬似操作量換算値演算手段)では、図7のマップに基づいて、目標入力軸回転数tNtを、疑似的なアクセルペダル操作量であるアクセル踏度換算値VAPSに換算し、アクセル踏度換算値VAPSと目標入力軸回転数tNtを一意で対応させる。
【0028】
ここで、図7の変換マップは、上記図6で求めた目標入力軸回転数tNtが、アクセル踏み込み量APS毎に車速VSPに応じて最小目標入力軸回転数N1から最大目標入力軸回転数N2の間で変化するのに対し、目標入力軸回転数tNtに応じたアクセル踏度換算値VAPSは、車速VSPにかかわらず一定となるよう変換され、図7において、目標入力軸回転数tNtが所定の最小目標入力軸回転数N1以下のときにVAPS=0°となる一方、所定の最大回転数N2以上になるとVAPS=90°となる。
【0029】
一方、ヒステリシス演算部234(ヒステリシス設定手段)では、このアクセル踏度換算値VAPSにヒステリシスを付与するため、車速VSPに応じたヒステリシス値Hysを図8のマップに基づいて演算する。
【0030】
この図8のマップは、車速VSPが低いときには、ヒステリシス値Hysを小さく設定する一方、車速VSPが高い領域では、ヒステリシス値Hysが大きくなるように、予め設定したものである。
【0031】
次に、補正アクセル踏度換算部233(補正手段)では、変換したアクセル踏度換算値VAPSに、ヒステリシス演算部234で求めたヒステリシス値Hysを付与し、図9に示すように、目標入力軸回転数tNtに一意で対応するアクセル踏度換算値VAPSに、車速VSPに応じたヒステリシス値Hysを加えて補正アクセル踏度換算値VAPS1を演算する。
【0032】
ヒステリシス値Hysは、図9に示すように、その大きさに応じて、アクセル踏度換算値VAPSの増大側に対して車速VSPに応じた不感帯を付与する一方、減少側では、得られたアクセル踏度換算値VAPSとなるように、補正アクセル踏度換算値VAPS1を設定する。
【0033】
そして、補正目標入力軸回転数演算部235(第2目標値演算手段)では、図10のマップに示すように、上記補正アクセル踏度換算値VAPS1に応じて、一意に決定される目標入力軸回転数を補正目標入力軸回転数tNt1として出力する。
【0034】
なお、補正目標入力軸回転数演算部235には、車速VSPも入力されるが、これは、従来の変速制御装置を流用して目標駆動力制御を行うためであり、従来の変速制御で行われていた、車速VSPとアクセル踏み込み量APSに応じた目標入力軸回転数のマップに代わって、補正アクセル踏度換算値VAPS1と補正目標入力軸回転数tNt1のマップを採用したもので、この図10のマップでは、入力された車速VSPは、結果的に無視される。
【0035】
こうして、補正アクセル踏度換算値VAPS1に応じた補正目標入力軸回転数tNt1を、出力軸回転数Noで除したものを目標変速比tRTOとして、図2に示した変速比制御部24へ送出する。
【0036】
ここで、変速制御コントローラ2で行われる変速制御について、図4のフローチャートを参照しながら以下に詳述する。なお、図4のフローチャートは所定時間毎、例えば、10msec毎に実行されるものである。
【0037】
まず、図4のステップS1では、車両の運転状態としてアクセル踏み込み量センサ5からアクセル踏み込み量APSと、無段変速機10からの入力軸回転数Nt、出力軸回転数Noを読み込み、ステップS2では、出力軸回転数Noに所定の変換定数Aを乗じて車速VSPを得る。
【0038】
次にステップS3では、LANを介して接続されたエンジン制御コントローラ4から、目標駆動力tFdを読み込む。
【0039】
そして、ステップS4では、図6に示したマップに基づいて、目標駆動力tFdをパラメータとして、車速VSPに応じた目標入力軸回転数tNtを演算する。
【0040】
次にステップS5では、図7のマップに基づいて、目標入力軸回転数tNtに一意で対応するアクセル踏度換算値VAPSが、上記疑似アクセル開度演算部232と同様に演算される。
【0041】
ステップS6では、図8のマップに基づいて、車速VSPに応じたヒステリシス値Hysが演算されて、車速VSPが低いときには、ヒステリシス値Hysを小さく設定する一方、車速VSPが高い領域では、ヒステリシス値Hysが大きくなるように設定される。
【0042】
そして、ステップS7では、上記ステップS5で求めたアクセル踏度換算値VAPSに、上記ステップS6で求めたヒステリシス値Hysを付与して、図9に示したように、検出した車速VSPの大きさに応じたヒステリシスを有する補正アクセル踏度換算値VAPS1が演算される。
【0043】
こうして、ヒステリシスを付与された補正アクセル踏度換算値VAPS1は、ステップS8において、図10に示すように、予め設定されたマップに基づいて補正目標入力軸回転数tNt1に変換されて、ステップS9で、この補正目標入力軸回転数tNt1を出力軸回転数Noで除したものが、目標変速比tRTOとして算出され、実際の変速比が、この目標変速比tRTOへ一致するようにステップモータ3が駆動される。
【0044】
以上のように、アクセル踏み込み量APSと車速VSPに応じて得られた目標駆動力tFdから、図6のマップによって、車速VSPに応じた目標入力軸回転数tNtを求めた後、この目標入力軸回転数tNtを擬似的なアクセルペダル操作量であるアクセル踏度換算値VAPSに変換し、このアクセル踏度換算値VAPSに基づいて目標駆動力tFdに応じた変速制御を行う際に、アクセル踏度換算値VAPSに対して、車速VSPの大きさに応じたヒステリシスが付与される。
【0045】
そして、ヒステリシス値Hysで補正した補正アクセル踏度換算値VAPS1は、図9に示すように、低車速時には図中実線で示すように、ヒステリシス値Hysが小さいため、不感帯も小さくなって、アクセル踏み込み量APSの微小な変化(換言すれば目標駆動力tFdの変化で、目標入力軸回転数tNtとなる)に対しても補正アクセル踏度換算値VAPS1は、迅速に立ち上がって補正目標入力軸回転数tNt1を増大させることができる。
【0046】
一方、高車速時には、車速VSPの増大に応じてヒステリシス値Hysも増大するため、図中破線及び一点鎖線で示すように、不感帯も徐々に大きくなって、アクセル踏み込み量APSが微小に変化しても、補正目標入力軸回転数tNt1の立ち上がりが遅くなるため、アクセル踏み込み量APSの僅かな変化に応じて変速比が過大に変動するのを防ぐことができる。
【0047】
こうして、目標駆動力tFdに応じた変速制御を行う場合には、車速VSP毎に目標入力軸回転数tNtの最大値、換言すれば、アクセル踏度換算値VAPSの最大値も異なるので、前記従来例のようにヒステリシスを固定にした場合、低車速時ではアクセル踏み込み量APSを大きく変化させないと変速せず、高車速時では、僅かなアクセル踏み込み量APSの変化に応じて変速が生じてしまうが、本発明のように、アクセル踏度換算値VAPSに付与するヒステリシス値Hysを車速VSPに応じて変化させ、特に、低車速時ではヒステリシス値Hysを小さく、高車速時ではヒステリシス値Hysを大きく設定することにより、運転者に違和感を与えることなく目標駆動力tFdに応じた変速制御を行うことが可能となって、無段変速機の運転性を向上させることができるのである。
【0048】
なお、図10の変速マップでは、補正アクセル踏度換算値VAPS1(補正目標入力軸回転数tNt1)の代表点について示したが、ヒステリシス値Hysの大きさに応じて補間を行うことで、任意の補正目標入力軸回転数tNt1を得ることができ、また、補正アクセル踏度換算値VAPS1は車速VSPにかかわらず一定であるが、図中一点鎖線で示したように、無段変速機10の機構的な限界により制限される最Hi(最小)変速比または最Lo(最大)変速比を超えることはない。
【0049】
また、アクセル踏度換算値VAPSに付与するヒステリシス値Hysは、図11に示すように、アクセル踏み込み量APSが最大(全開)のときに実現可能な車速VSPとアクセル踏度換算値VAPSの関係から、図中実線で示した各車速VSP毎の最大のアクセル踏度換算値VAPSに所定の比率α%を乗じた値を、ヒステリシス値Hysとしてもよく、この場合も、ヒステリシス値Hysは、低車速時に小さく、高車速時に大きく設定することができる。
【0050】
なお、上記実施形態において、無段変速機としてトロイダル型無段変速機を採用した場合について述べたが、ベルト式無段変速機であってもよい。
【0051】
また、上記実施形態においては、エンジン制御コントローラ4が目標駆動力tFdを演算する場合について述べたが、目標駆動力tFdを統括するコントローラを独立させて、LANやバス等の通信手段によって接続してもよい。
【図面の簡単な説明】
【図1】本発明の一実施形態を示す無段変速機の概略構成図。
【図2】エンジン制御コントローラ、変速制御コントローラの一例を示す概略構成図。
【図3】同じく変速制御コントローラの目標変速比決定部の一例を示す概略構成図。
【図4】変速制御コントローラで行われる制御のフローチャート。
【図5】車速VSPとアクセル踏み込み量APSに応じた目標駆動力tFdのマップである。
【図6】車速VSPと目標駆動力tFdに応じた目標入力軸回転数tNtのマップである。
【図7】目標入力軸回転数tNtに対応したアクセル踏度換算値VAPSのマップである。
【図8】車速VSPとヒステリシス値Hysの関係を示すマップである。
【図9】アクセル踏度換算値VAPSにヒステリシス値Hysを付与した補正アクセル踏度換算値VAPS1のマップである。
【図10】補正アクセル踏度換算値VAPS1と目標入力回転数tNt1のマップである。
【図11】他の実施形態を示し、車速VSPに応じたヒステリシス値Hysのマップである。
【符号の説明】
2 変速制御コントローラ
4 エンジン制御コントローラ
5 アクセル踏み込み量センサ
6 入力軸回転センサ
7 出力軸回転センサ
10 無段変速機
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement in a shift control device for a continuously variable transmission employed in a vehicle or the like, and particularly to a shift control according to a target value of a driving force.
[0002]
[Prior art]
2. Description of the Related Art As a shift control device of a continuously variable transmission used in a vehicle, a device that controls a gear ratio based on a vehicle speed and an amount of depression of an accelerator pedal has been widely used, and in recent years, an ABS (anti-lock brake system) has been used. ) And TCS (Traction Control System) have become widespread, and there are known systems that control the engine and the continuously variable transmission based on the target driving force of the vehicle including the operating states of the ABS and TCS. There is JP-A-11-63188 proposed by the present applicant.
[0003]
This includes a command device that integrally controls the driving force of the vehicle, the command device obtains a target driving force based on the driving state of the vehicle, and calculates a gear ratio and a target engine torque according to the target driving force. , These target driving force or a target gear ratio and a target engine torque according to the target driving force are commanded to a shift control device or an engine control device, and each control device performs automatic stepless transmission based on a target value from the command device. And controls the engine.
[0004]
Japanese Patent Application No. Hei 10-289613 proposed by the present applicant as a continuously variable transmission that sets a gear ratio according to a target driving force is disclosed. The input shaft rotation speed is obtained, and the target input shaft rotation speed is converted into an accelerator pedal depression conversion value, which is a pseudo accelerator pedal operation amount, using a map set in advance. By obtaining a suitable target gear ratio, it is possible to determine a gear ratio in accordance with an operating state and a target driving force while using a conventional gear change control device for a continuously variable transmission.
[0005]
In addition, it has been known that an accelerator pedal operation amount is provided with hysteresis when performing shift control or engine control of an automatic transmission, and a control command is excessively varied with respect to a driver's operation of the accelerator pedal. To prevent
[0006]
[Problems to be solved by the invention]
However, in the above-described conventional shift control device for a continuously variable transmission, a predetermined hysteresis may be provided when an accelerator pedal depression degree conversion value is calculated from a target driving force and a target input shaft speed corresponding to an operating state. Although it is conceivable, since the accelerator pedal depression conversion value uniquely corresponds to the target input shaft rotation speed, the maximum value of the accelerator pedal depression conversion value differs depending on the vehicle speed, and when a predetermined hysteresis is set, for example, At low vehicle speeds, the rate of hysteresis becomes excessive, and when the actual accelerator pedal depression amount is small, the shift is not performed. For example, the dead zone is widened, giving the driver an uncomfortable feeling. On the other hand, if the hysteresis is set at low vehicle speed, the dead zone becomes too narrow at high vehicle speed, and the shift is performed even for a slight accelerator depression amount. There was a problem that would.
[0007]
Therefore, the present invention has been made in view of the above-described problems, and uses a pseudo accelerator pedal operation amount that uniquely corresponds to a target input shaft rotation speed to perform shift control so as to achieve a target driving force. An object of the present invention is to perform a smooth shift control without giving a feeling of strangeness to a driver.
[0008]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a target driving force calculating means for calculating a target driving force according to a driving state, and a first target value calculating means for calculating a target input shaft speed or a target gear ratio based on the target driving force. A pseudo operation amount conversion value calculation means for calculating a pseudo accelerator pedal operation amount conversion value corresponding to an output of the first target value calculation means; a hysteresis setting means for setting hysteresis in accordance with an operating state; Correction means for calculating a value obtained by giving the hysteresis to the pedal operation amount conversion value as a corrected accelerator pedal operation amount conversion value; and a target input shaft speed or a target gear ratio based on the corrected accelerator pedal operation amount conversion value. a second target value calculating means for calculating, and a shift control means for controlling the gear ratio based on the output of the second target value calculating means, said hysteresis setting means While at the time of low vehicle speed is set smaller the hysteresis, to set a large hysteresis at high speed.
[0010]
Further, a second invention provides a target driving force calculating means for calculating a target driving force according to a driving state, and a first target value calculation for calculating a target input shaft speed or a target gear ratio based on the target driving force. Means, pseudo operation amount conversion value calculation means for calculating a pseudo accelerator pedal operation amount conversion value corresponding to the output of the first target value calculation means, hysteresis setting means for setting hysteresis in accordance with the operating state, Correction means for calculating a value obtained by giving the hysteresis to the accelerator pedal operation amount conversion value as a corrected accelerator pedal operation amount conversion value; and a target input shaft speed or a target shift based on the corrected accelerator pedal operation amount conversion value. comprising a second target value calculating means for calculating a ratio, and a shift control means for controlling the gear ratio based on the output of the second target value calculating means, the hysteresis setting Stage, the maximum value of the accelerator pedal operation amount conversion value for each vehicle speed, calculates the hysteresis by multiplying a predetermined ratio.
[0011]
【The invention's effect】
Therefore, the present invention provides a method for controlling a pseudo accelerator pedal operation amount conversion value in association with a target input shaft speed or a target gear ratio when performing gear shift control in accordance with a target driving force. Since the maximum value of the target input shaft rotation speed, in other words, the maximum value of the accelerator pedal operation amount conversion value is also different, if the hysteresis is fixed as in the above-described conventional example, the accelerator depression amount does not greatly change at a low vehicle speed. When the vehicle speed is high, the shift occurs in response to a slight change in the amount of accelerator depression, whereas the hysteresis to be applied to the accelerator pedal operation amount conversion value is changed according to the driving state. In addition, it is possible to obtain the target driving force while performing the shift according to the driver's intention regardless of the vehicle speed.
[0012]
The reduced hysteresis at low speed, since the time of high vehicle speed and to set a large hysteresis, when vehicle speed is low, since hysteresis is small, the dead zone also becomes small, the correction accelerator pedal with respect to small changes of the accelerator depression amount The manipulated variable conversion value can be quickly raised to change the gear ratio, and at high vehicle speed, the hysteresis increases as the vehicle speed increases, so that the dead zone also gradually increases, and the accelerator pedal depression amount becomes small. Excessive fluctuation of the gear ratio according to the change can be prevented, and drivability can be improved.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
[0014]
FIG. 1 shows an example in which a toroidal type continuously variable transmission is adopted as the continuously variable transmission. An engine control controller 4 for controlling the engine 1 and a shift control controller 2 for controlling the continuously variable transmission 10 include: They are connected via communication means such as a LAN.
[0015]
The engine controller 4 calculates a target driving force tFd according to the driving state of the vehicle and the like, controls the fuel injection amount and the ignition timing of the engine 1 based on the target driving force tFd, and communicates with a communication device such as a LAN. The target drive force tFd is transmitted to the shift control controller 2 via the control unit 2, and the shift control controller 2 controls the gear ratio of the continuously variable transmission 10 based on the target drive force tFd.
[0016]
The continuously variable transmission 10 is connected to the engine 1 via a torque converter T / C having a lock-up clutch L / U, and a step motor 3 as an actuator responsive to a command value of a shift control controller 2 is not shown. The speed ratio is continuously controlled through a hydraulic control device such as a speed change control valve.
[0017]
The shift control controller 2 reads the accelerator depression amount APS corresponding to the driver's accelerator pedal operation from the accelerator depression amount sensor 5 in addition to the target driving force tFd read from the engine control controller 4 and The input shaft rotation speed Nt detected by the input shaft rotation sensor 6 and the output shaft rotation speed No detected by the output shaft rotation sensor 7 are read, respectively, and the step motor 3 is controlled by the step motor 3 so as to achieve a gear ratio corresponding to the target driving force tFd. Perform control.
[0018]
The accelerator depression amount sensor 5 detects, for example, the released state of the accelerator pedal as the accelerator depression amount APS = 0 °, and detects the fully opened state of the accelerator pedal as the accelerator depression amount APS = 90 °.
[0019]
Here, the engine control controller 4 is configured as shown in FIG. 2, and the gear ratio detection unit 33 calculates the actual gear ratio from the ratio between the input shaft rotation speed Nt and the output shaft rotation speed No of the continuously variable transmission 10. The vehicle speed detection unit 34 calculates the vehicle speed VSP by multiplying the output shaft rotation speed No of the continuously variable transmission 10 by a predetermined constant (final gear ratio, tire radius, and the like).
[0020]
Then, the target driving force determination unit 31 calculates the target driving force tFd according to the detected vehicle speed VSP using the accelerator depression amount APS as a parameter based on the vehicle speed VSP and the accelerator depression amount APS based on the map shown in FIG. .
[0021]
The target engine torque determining unit 32 determines the target engine torque tTe according to the target driving force tFd and the actual gear ratio detected by the gear ratio detecting unit 33.
[0022]
Then, the engine torque control unit 36 controls the fuel injection amount, the ignition timing, and the like so that the target engine torque tTe determined by the target engine torque determination unit 32 is obtained.
[0023]
On the other hand, the transmission control controller 2 connected to the engine control controller 4 via the LAN determines the target transmission ratio tRTO based on the target driving force tFd as shown in FIG.
[0024]
In FIG. 2, a speed change controller 2 includes a speed ratio detection unit 21 that calculates an actual speed ratio from a ratio between the input shaft speed Nt of the continuously variable transmission 10 and the output shaft speed No. A vehicle speed detecting unit 22 that calculates a vehicle speed VSP by multiplying No by a predetermined constant, a target speed ratio tRTO that calculates a target speed ratio tRTO from the target driving force tFd read via the LAN, the accelerator depression amount APS, and the vehicle speed VSP. It comprises a determining unit 23 and a speed ratio control unit 24 that drives the step motor 3 so that the target speed ratio tRTO matches the actual speed ratio.
[0025]
Further, the details of the target gear ratio determination unit 23 are configured as shown in FIG.
[0026]
First, the target input shaft rotational speed calculating section 231 (first target value calculating means) uses the target driving force tFd read from the engine control controller 4 as a parameter and obtains the target input shaft corresponding to the vehicle speed VSP according to the map shown in FIG. The rotation speed tNt is calculated.
[0027]
Next, the pseudo accelerator opening degree calculation unit 232 (pseudo operation amount conversion value calculation means) converts the target input shaft rotation speed tNt into an accelerator pedal depression degree conversion, which is a pseudo accelerator pedal operation amount, based on the map of FIG. The value is converted into a value VAPS, and the accelerator depression degree conversion value VAPS is uniquely associated with the target input shaft speed tNt.
[0028]
Here, the conversion map in FIG. 7 shows that the target input shaft rotation speed tNt obtained in FIG. 6 is changed from the minimum target input shaft rotation speed N1 to the maximum target input shaft rotation speed N2 in accordance with the vehicle speed VSP for each accelerator depression amount APS. However, the accelerator pedal depression degree conversion value VAPS according to the target input shaft rotation speed tNt is converted to be constant irrespective of the vehicle speed VSP, and in FIG. 7, the target input shaft rotation speed tNt is a predetermined value. VAPS = 0 ° when the rotation speed is equal to or less than the minimum target input shaft rotation speed N1, and VAPS = 90 ° when the rotation speed exceeds a predetermined maximum rotation speed N2.
[0029]
On the other hand, the hysteresis calculation section 234 (hysteresis setting means) calculates a hysteresis value Hys corresponding to the vehicle speed VSP based on the map of FIG. 8 in order to add hysteresis to the accelerator pedal depression degree conversion value VAPS.
[0030]
The map of FIG. 8 is set in advance so that the hysteresis value Hys is set small when the vehicle speed VSP is low, while the hysteresis value Hys is set large in the region where the vehicle speed VSP is high.
[0031]
Next, the corrected accelerator pedal depression conversion unit 233 (correction means) adds the hysteresis value Hys obtained by the hysteresis calculation unit 234 to the converted accelerator pedal depression conversion value VAPS, and as shown in FIG. A corrected accelerator depression degree conversion value VAPS1 is calculated by adding a hysteresis value Hys corresponding to the vehicle speed VSP to an accelerator depression degree conversion value VAPS uniquely corresponding to the rotation speed tNt.
[0032]
As shown in FIG. 9, the hysteresis value Hys gives a dead zone corresponding to the vehicle speed VSP to the increasing side of the accelerator pedal depression conversion value VAPS according to the magnitude thereof, while the obtained accelerator A corrected accelerator pedal depression conversion value VAPS1 is set so as to be a pedal depression conversion value VAPS.
[0033]
Then, the corrected target input shaft rotation speed calculating section 235 (second target value calculating means), as shown in the map of FIG. 10, determines the target input shaft uniquely determined according to the corrected accelerator pedal depression degree conversion value VAPS1. The rotation speed is output as the corrected target input shaft rotation speed tNt1.
[0034]
The vehicle speed VSP is also input to the correction target input shaft rotation speed calculation unit 235. This is for performing target drive force control using a conventional shift control device. Instead of the map of the target input shaft rotation speed corresponding to the vehicle speed VSP and the accelerator depression amount APS, a map of the corrected accelerator pedal depression degree conversion value VAPS1 and the corrected target input shaft rotation speed tNt1 is adopted. In the map of 10, the input vehicle speed VSP is consequently ignored.
[0035]
In this way, a value obtained by dividing the corrected target input shaft rotation speed tNt1 corresponding to the corrected accelerator pedal depression degree conversion value VAPS1 by the output shaft rotation speed No is sent to the gear ratio control unit 24 shown in FIG. 2 as the target gear ratio tRTO. .
[0036]
Here, the shift control performed by the shift control controller 2 will be described in detail below with reference to the flowchart of FIG. Note that the flowchart of FIG. 4 is executed every predetermined time, for example, every 10 msec.
[0037]
First, in step S1 of FIG. 4, the accelerator depression amount APS, the input shaft rotation speed Nt, and the output shaft rotation speed No from the continuously variable transmission 10 are read from the accelerator depression amount sensor 5 as the driving state of the vehicle, and in step S2, , The vehicle speed VSP is obtained by multiplying the output shaft rotation number No by a predetermined conversion constant A.
[0038]
Next, in step S3, the target driving force tFd is read from the engine controller 4 connected via the LAN.
[0039]
Then, in step S4, based on the map shown in FIG. 6, a target input shaft rotation speed tNt according to the vehicle speed VSP is calculated using the target driving force tFd as a parameter.
[0040]
Next, in step S5, an accelerator pedal depression degree conversion value VAPS uniquely corresponding to the target input shaft rotation speed tNt is calculated based on the map of FIG.
[0041]
In step S6, the hysteresis value Hys corresponding to the vehicle speed VSP is calculated based on the map of FIG. 8, and when the vehicle speed VSP is low, the hysteresis value Hys is set small, while in the region where the vehicle speed VSP is high, the hysteresis value Hys is set. Is set to be large.
[0042]
In step S7, the hysteresis value Hys obtained in step S6 is added to the accelerator pedal depression degree conversion value VAPS obtained in step S5, and the magnitude of the detected vehicle speed VSP is adjusted as shown in FIG. A corrected accelerator pedal depression degree conversion value VAPS1 having a corresponding hysteresis is calculated.
[0043]
In this manner, the corrected accelerator pedal depression degree conversion value VAPS1 to which the hysteresis is added is converted into a corrected target input shaft rotation speed tNt1 based on a preset map in step S8, as shown in FIG. A value obtained by dividing the corrected target input shaft speed tNt1 by the output shaft speed No is calculated as a target speed ratio tRTO, and the stepping motor 3 is driven so that the actual speed ratio matches the target speed ratio tRTO. Is done.
[0044]
As described above, based on the accelerator depression amount APS and the target driving force tFd obtained according to the vehicle speed VSP, the target input shaft rotation speed tNt corresponding to the vehicle speed VSP is obtained from the map of FIG. The rotational speed tNt is converted into an accelerator pedal depression degree conversion value VAPS, which is a pseudo accelerator pedal operation amount, and the accelerator depression degree is determined when performing the shift control in accordance with the target driving force tFd based on the accelerator depression degree conversion value VAPS. Hysteresis corresponding to the magnitude of the vehicle speed VSP is given to the converted value VAPS.
[0045]
Then, as shown in FIG. 9, the corrected accelerator pedal depression degree conversion value VAPS1 corrected by the hysteresis value Hys has a small hysteresis value Hys as shown by a solid line in the figure at low vehicle speed, so that the dead zone becomes small, and the accelerator pedal is depressed. Even for a small change in the amount APS (in other words, a change in the target driving force tFd becomes the target input shaft rotation speed tNt), the corrected accelerator pedal depression degree conversion value VAPS1 quickly rises and the corrected target input shaft rotation speed tNt1 can be increased.
[0046]
On the other hand, when the vehicle speed is high, the hysteresis value Hys also increases in accordance with the increase in the vehicle speed VSP. Also, since the rise of the correction target input shaft rotation speed tNt1 is delayed, it is possible to prevent the gear ratio from excessively fluctuating according to a slight change in the accelerator depression amount APS.
[0047]
In this manner, when performing shift control in accordance with the target driving force tFd, the maximum value of the target input shaft rotation speed tNt, in other words, the maximum value of the accelerator pedal depression degree conversion value VAPS differs for each vehicle speed VSP. When the hysteresis is fixed as in the example, at low vehicle speed, the gear shift does not occur unless the accelerator depression amount APS is largely changed, and at high vehicle speed, the gear shift occurs according to a slight change in the accelerator depression amount APS. As in the present invention, the hysteresis value Hys given to the accelerator pedal depression degree conversion value VAPS is changed in accordance with the vehicle speed VSP. In particular, the hysteresis value Hys is set to be small at a low vehicle speed, and the hysteresis value Hys is set to be large at a high vehicle speed. By doing so, it is possible to perform the shift control according to the target driving force tFd without giving the driver an uncomfortable feeling, and the It is possible to improve the drivability.
[0048]
Although the shift map in FIG. 10 shows the representative point of the corrected accelerator pedal depression degree conversion value VAPS1 (corrected target input shaft rotation speed tNt1), any point can be obtained by performing interpolation according to the magnitude of the hysteresis value Hys. The corrected target input shaft rotation speed tNt1 can be obtained, and the corrected accelerator pedal depression degree conversion value VAPS1 is constant irrespective of the vehicle speed VSP, but as shown by the dashed line in the figure, the mechanism of the continuously variable transmission 10 is changed. It does not exceed the maximum Hi (minimum) gear ratio or the maximum Lo (maximum) gear ratio, which is limited by a practical limit.
[0049]
Further, as shown in FIG. 11, the hysteresis value Hys given to the accelerator depression degree conversion value VAPS is obtained from the relationship between the vehicle speed VSP and the accelerator depression degree conversion value VAPS which can be realized when the accelerator depression amount APS is the maximum (fully open). The hysteresis value Hys may be a value obtained by multiplying the maximum accelerator depression degree conversion value VAPS for each vehicle speed VSP indicated by a solid line in the figure by a predetermined ratio α%. In this case, too, the hysteresis value Hys is the low vehicle speed. It can be set small at times and large at high vehicle speeds.
[0050]
In the above embodiment, the case where the toroidal type continuously variable transmission is adopted as the continuously variable transmission has been described, but a belt type continuously variable transmission may be used.
[0051]
Further, in the above embodiment, the case where the engine control controller 4 calculates the target driving force tFd has been described. However, the controller that controls the target driving force tFd is made independent and connected by communication means such as a LAN or a bus. Is also good.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a continuously variable transmission showing one embodiment of the present invention.
FIG. 2 is a schematic configuration diagram showing an example of an engine control controller and a shift control controller.
FIG. 3 is a schematic configuration diagram showing an example of a target gear ratio determining unit of the gear change control controller.
FIG. 4 is a flowchart of control performed by a shift control controller.
FIG. 5 is a map of a target driving force tFd according to a vehicle speed VSP and an accelerator pedal depression amount APS.
FIG. 6 is a map of a target input shaft rotation speed tNt according to a vehicle speed VSP and a target driving force tFd.
FIG. 7 is a map of an accelerator pedal depression degree conversion value VAPS corresponding to a target input shaft rotation number tNt.
FIG. 8 is a map showing a relationship between a vehicle speed VSP and a hysteresis value Hys.
FIG. 9 is a map of a corrected accelerator pedal depression conversion value VAPS1 obtained by adding a hysteresis value Hys to an accelerator depression depression conversion value VAPS.
FIG. 10 is a map of a corrected accelerator pedal depression degree conversion value VAPS1 and a target input rotation speed tNt1.
FIG. 11 is a map of a hysteresis value Hys according to a vehicle speed VSP according to another embodiment.
[Explanation of symbols]
2 speed change controller 4 engine control controller 5 accelerator depression amount sensor 6 input shaft rotation sensor 7 output shaft rotation sensor 10 stepless transmission

Claims (2)

運転状態に応じて目標駆動力を演算する目標駆動力演算手段と、
前記目標駆動力に基づいて目標入力軸回転数または目標変速比を演算する第1目標値演算手段と、
前記第1目標値演算手段の出力に対応した擬似的なアクセルペダル操作量換算値を演算する擬似操作量換算値演算手段と、
運転状態に応じてヒステリシスを設定するヒステリシス設定手段と、
前記アクセルペダル操作量換算値に対して前記ヒステリシスを与えたものを補正アクセルペダル操作量換算値として演算する補正手段と、
前記補正アクセルペダル操作量換算値に基づいて目標入力軸回転数または目標変速比を演算する第2目標値演算手段と、
この第2目標値演算手段の出力に基づいて変速比を制御する変速制御手段とを備え
前記ヒステリシス設定手段は、低車速時には前記ヒステリシスを小さく設定する一方、高車速時にはヒステリシスを大きく設定することを特徴とする無段変速機の変速制御装置。
Target driving force calculating means for calculating a target driving force according to the driving state;
First target value calculating means for calculating a target input shaft rotation speed or a target gear ratio based on the target driving force;
Pseudo operation amount conversion value calculation means for calculating a pseudo accelerator pedal operation amount conversion value corresponding to the output of the first target value calculation means;
Hysteresis setting means for setting hysteresis according to the operation state;
Correction means for calculating a value obtained by giving the hysteresis to the accelerator pedal operation amount conversion value as a corrected accelerator pedal operation amount conversion value,
Second target value calculating means for calculating a target input shaft speed or a target speed ratio based on the corrected accelerator pedal operation amount conversion value;
Shift control means for controlling the gear ratio based on the output of the second target value calculating means ,
The shift control device for a continuously variable transmission , wherein the hysteresis setting means sets the hysteresis to be small at a low vehicle speed, and sets the hysteresis to be large at a high vehicle speed .
運転状態に応じて目標駆動力を演算する目標駆動力演算手段と、
前記目標駆動力に基づいて目標入力軸回転数または目標変速比を演算する第1目標値演算手段と、
前記第1目標値演算手段の出力に対応した擬似的なアクセルペダル操作量換算値を演算する擬似操作量換算値演算手段と、
運転状態に応じてヒステリシスを設定するヒステリシス設定手段と、
前記アクセルペダル操作量換算値に対して前記ヒステリシスを与えたものを補正アクセルペダル操作量換算値として演算する補正手段と、
前記補正アクセルペダル操作量換算値に基づいて目標入力軸回転数または目標変速比を演算する第2目標値演算手段と、
この第2目標値演算手段の出力に基づいて変速比を制御する変速制御手段とを備え、
前記ヒステリシス設定手段は、各車速毎のアクセルペダル操作量換算値の最大値に、予め設定した比率を乗じて前記ヒステリシスを演算することを特徴とする無段変速機の変速制御装置。
Target driving force calculating means for calculating a target driving force according to the driving state;
First target value calculating means for calculating a target input shaft rotation speed or a target gear ratio based on the target driving force;
Pseudo operation amount conversion value calculation means for calculating a pseudo accelerator pedal operation amount conversion value corresponding to the output of the first target value calculation means;
Hysteresis setting means for setting hysteresis according to the operation state;
Correction means for calculating a value obtained by giving the hysteresis to the accelerator pedal operation amount conversion value as a corrected accelerator pedal operation amount conversion value,
Second target value calculating means for calculating a target input shaft speed or a target speed ratio based on the corrected accelerator pedal operation amount conversion value;
Shift control means for controlling the gear ratio based on the output of the second target value calculating means,
A shift control device for a continuously variable transmission, wherein the hysteresis setting means calculates the hysteresis by multiplying a maximum value of an accelerator pedal operation amount conversion value for each vehicle speed by a preset ratio .
JP27365299A 1999-09-28 1999-09-28 Transmission control device for continuously variable transmission Expired - Fee Related JP3591390B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27365299A JP3591390B2 (en) 1999-09-28 1999-09-28 Transmission control device for continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27365299A JP3591390B2 (en) 1999-09-28 1999-09-28 Transmission control device for continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2001099290A JP2001099290A (en) 2001-04-10
JP3591390B2 true JP3591390B2 (en) 2004-11-17

Family

ID=17530679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27365299A Expired - Fee Related JP3591390B2 (en) 1999-09-28 1999-09-28 Transmission control device for continuously variable transmission

Country Status (1)

Country Link
JP (1) JP3591390B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5217018B2 (en) * 2008-11-04 2013-06-19 日産自動車株式会社 Shift control device for continuously variable transmission
JP5743876B2 (en) * 2011-12-26 2015-07-01 ジヤトコ株式会社 Shift control device for continuously variable transmission
JP5769615B2 (en) 2011-12-26 2015-08-26 ジヤトコ株式会社 Shift control device for continuously variable transmission
JP5267693B1 (en) * 2012-02-17 2013-08-21 トヨタ自動車株式会社 vehicle

Also Published As

Publication number Publication date
JP2001099290A (en) 2001-04-10

Similar Documents

Publication Publication Date Title
JP3237419B2 (en) Vehicle clutch control device
JP5388303B2 (en) Shift control device for continuously variable transmission
JP2000297672A (en) Drive force control device of vehicle
WO2008018568A1 (en) Output control device for internal combustion engine
JP2008239130A (en) Control device for vehicle
US7050898B2 (en) Vehicle driving force control
JP5025630B2 (en) Vehicle control device
JPH0543896B2 (en)
JP3220424B2 (en) Throttle control device
EP0421183A2 (en) Continuous speed variable transmission control apparatus
JPH11182274A (en) Throttle control device
JP3591390B2 (en) Transmission control device for continuously variable transmission
JPH09287489A (en) Driving-force controller for vehicle
KR100694741B1 (en) Method and device for controlling the drive unit of a vehicle
JP2002142310A (en) Motor torque controller for vehicle
JP3322110B2 (en) Transmission control device for continuously variable transmission
US6282465B1 (en) Driving force control for automotive vehicle
EP1036925B1 (en) Driving force control for automotive vehicle
JP3588818B2 (en) Power train control device during turning of vehicle
JP3551776B2 (en) Vehicle driving force control device
JPH07293649A (en) Gear ratio control device for continuously variable transmission
JP3856861B2 (en) Automatic transmission and throttle valve control method
JP3204079B2 (en) Vehicle driving force control device
JP2007514092A (en) Driving unit operating method and apparatus
JP2002142302A (en) Motor torque controller for vehicle

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees