JP3591023B2 - Biological sludge ozonation equipment - Google Patents

Biological sludge ozonation equipment Download PDF

Info

Publication number
JP3591023B2
JP3591023B2 JP00625095A JP625095A JP3591023B2 JP 3591023 B2 JP3591023 B2 JP 3591023B2 JP 00625095 A JP00625095 A JP 00625095A JP 625095 A JP625095 A JP 625095A JP 3591023 B2 JP3591023 B2 JP 3591023B2
Authority
JP
Japan
Prior art keywords
ozone
liquid
sludge
gas
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00625095A
Other languages
Japanese (ja)
Other versions
JPH08192196A (en
Inventor
英斉 安井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP00625095A priority Critical patent/JP3591023B2/en
Publication of JPH08192196A publication Critical patent/JPH08192196A/en
Application granted granted Critical
Publication of JP3591023B2 publication Critical patent/JP3591023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Treatment Of Sludge (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、生物汚泥をオゾン酸化するための生物汚泥のオゾン処理装置に関するものである。
【0002】
【従来の技術】
活性汚泥処理における余剰汚泥等の減容化などの目的で、余剰汚泥等の生物汚泥(以下、単に汚泥という場合がある)にオゾンを反応させて酸化分解することが行われている。
従来の汚泥のオゾン処理方法では、反応槽中に汚泥含有液を満たし、この汚泥含有液中にオゾン含有ガスを吹込んで気液接触させ、汚泥を分解する装置が用いられている。しかし、このような従来の装置は液深1m程度の反応槽を用いて大気圧下で運転されているため、オゾン濃度が低い状態で反応が行われ、反応速度は低い。このため汚泥をオゾンと充分に反応させるためには滞留時間を長くする必要があり、効率的な処理が行われないほか、装置が大型化するという問題点がある。オゾン濃度の高いオゾン含有ガスを使用すれば反応速度を高くすることはできるが、この場合は高価なオゾンが無駄に消費されやすく、処理コストが高くなる。また被処理液の機械的攪拌により気液接触面積を大きくし、処理効率を改善することもできるが、この場合も処理コストが高くなるという問題点がある。
【0003】
【発明が解決しようとする課題】
本発明の目的は、低コストで効率よく生物汚泥をオゾン処理することが可能で、しかも装置を小型化することができる生物汚泥のオゾン処理装置を提供することである。
【0004】
【課題を解決するための手段】
本発明は、生物汚泥含有液を受入れて0.5〜3kgf/cm2(ゲージ圧)の加圧状態でオゾン処理を行う反応槽と、
この反応槽の下部から槽内液を引抜いて頂部に循環する循環ポンプを有し、先端部は反応槽内の下部まで伸びて気液吹出部が設けられている循環路と、
給液ポンプを有し、前記循環路に接続して前記反応槽に生物汚泥含有液を加圧状態で導入する汚泥含有液導入路と、
循環路および汚泥含有液導入路の接続点と気液吹出部との中間部に設けられたエジェクタと、
このエジェクタに接続し、前記反応槽にオゾン含有ガスを加圧状態で導入するオゾン含有ガス導入路と、
前記反応槽内を前記加圧状態に維持するようにオゾン処理液および/または排オゾンガスを排出する圧力調整弁と
を備えていることを特徴とする生物汚泥のオゾン処理装置である。
【0005】
本発明で処理の対象となる生物汚泥は、好気性処理、嫌気性処理等において生成する生物汚泥を含む汚泥であり、余剰汚泥のように生物汚泥を主体とするものが好ましいが、凝集汚泥のように若干の無機物を含むものでもよい。
【0006】
本発明においてオゾン処理に用いる反応槽は、生物汚泥含有液中の汚泥を0.5〜3kgf/cm(ゲージ圧)、好ましくは0.7〜2kgf/cm(ゲージ圧)の加圧状態でオゾンと反応させて酸化処理するための槽である。この際使用するオゾン含有ガスとしてはオゾン含有空気、オゾン化空気などがあげられる。オゾン含有ガスの導入量は、導入される生物汚泥のVSS重量に対してオゾンとして0.2〜10重量%、好ましくは3〜5重量%とするのが望ましい。またオゾン含有ガスの流量は、反応槽のガス線速度として1〜100m/hr、好ましくは5〜20m/hrとするのが望ましい。
【0007】
オゾン含有ガスはエジェクタを用いるオゾン導入手段により、前記圧力となるように減圧下で反応槽に導入するが、オゾン発生機を前記圧力範囲で運転し、生成するオゾン含有ガスをそのまま加圧状態で反応槽に導入するように構成するのが好ましい。
【0008】
本発明では、反応槽内を前記加圧状態に維持するように、オゾン処理液および/または排オゾンガスを排出する圧力調整弁を設ける。圧力調整弁としては、反応槽内の圧力に応じて反応槽から排出するオゾン処理液の量を調整する圧力調整弁、または反応槽内の圧力に応じて反応槽から排出する排オゾンガスの量を調整する圧力調整弁、あるいはこれらを組合せたものなどが使用できる。また圧力調整弁としては、圧力に応じて弁が開閉したり、開度を調整して、反応槽内を所定の圧力に維持する減圧弁や自力式圧力調整弁、ならびに制御器の指令により所定の圧力となるように弁の開度が調整される圧力調整弁などが使用できる。
【0009】
なお本発明では、反応槽内の液のpHを一定値以下、例えばpH5以下に維持するように、酸注入装置を設けるのが好ましい。この場合反応槽に酸を注入してpH調整し、あるいは生物汚泥含有液に酸を注入してpH調整したのち反応槽に導入するように構成してもよい。これにより、さらに効率のよいオゾン処理を行うことができ、装置をさらに小型化できる。また反応槽における生物汚泥とオゾンとの接触効率を高くするために、反応槽に充填材層を形成したり、泡沫層を形成したり、あるいは撹拌機を設けたりすることもできる。
【0010】
【作用】
本発明の生物汚泥のオゾン処理装置においては、汚泥導入手段により反応槽に生物汚泥含有液を加圧状態で導入し、ここにオゾン導入手段によりオゾン含有ガスを加圧状態で導入して、0.5〜3kgf/cm(ゲージ圧)、好ましくは0.7〜2kgf/cm(ゲージ圧)に加圧した状態で生物汚泥含有液と接触させると、汚泥がオゾンと反応して酸化分解され、BOD成分に変換される。
【0011】
反応槽においてオゾンガスが液側に移動する際、物質移動の速度は接触面積と濃度差に比例するが、反応槽内を大気圧に維持すると、濃度差には限界がある。これに対して反応槽内を加圧状態に維持すると、圧力に比例して見かけ上高濃度のオゾン含有ガスを利用できるようになるので、物質移動速度が速くなってオゾン吸収効率が高くなり、汚泥の酸化効率が高くなる。例えば、空気からオゾンを発生させるオゾン発生機では、最大で50g/Nm程度、通常20g/Nm程度の濃度でしかオゾンを発生させることができないので、加圧しない場合のオゾン濃度は最大で50g/Nm程度、通常20g/Nm程度になるが、1kgf/cm(ゲージ圧)に加圧した場合の見かけ濃度は最大で100g/m程度、通常40g/m程度、また2kgf/cm(ゲージ圧)に加圧した場合の見かけ濃度は最大で150g/m程度、通常60g/m程度に上昇することになる。この場合、オゾン発生機で発生する加圧されたオゾン含有ガスをそのまま反応槽に導入しても、見かけ上高濃度のオゾン含有ガスを利用できる。
【0012】
本発明のオゾン処理装置は上記のように効率よくオゾン処理ができ、また加圧しない状態でオゾン処理する場合に比べて装置を小型化できるので、それだけ低コストの装置となる。オゾン濃度が高くなると汚泥との反応速度は指数的に上昇し、その結果として反応槽容積は指数的に小さくすることができる。また酸注入装置を設け、反応槽内をpH5以下に調整してオゾン処理を行うとオゾン処理効率はさらによくなり、装置をさらに小型化できる。
【0013】
本発明のオゾン処理装置は、生物処理槽、例えば好気性処理槽から生物汚泥含有液として槽内の混合液または余剰汚泥を引抜いてオゾン処理する場合に利用でき、こうしてオゾン処理したオゾン処理液は生物処理槽に導入して生物処理することにより、生物分解が可能となり、汚泥の減容化が行われる。
【0014】
【実施例】
次に本発明の実施例について図面により説明する。
図1、図3は参考例、図2は実施例の生物汚泥のオゾン処理装置を示す系統図である。図1において、1は反応槽で、0.5〜3kgf/cm2(ゲージ圧)、好ましくは0.7〜2kgf/cm2(ゲージ圧)の加圧状態でオゾン処理するように構成され、底部には給液ポンプ2を有する汚泥含有液導入路3と、酸注入装置4から連絡する酸注入路5とが接続している。また反応槽1内下部にはオゾン含有ガスを吹込む散気装置8が設けられ、オゾン発生機9からオゾン含有ガス導入路10が接続している。オゾン発生機9にはドライヤ11およびコンプレッサ12が連絡路13、14により連絡して直列に接続している。
【0015】
反応槽1内上部には圧力検出装置17および気液取出部18が設けられ、気液取出部18には気液排出路19が接続している。気液排出路19には圧力調整弁20およびpH検出装置21が設けられ、圧力検出装置17が圧力調整弁20、pH検出装置21が酸注入装置4を制御するように構成されている。
【0016】
図1の装置により生物汚泥含有液をオゾン処理するには、給液ポンプ2を駆動して汚泥含有液導入路3から生物汚泥含有液を加圧状態で反応槽1に導入するとともに、オゾン発生機9からオゾン含有ガス導入路10を通してオゾン含有ガスを前記圧力に加圧した状態で導入し、散気装置8で槽内液中に散気する。これにより槽内液とオゾン含有ガスとを接触させて汚泥を酸化分解する。オゾン含有ガスはコンプレッサ12で加圧した空気をドライヤ11で乾燥した後、オゾン発生機9で発生させる。オゾン発生機9でのオゾン生成は、通常0.5〜3kgf/cm(ゲージ圧)、効率面からは0.7〜2kgf/cm(ゲージ圧)で運転されるので、反応槽1の圧力をそれと同等または低い値に設定することにより、オゾン発生機9で発生する加圧状態のオゾン含有ガスをそのまま(さらに加圧することなく)反応槽1に導入して、反応槽1を加圧状態にすることができる。
【0017】
排オゾンガスおよび槽内液(オゾン処理液)は気液取出部18を通して、気液排出路19から排出する。このとき反応槽1内の圧力を圧力検出装置17で測定し、その信号を圧力調整弁20に送り、所定の圧力に達したときに圧力調整弁20を開閉することにより、反応槽1内を前記圧力に維持する。槽内液および排オゾンガスは通常一緒に気液取出部18から排出するが、槽内液の液面が気液取出部18の開口部より下になると排オゾンガスだけが排気され、また液面が上になるとオゾン処理液だけが取出され、液面は一定に維持される。オゾン処理液のpHはpH検出装置21で測定し、その信号を酸注入装置4に送り、酸注入路5から酸を注入して槽内液のpHを5以下に調整する。注入する酸としては、硫酸、塩酸、硝酸などの無機酸が好ましい。
【0018】
このように反応槽1内は加圧状態に維持されるので、オゾン吸収効率が高くなり、汚泥の酸化効率が高くなる。また槽内液のpHを5以下に制御しているので、さらに効率よくオゾン処理することができる。これにより効率よくオゾン処理を行うことができ、装置は小型化できる。
【0019】
なお図1の圧力調整弁20弁としては減圧弁または自力式圧力調整弁などを使用することもでき、この場合は圧力検出装置17は省略される。また図1の酸注入装置4、pH検出装置21および酸注入路5は、場合によっては省略することもできる。さらに排オゾンガスを排出するための排オゾンガス路と、オゾン処理液を取出すための処理液取出路を別々に設けることもできる。この場合排オゾンガス路および処理液取出路にそれぞれ圧力調整弁を設けて所定の圧力を維持する。図1の処理では、汚泥含有液としては、汚泥の好気性生物処理系の曝気槽内の混合液、その固液分離汚泥などが好ましく使用でき、オゾン処理液は好気性生物処理系の曝気槽に返送することができる。
【0020】
図2では、反応槽1には下部から槽内液を引抜いて頂部に循環するように循環路31が接続し、その中間部には循環ポンプ32が設けられ、その先端部は反応槽1内の下部まで伸びて気液吹出部33が設けられている。循環路31の途中には給液ポンプ2を有する汚泥含有液導入路3が接続し、この接続点と気液吹出部33の中間部にエジェクタ34が設けられ、オゾン発生機9からオゾン含有ガス導入路10が接続している。また反応槽1上部には圧力制御スイッチ35および気液取出部18が設けられ、気液取出部18には気液排出路19が接続している。気液排出路19には圧力制御スイッチ35により制御される圧力調整弁36およびpH検出装置21が設けられている。その他の構成は図1と同様である。
【0021】
図2の装置により生物汚泥含有液をオゾン処理するには、循環ポンプ32を駆動して槽内液を循環するとともに、給液ポンプ2を駆動して汚泥含有液導入路3から生物汚泥含有液を反応槽1に導入して加圧する。このときエジェクタ34からオゾン含有ガスを吸引して液と混合し、気液吹出部33から槽内液中に吹出す。この場合槽内液は激しく撹拌されるので、オゾンと汚泥とが十分に接触し、オゾン吸収率は高くなる。
【0022】
排オゾンガスおよび槽内液は気液取出部18を通して気液排出路19から排出する。図2の場合、圧力制御スイッチ35により圧力調整弁36を開閉することにより反応槽1内を前記圧力に維持する。その他の処理は図1の場合と同様である。
【0023】
図3では、反応槽1の下部に圧力制御スイッチ35および処理液取出部41が設けられ、処理液取出部41には処理液取出路42が接続している。処理液取出路42には圧力制御スイッチ35により制御される圧力調整弁36が設けられている。反応槽1上部には汚泥含有液導入装置43が設けられ、給液ポンプ2を有する汚泥含有液導入路3が接続している。汚泥含有液導入路3にはpH検出装置21が設けられ、また酸注入装置4から酸注入路5が接続し、pH調整後の生物汚泥含有液が反応槽1に導入できるように構成されている。また反応槽1上部には減圧弁44を有する排オゾンガス路45が接続している。反応槽1内には撹拌装置46が設けられている。その他の構成は図1の場合と同様である。
【0024】
図3の装置により生物汚泥含有液をオゾン処理するには、給液ポンプ2を駆動し、汚泥含有液導入路3を通して汚泥含有液導入装置43から生物汚泥含有液を加圧状態で反応槽1に導入する。この間液のpHをpH検出装置21で測定し、その信号を酸注入装置4に送り、pH5以下になるように酸注入装置4から酸を注入する。オゾン含有ガスは図1と同様にして加圧状態で反応槽1に導入し、槽内液と接触させて汚泥を分解する。槽内液は撹拌装置46により撹拌して気液接触効率をよくする。
【0025】
排オゾンガスは減圧弁44を通して排オゾンガス路45から排出する。オゾン処理液は圧力制御スイッチ35により制御される圧力調整弁36を通して処理液取出路42から取出す。図3の場合、圧力制御スイッチ35により圧力調整弁36を制御して反応槽1内を前記圧力に維持する。その他の処理は図1の場合と同様である。なお撹拌装置46は省略することもできるし、撹拌装置46の代わりに充填材層を反応槽1内に形成することもできる。
【0026】
試験例1
図1の装置により、次の条件で活性汚泥含有液にオゾン含有ガスを吹込んでオゾン処理した。その結果、オゾン含有ガスの空間速度が7h−1のとき、ガス吸収率は95%であった。従って2m/hの汚泥含有液を処理するために必要な反応槽の容積は10(Nm/h)÷7(1/h)=1.4mとなり、加圧を行わなかった後述の比較例1に比べて反応槽の容積を約1/2にまで小型化できることがわかる。
【0027】
汚泥含有液中の活性汚泥濃度:10kg/m
汚泥含有液の流量:2m/h
オゾン濃度:40g/Nm
オゾン含有ガスの流量:10Nm/h
オゾン含有ガスの線速度:10m/h
オゾン含有ガスの導入圧:1.0kgf/cm(ゲージ圧)
槽内液のpH:3
【0028】
試験例2
試験例1と同様にして、ただしオゾン含有ガスの導入圧を2.0kgf/cm(ゲージ圧)に変更してオゾン処理を行った。その結果、ガス吸収率95%を得るためのオゾン含有ガスの空間速度は11h−1であった。従って2m/hの汚泥含有液を処理するために必要な反応槽の容積は10(Nm/h)÷11(1/h)=0.9mとなり、比較例1に比べて反応槽の容積を約1/3にまで小型化できることがわかる。
【0029】
比較例1
試験例1において、反応槽内を加圧することなく大気開放状態でオゾン処理した。その結果、ガス吸収率95%を得るために必要なオゾン含有ガスの空間速度は3h−1であった。従って2m/hの汚泥含有液を処理するために必要な反応槽の容積は10(Nm/h)÷3(1/h)=3.3mであることがわかる。
【0030】
【発明の効果】
本発明の生物汚泥のオゾン処理装置では、反応槽内を所定の加圧状態に維持してオゾン処理するようにしているので、オゾンの濃度差を大きくしてオゾン吸収効率を高くできるとともに、装置を小型化することができ、これにより低コストで効率よく生物汚泥をオゾン処理することが可能である。また循環ポンプを駆動して槽内液を循環するとともに、給液ポンプを駆動して汚泥含有液導入路から生物汚泥含有液を反応槽に導入して加圧し、エジェクタからオゾン含有ガスを吸引して液と混合し、気液吹出部から槽内液中に吹出すことにより、槽内液は激しく撹拌されるので、オゾンと汚泥とが十分に接触し、オゾン吸収率は高くなる。
【図面の簡単な説明】
【図1】参考例の生物汚泥のオゾン処理装置を示す系統図である。
【図2】施例の生物汚泥のオゾン処理装置を示す系統図である。
【図3】別の参考例の生物汚泥のオゾン処理装置を示す系統図である。
【符号の説明】
1 反応槽
2 給液ポンプ
3 汚泥含有液導入路
4 酸注入装置
5 酸注入路
8 散気装置
9 オゾン発生機
10 オゾン含有ガス導入路
11 ドライヤ
12 コンプレッサ
13、14 連絡路
17 圧力検出装置
18 気液取出部
19 気液排出路
20、36 圧力調整弁
21 pH検出装置
31 循環路
32 循環ポンプ
33 気液吹出部
34 エジェクタ
35 圧力制御スイッチ
41 処理液取出部
42 処理液取出路
43 汚泥含有液導入装置
44 減圧弁
45 排オゾンガス路
46 撹拌装置
[0001]
[Industrial applications]
The present invention relates to a biological sludge ozone treatment apparatus for oxidizing biological sludge with ozone.
[0002]
[Prior art]
BACKGROUND ART For the purpose of reducing the volume of surplus sludge and the like in activated sludge treatment, biological sludge such as surplus sludge (hereinafter sometimes simply referred to as sludge) is reacted with ozone to perform oxidative decomposition.
In a conventional sludge ozone treatment method, an apparatus is used which fills a reaction tank with a sludge-containing liquid, injects an ozone-containing gas into the sludge-containing liquid to make gas-liquid contact, and decomposes the sludge. However, since such a conventional apparatus is operated under atmospheric pressure using a reaction tank having a liquid depth of about 1 m, the reaction is performed in a state where the ozone concentration is low, and the reaction speed is low. For this reason, in order to sufficiently react sludge with ozone, it is necessary to lengthen the residence time, and there is a problem that efficient treatment is not performed and the apparatus becomes large. If an ozone-containing gas having a high ozone concentration is used, the reaction rate can be increased. However, in this case, expensive ozone is easily wasted and the processing cost is increased. Further, the gas-liquid contact area can be increased by mechanically stirring the liquid to be treated to improve the treatment efficiency, but also in this case, there is a problem that the treatment cost is increased.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide a biological sludge ozonation apparatus that can efficiently ozone biological sludge at low cost and that can reduce the size of the apparatus.
[0004]
[Means for Solving the Problems]
The present invention provides a reaction tank that receives a biological sludge-containing liquid and performs ozone treatment under a pressurized state of 0.5 to 3 kgf / cm 2 (gauge pressure);
A circulation pump that draws the liquid in the tank from the lower part of the reaction tank and circulates to the top part, the tip part of which extends to the lower part in the reaction tank and is provided with a gas-liquid blowing part;
A sludge-containing liquid introduction path having a liquid supply pump and connected to the circulation path to introduce the biological sludge-containing liquid into the reaction tank in a pressurized state,
An ejector provided at an intermediate portion between the connection point of the circulation path and the sludge-containing liquid introduction path and the gas-liquid blowing section,
An ozone-containing gas introduction passage connected to the ejector and introducing the ozone-containing gas into the reaction tank in a pressurized state;
A biological sludge ozone treatment apparatus, comprising: an ozone treatment liquid and / or a pressure regulating valve for discharging exhausted ozone gas so as to maintain the inside of the reaction tank in the pressurized state.
[0005]
The biological sludge to be treated in the present invention is a sludge containing biological sludge generated in aerobic treatment, anaerobic treatment and the like, and is preferably a sludge mainly composed of biological sludge such as excess sludge. It may contain some inorganic substances as described above.
[0006]
The reaction tank used for the ozone treatment in the present invention is a pressurized state of the sludge in the biological sludge-containing liquid at a pressure of 0.5 to 3 kgf / cm 2 (gauge pressure), preferably 0.7 to 2 kgf / cm 2 (gauge pressure). This is a tank for oxidizing by reacting with ozone. The ozone-containing gas used at this time includes ozone-containing air, ozonized air, and the like. The amount of ozone-containing gas introduced is preferably 0.2 to 10% by weight, more preferably 3 to 5% by weight, as ozone, based on the VSS weight of the introduced biological sludge. Further, the flow rate of the ozone-containing gas is desirably 1 to 100 m / hr, preferably 5 to 20 m / hr as the gas linear velocity of the reaction tank.
[0007]
An ozone introducing means ozone containing gas using an ejector, but you introduced into the reaction vessel under reduced pressure so that the pressure, operating the ozone generator in the pressure range, as pressurized ozone-containing gas produced It is preferable to introduce into the reaction vessel at
[0008]
In the present invention, a pressure regulating valve for discharging the ozone treatment liquid and / or the discharged ozone gas is provided so as to maintain the inside of the reaction tank in the above-mentioned pressurized state. As the pressure regulating valve, a pressure regulating valve that regulates the amount of the ozone treatment liquid discharged from the reaction tank according to the pressure in the reaction tank, or the amount of exhausted ozone gas discharged from the reaction tank according to the pressure within the reaction vessel A pressure adjusting valve for adjusting the pressure or a combination thereof can be used. In addition, as the pressure regulating valve, the valve opens and closes in accordance with the pressure, or the degree of opening is adjusted, and a pressure reducing valve or a self-acting type pressure regulating valve that maintains the inside of the reaction tank at a predetermined pressure, and a predetermined pressure according to a command from a controller. For example, a pressure regulating valve in which the opening degree of the valve is adjusted so that the pressure becomes equal to the pressure can be used.
[0009]
In the present invention, it is preferable to provide an acid injecting device so as to maintain the pH of the liquid in the reaction tank at a certain value or less, for example, at a pH of 5 or less. In this case, the pH may be adjusted by injecting an acid into the reaction tank, or the acid may be injected into the biological sludge-containing liquid to adjust the pH and then introduced into the reaction tank. Thereby, more efficient ozone treatment can be performed, and the apparatus can be further reduced in size. In order to increase the contact efficiency between the biological sludge and ozone in the reaction tank, a filler layer, a foam layer, or a stirrer may be provided in the reaction tank.
[0010]
[Action]
In the biological sludge ozone treatment apparatus of the present invention, the biological sludge-containing liquid is introduced into the reaction tank in a pressurized state by the sludge introducing means, and the ozone-containing gas is introduced in the pressurized state by the ozone introducing means. When it comes into contact with biological sludge-containing liquid in a state of being pressurized to 0.5 to 3 kgf / cm 2 (gauge pressure), preferably 0.7 to 2 kgf / cm 2 (gauge pressure), the sludge reacts with ozone to oxidatively decompose. And converted to a BOD component.
[0011]
When the ozone gas moves to the liquid side in the reaction vessel, the mass transfer speed is proportional to the contact area and the concentration difference, but there is a limit to the concentration difference if the inside of the reaction vessel is maintained at atmospheric pressure. On the other hand, if the inside of the reaction tank is maintained in a pressurized state, an apparently high concentration of ozone-containing gas can be used in proportion to the pressure, so that the mass transfer rate is increased and the ozone absorption efficiency is increased, The oxidation efficiency of sludge increases. For example, an ozone generator that generates ozone from air can generate ozone only at a concentration of at most about 50 g / Nm 3 , usually about 20 g / Nm 3, so the ozone concentration without pressurization is at maximum. Although it becomes about 50 g / Nm 3 and usually about 20 g / Nm 3 , the apparent concentration when pressurized to 1 kgf / cm 2 (gauge pressure) is about 100 g / m 3 at the maximum, usually about 40 g / m 3 and about 2 kgf. / Cm 2 (gauge pressure), the apparent concentration increases to a maximum of about 150 g / m 3 , usually about 60 g / m 3 . In this case, even if the pressurized ozone-containing gas generated by the ozone generator is directly introduced into the reaction tank, an apparently high concentration ozone-containing gas can be used.
[0012]
The ozone treatment apparatus of the present invention can efficiently perform ozone treatment as described above, and can be downsized as compared with a case where ozone treatment is performed without pressurization. As the ozone concentration increases, the rate of reaction with sludge increases exponentially, and consequently the reactor volume can be reduced exponentially. When an acid injection device is provided and the inside of the reaction tank is adjusted to pH 5 or less and ozone treatment is performed, the ozone treatment efficiency is further improved, and the device can be further miniaturized.
[0013]
The ozone treatment apparatus of the present invention can be used when ozone treatment is performed by extracting a mixed solution or excess sludge in a biological treatment tank, for example, an aerobic treatment tank as a biological sludge-containing liquid, and the ozone treatment liquid thus ozonated is Biodegradation is enabled by introducing the biological treatment tank into a biological treatment tank to reduce the volume of sludge.
[0014]
【Example】
Next, embodiments of the present invention will be described with reference to the drawings .
1 and 3 are reference diagrams, and FIG. 2 is a system diagram illustrating a biological sludge ozone treatment apparatus according to an embodiment. In FIG. 1, reference numeral 1 denotes a reaction tank, which is configured to perform ozone treatment under a pressurized state of 0.5 to 3 kgf / cm 2 (gauge pressure), preferably 0.7 to 2 kgf / cm 2 (gauge pressure). A sludge-containing liquid introduction path 3 having a liquid supply pump 2 and an acid injection path 5 connected from an acid injection device 4 are connected to the bottom. A diffuser 8 for blowing an ozone-containing gas is provided at a lower portion in the reaction tank 1, and an ozone-containing gas introduction passage 10 is connected from an ozone generator 9. A dryer 11 and a compressor 12 are connected to the ozone generator 9 in series by communication paths 13 and 14.
[0015]
A pressure detector 17 and a gas-liquid outlet 18 are provided in the upper part of the reaction tank 1, and a gas-liquid outlet 19 is connected to the gas-liquid outlet 18. The gas-liquid discharge path 19 is provided with a pressure adjusting valve 20 and a pH detecting device 21, and the pressure detecting device 17 is configured to control the pressure adjusting valve 20 and the pH detecting device 21 is configured to control the acid injecting device 4.
[0016]
In order to treat the biological sludge-containing liquid with the apparatus shown in FIG. 1, the liquid feed pump 2 is driven to introduce the biological sludge-containing liquid from the sludge-containing liquid introduction passage 3 into the reaction tank 1 in a pressurized state. The ozone-containing gas is introduced from the machine 9 through the ozone-containing gas introduction passage 10 while being pressurized to the above-mentioned pressure, and diffused into the liquid in the tank by the diffuser 8. Thereby, the liquid in the tank and the ozone-containing gas are brought into contact with each other to oxidize and decompose the sludge. The ozone-containing gas is generated by the ozone generator 9 after the air pressurized by the compressor 12 is dried by the dryer 11. Ozone generation in the ozone generator 9 is usually performed at 0.5 to 3 kgf / cm 2 (gauge pressure) and from an efficiency point of view at 0.7 to 2 kgf / cm 2 (gauge pressure). By setting the pressure to the same or a lower value, the pressurized ozone-containing gas generated by the ozone generator 9 is directly introduced into the reaction tank 1 (without further pressurization), and the reaction tank 1 is pressurized. State.
[0017]
The exhausted ozone gas and the liquid in the tank (ozone-treated liquid) are discharged from a gas-liquid discharge passage 19 through a gas-liquid extracting unit 18. At this time, the pressure in the reaction tank 1 is measured by the pressure detecting device 17, a signal thereof is sent to the pressure control valve 20, and when the pressure reaches a predetermined pressure, the pressure control valve 20 is opened and closed, so that the inside of the reaction tank 1 is opened. Maintain the pressure. The liquid in the tank and the exhausted ozone gas are usually discharged together from the gas-liquid extracting section 18. However, when the liquid level of the liquid in the tank is lower than the opening of the gas-liquid extracting section 18, only the exhausted ozone gas is exhausted, and the liquid level is reduced. At the top, only the ozonated liquid is taken out and the liquid level is kept constant. The pH of the ozonized solution is measured by a pH detector 21, a signal is sent to an acid injector 4, and an acid is injected from an acid injector 5 to adjust the pH of the solution in the tank to 5 or less. As the acid to be injected, inorganic acids such as sulfuric acid, hydrochloric acid, and nitric acid are preferable.
[0018]
As described above, the inside of the reaction tank 1 is maintained in a pressurized state, so that the ozone absorption efficiency increases and the sludge oxidation efficiency increases. Further, since the pH of the solution in the tank is controlled to 5 or less, ozone treatment can be performed more efficiently. Thereby, the ozone treatment can be performed efficiently, and the apparatus can be downsized.
[0019]
Note that a pressure reducing valve or a self-powered pressure adjusting valve or the like can be used as the pressure adjusting valve 20 in FIG. 1, and in this case, the pressure detecting device 17 is omitted. In addition, the acid injection device 4, the pH detection device 21, and the acid injection path 5 in FIG. 1 can be omitted in some cases. Further, an exhaust ozone gas path for discharging the exhaust ozone gas and a processing liquid extracting path for extracting the ozone processing liquid may be separately provided. In this case, a predetermined pressure is maintained by providing a pressure adjusting valve in each of the exhaust ozone gas passage and the processing liquid extracting passage. In the treatment of FIG. 1, as the sludge-containing liquid, a mixed liquid in an aeration tank of an aerobic biological treatment system for sludge, a solid-liquid separated sludge thereof, and the like can be preferably used. Can be returned to
[0020]
In FIG. 2, a circulation path 31 is connected to the reaction tank 1 so as to draw out the liquid in the tank from the lower part and circulate the liquid to the top, and a circulation pump 32 is provided at an intermediate part thereof. And a gas-liquid blowout portion 33 is provided extending to the lower portion of the airbag. A sludge-containing liquid introduction path 3 having a liquid supply pump 2 is connected in the middle of the circulation path 31, and an ejector 34 is provided between the connection point and an intermediate portion between the gas-liquid blowing section 33 and the ozone-containing gas from the ozone generator 9. The introduction path 10 is connected. A pressure control switch 35 and a gas-liquid outlet 18 are provided in the upper part of the reaction tank 1, and a gas-liquid outlet 19 is connected to the gas-liquid outlet 18. The gas-liquid discharge path 19 is provided with a pressure adjusting valve 36 controlled by a pressure control switch 35 and the pH detecting device 21. Other configurations are the same as those in FIG.
[0021]
In order to ozone-treat the biological sludge-containing liquid using the apparatus shown in FIG. 2, the circulation pump 32 is driven to circulate the liquid in the tank, and the liquid supply pump 2 is driven to drive the biological sludge-containing liquid from the sludge-containing liquid introduction passage 3. Is introduced into the reaction tank 1 and pressurized. At this time, the ozone-containing gas is sucked from the ejector 34, mixed with the liquid, and blown out from the gas-liquid blowing part 33 into the liquid in the tank. In this case, the liquid in the tank is vigorously stirred, so that the ozone and the sludge come into sufficient contact, and the ozone absorption rate increases.
[0022]
The exhausted ozone gas and the liquid in the tank are discharged from a gas-liquid discharge passage 19 through a gas-liquid extracting unit 18. In the case of FIG. 2, the pressure inside the reaction tank 1 is maintained at the above-mentioned pressure by opening and closing the pressure adjusting valve 36 by the pressure control switch 35. Other processes are the same as those in FIG.
[0023]
In FIG. 3, a pressure control switch 35 and a processing liquid outlet 41 are provided below the reaction tank 1, and the processing liquid outlet 41 is connected to the processing liquid outlet 41. A pressure adjusting valve 36 controlled by a pressure control switch 35 is provided in the processing liquid extracting passage 42. A sludge-containing liquid introduction device 43 is provided at the upper part of the reaction tank 1, and is connected to a sludge-containing liquid introduction passage 3 having a liquid supply pump 2. The sludge-containing liquid introduction passage 3 is provided with a pH detecting device 21 and is connected to an acid injection passage 5 from an acid injection device 4 so that the biological sludge-containing liquid after pH adjustment can be introduced into the reaction tank 1. I have. An exhaust ozone gas passage 45 having a pressure reducing valve 44 is connected to the upper part of the reaction tank 1. A stirring device 46 is provided in the reaction tank 1. Other configurations are the same as those in FIG.
[0024]
In order to ozone-treat the biological sludge-containing liquid by the apparatus shown in FIG. 3, the feed pump 2 is driven, and the biological sludge-containing liquid is pressurized from the sludge-containing liquid introduction device 43 through the sludge-containing liquid introduction passage 3 to the reaction tank 1. To be introduced. During this time, the pH of the solution is measured by the pH detector 21 and the signal is sent to the acid injector 4 to inject the acid from the acid injector 4 so that the pH becomes 5 or less. The ozone-containing gas is introduced into the reaction tank 1 in a pressurized state as in FIG. 1, and is brought into contact with the liquid in the tank to decompose sludge. The liquid in the tank is stirred by the stirring device 46 to improve the gas-liquid contact efficiency.
[0025]
The discharged ozone gas is discharged from a discharged ozone gas passage 45 through a pressure reducing valve 44. The ozone treatment liquid is taken out of the treatment liquid take-out passage 42 through a pressure regulating valve 36 controlled by a pressure control switch 35. In the case of FIG. 3, the pressure regulating switch 36 is controlled by the pressure control switch 35 to maintain the inside of the reaction tank 1 at the pressure. Other processes are the same as those in FIG. The stirring device 46 can be omitted, or a filler layer can be formed in the reaction tank 1 instead of the stirring device 46.
[0026]
Test example 1
The ozone-containing gas was blown into the activated sludge-containing liquid under the following conditions by the apparatus shown in FIG. 1 to perform ozone treatment. As a result, when the space velocity of the ozone-containing gas was 7 h −1 , the gas absorption rate was 95%. Volume of the reaction vessel necessary to process the sludge-containing liquid of 2m 3 / h Therefore, 10 (Nm 3 /h)÷7(1/h)=1.4m 3, and the later not subjected to pressure It can be seen that the volume of the reaction tank can be reduced to about 2 compared with Comparative Example 1.
[0027]
Activated sludge concentration in sludge-containing liquid: 10 kg / m 3
Sludge-containing liquid flow rate: 2 m 3 / h
Ozone concentration: 40 g / Nm 3
Flow rate of ozone-containing gas: 10 Nm 3 / h
Linear velocity of ozone-containing gas: 10 m / h
Ozone-containing gas introduction pressure: 1.0 kgf / cm 2 (gauge pressure)
PH of solution in tank: 3
[0028]
Test example 2
The ozone treatment was performed in the same manner as in Test Example 1, except that the introduction pressure of the ozone-containing gas was changed to 2.0 kgf / cm 2 (gauge pressure). As a result, the space velocity of the ozone-containing gas for obtaining a gas absorption rate of 95% was 11 h -1 . Volume of the reaction vessel necessary to process the sludge-containing liquid of 2m 3 / h Therefore, 10 (Nm 3 /h)÷11(1/h)=0.9m 3, and the reaction vessel as compared with Comparative Example 1 It can be seen that the volume of the can be reduced to about 1/3.
[0029]
Comparative Example 1
In Test Example 1, ozone treatment was performed in the open-to-atmosphere state without pressurizing the inside of the reaction tank. As a result, the space velocity of the ozone-containing gas required to obtain a gas absorption rate of 95% was 3 h -1 . Therefore the volume of the reactor required to process the sludge-containing liquid of 2m 3 / h is found to be 10 (Nm 3 /h)÷3(1/h)=3.3m 3.
[0030]
【The invention's effect】
In the biological sludge ozonation apparatus of the present invention, since the ozone treatment is performed while maintaining the inside of the reaction tank at a predetermined pressurized state, the ozone concentration efficiency can be increased by increasing the ozone concentration difference, and the ozone absorption efficiency can be increased. Can be reduced in size, whereby the biological sludge can be efficiently ozone treated at low cost. In addition, the circulation pump is driven to circulate the liquid in the tank, and the liquid supply pump is driven to introduce the biological sludge-containing liquid into the reaction tank from the sludge-containing liquid introduction passage, pressurize the liquid, and draw the ozone-containing gas from the ejector. The liquid in the tank is vigorously stirred by mixing the liquid with the liquid and blowing out the liquid in the tank from the gas-liquid blowing section, so that the ozone and the sludge come into sufficient contact and the ozone absorption rate increases.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a biological sludge ozone treatment apparatus of a reference example .
2 is a system diagram showing the ozone treatment unit of the biological sludge real施例.
FIG. 3 is a system diagram showing a biological sludge ozone treatment apparatus according to another reference example .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Feed pump 3 Sludge-containing liquid introduction path 4 Acid injection device 5 Acid injection path 8 Air diffuser 9 Ozone generator 10 Ozone-containing gas introduction path 11 Dryer 12 Compressors 13 and 14 Communication path 17 Pressure detector 18 Gas Liquid extracting section 19 Gas-liquid discharging paths 20, 36 Pressure regulating valve 21 pH detecting device 31 Circulating path 32 Circulating pump 33 Gas-liquid blowing section 34 Ejector 35 Pressure control switch 41 Processing liquid extracting section 42 Processing liquid extracting path 43 Introducing sludge-containing liquid Device 44 pressure reducing valve 45 exhaust ozone gas passage 46 stirring device

Claims (1)

生物汚泥含有液を受入れて0.5〜3kgf/cm2(ゲージ圧)の加圧状態でオゾン処理を行う反応槽と、
この反応槽の下部から槽内液を引抜いて頂部に循環する循環ポンプを有し、先端部は反応槽内の下部まで伸びて気液吹出部が設けられている循環路と、
給液ポンプを有し、前記循環路に接続して前記反応槽に生物汚泥含有液を加圧状態で導入する汚泥含有液導入路と、
循環路および汚泥含有液導入路の接続点と気液吹出部との中間部に設けられたエジェクタと、
このエジェクタに接続し、前記反応槽にオゾン含有ガスを加圧状態で導入するオゾン含有ガス導入路と、
前記反応槽内を前記加圧状態に維持するようにオゾン処理液および/または排オゾンガスを排出する圧力調整弁と
を備えていることを特徴とする生物汚泥のオゾン処理装置。
A reaction tank that receives the biological sludge-containing liquid and performs ozone treatment under a pressurized state of 0.5 to 3 kgf / cm 2 (gauge pressure);
A circulation pump that draws the liquid in the tank from the lower part of the reaction tank and circulates to the top part, the tip part of which extends to the lower part in the reaction tank and is provided with a gas-liquid blowing part;
A sludge-containing liquid introduction path having a liquid supply pump and connected to the circulation path to introduce the biological sludge-containing liquid into the reaction tank in a pressurized state,
An ejector provided at an intermediate portion between the connection point of the circulation path and the sludge-containing liquid introduction path and the gas-liquid blowing section,
An ozone-containing gas introduction passage connected to the ejector and introducing the ozone-containing gas into the reaction tank in a pressurized state;
A biological sludge ozone treatment apparatus, comprising: a pressure control valve for discharging an ozone treatment liquid and / or exhausted ozone gas so as to maintain the inside of the reaction tank in the pressurized state.
JP00625095A 1995-01-19 1995-01-19 Biological sludge ozonation equipment Expired - Fee Related JP3591023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00625095A JP3591023B2 (en) 1995-01-19 1995-01-19 Biological sludge ozonation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00625095A JP3591023B2 (en) 1995-01-19 1995-01-19 Biological sludge ozonation equipment

Publications (2)

Publication Number Publication Date
JPH08192196A JPH08192196A (en) 1996-07-30
JP3591023B2 true JP3591023B2 (en) 2004-11-17

Family

ID=11633249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00625095A Expired - Fee Related JP3591023B2 (en) 1995-01-19 1995-01-19 Biological sludge ozonation equipment

Country Status (1)

Country Link
JP (1) JP3591023B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4410163B2 (en) * 1997-05-30 2010-02-03 三菱電機株式会社 Waste water ozone treatment method and ozone treatment apparatus
JP2001191097A (en) * 1999-10-25 2001-07-17 Sumitomo Precision Prod Co Ltd Waste water treating method
JP4205876B2 (en) * 2001-07-06 2009-01-07 住友精密工業株式会社 Sludge treatment method and ejector
KR100983129B1 (en) * 2010-04-21 2010-09-20 김상묵 A gas dissolution control method and device
CN106103361A (en) * 2014-04-29 2016-11-09 三菱电机株式会社 Sludge treatment equipment and method for sludge treatment

Also Published As

Publication number Publication date
JPH08192196A (en) 1996-07-30

Similar Documents

Publication Publication Date Title
EP1905743B1 (en) System and method for eliminating sludge via ozonation
US20020110508A1 (en) Oxidation process of the wet oxidation or ozonization type
US10858271B2 (en) Methods for producing high-concentration of dissolved ozone in liquid media
Nakayama et al. Improved ozonation in aqueous systems
US3960717A (en) Process for treating waste water
JP3591023B2 (en) Biological sludge ozonation equipment
JP3397096B2 (en) Apparatus and method for ozone treatment of biological sludge
JPH1142494A (en) Treatment of waste water by ozone and ozone treating device
JP3697729B2 (en) Biological sludge ozone treatment equipment
US3953326A (en) Oxygen aeration system for contaminated liquids
JP4172287B2 (en) Method and apparatus for aerobic digestion treatment of sludge
JP4834942B2 (en) Organic waste processing method and processing apparatus
KR100902632B1 (en) Wast water treatment apparatus and wast water treatment method using there
JPH02222798A (en) Pretreatment of sludge
JP2003080289A (en) Treating method for ammonia solution
JP4622057B2 (en) Organic wastewater treatment method
JPH08132099A (en) Device for ozonating biological sludge
CA1085976A (en) Treatment of aqueous sludges
JP2004141865A (en) Ozone treatment method of surplus sludge, treatment apparatus for surplus sludge, and sludge-ozone mixer
CN112119042A (en) Dividing ozone oxidation in a liquid medium into three unit operations for process optimization
JP2001314887A (en) Activated sludge treatment apparatus and wastewater treatment system
JP4746790B2 (en) Sludge treatment apparatus and sludge treatment method
JP3877262B2 (en) Organic wastewater treatment method and equipment
JPH07232184A (en) Ozone treating device for biological sludge
CA1074028A (en) Method and apparatus for treating aqueous liquids with ozone

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040816

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140903

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees