JP3589975B2 - Method and apparatus for measuring wear of Alsas train lines - Google Patents

Method and apparatus for measuring wear of Alsas train lines Download PDF

Info

Publication number
JP3589975B2
JP3589975B2 JP2000385919A JP2000385919A JP3589975B2 JP 3589975 B2 JP3589975 B2 JP 3589975B2 JP 2000385919 A JP2000385919 A JP 2000385919A JP 2000385919 A JP2000385919 A JP 2000385919A JP 3589975 B2 JP3589975 B2 JP 3589975B2
Authority
JP
Japan
Prior art keywords
output
detection
alsas
stainless steel
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000385919A
Other languages
Japanese (ja)
Other versions
JP2002181508A (en
Inventor
健夫三 島田
勇輔 佐藤
五郎 横田
清作 坂東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2000385919A priority Critical patent/JP3589975B2/en
Publication of JP2002181508A publication Critical patent/JP2002181508A/en
Application granted granted Critical
Publication of JP3589975B2 publication Critical patent/JP3589975B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、モノレールや新交通システムにおいて、集電器が接触して変電所からの電気を受け取るために設置されている剛体電車線に使用されているアルサス電車線の摩耗を測定する方法及び装置に関する。
【0002】
【従来の技術】
新交通システムでは、軌道路面の側壁のプラットホームより低い位置に、3線又は2線の剛体電車線が設置されている。モノレールは、懸垂式も跨座式も正極と負極の剛体電車線が両側に敷設されている。これら剛体電車線の電圧はAC600V、DC750V等である。
【0003】
これらの剛体電車線に使用されるアルサス電車線は、図4に示すように集電器と接触するしゅう動部1を耐摩耗性を考慮してステンレス鋼を使用し、しゅう動部を支持する導電部2に良導体であるアルミニウム合金を使用したもので、この材質の組合わせからアル(アルミニウム)サス(ステンレス)電車線と呼ばれている。
【0004】
このアルサス電車線3は、車両に付けた集電器が接触して走行するため、しゅう動部の頂上部1aから摩耗して行く。そのため、この摩耗がアルミニウム合金の導電部2に達する前に交換する必要がある。従来は、この保守のため夜間に停電状態で電車線の残存厚さをノギスや超音波厚さ計により直接測定し、その値を記録することにより摩耗量を把握していた。
【0005】
【発明が解決しようとする課題】
上記ノギスによる摩耗量測定は、局所的な摩耗も検出する必要があるため測定箇所が非常に多くなる。したがって多大な人工を必要とし、作業コストは非常に大きなものになっていた。
【0006】
超音波厚さ計を利用する方法は、しゅう動部と導電部の境界面からの反射を捉えることにより、しゅう動部の厚さを測定するものであるが、専用のセンサが必要となり、センサと被測定物の間に空気が入らないように油等を入れる必要がある。この測定もノギスによる測定と同様に定点測定であるので、局所的な摩耗も発見するためには測定点を多くする必要があり、作業コストは非常に大きくなる。
【0007】
連続的に、しゅう動部の厚さを測定する方法として、渦流を用いる方法が考えられる。これは、しゅう動部と導電部の材質の違いに着目し、所定の検波位相で、しゅう動部の厚さを測定するものである。しかし、しゅう動部のステンレス鋼は、大電流が流れて発熱するため、使用時間の経過に伴い磁性変化等の電気的特性の変化が生じる。このような使用時間による測定値変化があると、実用的精度を持つ測定はできない。
【0008】
そこで、本発明は渦流を用い、実用的精度を確保しながら、しゅう動部の厚さを連続測定する方法を確立することを目的とする。
【0009】
【課題を解決するための手段】
本発明の請求項1にかかるアルサス電車線の摩耗測定方法は、アルミニウム合金の導電部の上にステンレス鋼のしゅう動部を固着したアルサス電車線のしゅう動部の頂上部に沿って、励磁周波数を500Hz〜20kHzの範囲内の1つとした渦流の検出コイルを移動させ、検出コイルの出力を、使用する励磁周波数においてステンレス鋼に対して最大の検波出力が得られる位相で検波し、アルサス電車線に対して予め測定された、しゅう動部の残存厚さと検波出力の関係に基づき、検波によって得た出力の大きさから、しゅう動部の残存厚さを求めることを特徴とする。
【0010】
本発明の請求項2にかかるアルサス電車線の摩耗測定装置は、励磁周波数を500Hz〜20kHzの範囲内の1つとした渦流の検出コイルと、アルミニウム合金の導電部の上にステンレス鋼のしゅう動部を固着したアルサス電車線のしゅう動部の頂上部に沿って、前記検出コイルを移動させる移動手段と、使用する励磁周波数においてステンレス鋼に対して最大の検波出力が得られる位相で位相検波を行う位相検波回路と、アルサス電車線に対して予め測定された、しゅう動部の残存厚さと検波出力の関係に基づき、位相検波回路の出力から残存厚さを求める演算回路を具備したことを特徴とする。
【0011】
【実施形態】
本発明を実施するためのアルサス電車線の摩耗測定装置は、例えば図1に示すように構成される。図1において、3はアルサス電車線、4は相互誘導型コイルを用いた検出コイル、5はアルサス電車線のしゅう動部1の頂上部1aに沿って、前記検出コイル4を移動させる移動手段、6は位相検波回路、7は検波出力から残存厚さを求める演算回路、8は判定回路、9は記録手段である。
【0012】
検出コイル4は、図2に示すように、測定対象に対向する励磁コイルL及び誘導コイルLと、空心状態で用いる励磁コイルL及び誘導コイルLを組み合わせたものである。誘導コイルL,Lに可変抵抗器R,Rをブリッジ接続して、誘導出力の差分が取り出されるようにし、測定対象である、しゅう動部1に、励磁コイルL及び誘導コイルLが対向していないとき、ブリッジの出力が0となるように可変抵抗器R,Rで零点調整しておく。直列接続された励磁コイルL,Lに、所定周波数の励磁電流を通電すると、測定対象である、しゅう動部1に流れる渦流に対応する誘導出力が取り出される。この励磁電流の周波数は、後述する理由により500Hz〜20kHzの範囲から選ばれる。
【0013】
移動手段5は、検出コイル4のLとLを、アルサス電車線3のしゅう動部の頂上部1aに沿わせ一定間隔を保って移動させる。これは、例えば電気車のパンタグラフに検出コイル4を取付けた構造とすることができる。
【0014】
位相検波回路6は、移相回路6aと検波回路6bから構成され、交流発振器10の出力を移相回路6aに通して得た所定位相の交流信号で、誘導コイルL,Lに発生する誘導出力の差分を検波する。この検波位相は、使用する励磁周波数において、しゅう動部1のステンレス鋼に対して最大の検波出力が得られる位相である。演算回路7は、アルサス電車線に対して予め測定された、しゅう動部の残存厚さと検波出力の関係に基づき、位相検波回路の出力から残存厚さを求める。
【0015】
判定回路8は、測定された残存厚さに対して、或る特定の摩耗限に達したこと、及び摩耗限に近づいていることを判定し、その結果を出力する。この判定結果は位置を特定するデータと共に、記録手段9に記録される。測定中の残存厚さ及び判定結果は図示しないモニターで見ることができる。
【0016】
アルサス電車線3のしゅう動部1の残存厚さを、渦流を利用して測定する場合、アルサス電車線3の使用経歴による磁気的性質の変化が問題となる。これは、新品のアルサス電車線について測定した残存厚さと検波出力の関係を、熱及び大電流の作用を受けた既設のアルサス電車線に、そのまま対応させた場合に実用精度が得られるかという問題である。
【0017】
これを図3で説明する。図3は、図1に示す構成において、実際の使用時の摩耗により、しゅう動部の厚さが0.5mm,1.0mm,1.5mm,2mm,3.7mmと異なっている撤去品のアルサス電車線と、人為的に削ることにより、しゅう動部の厚さを0.5mm,1.0mm,1.5mm,2mm,3.7mm,4.5mmと変化させた新品のアルサス電車線を用意し、励磁周波数を8Hzから128kHzまで変化させて測定を行ったものである。
【0018】
各励磁周波数に対して、しゅう動部1の厚みが異なるアルサス電車線3の測定値を、新品で厚さ4.5mmの出力を1として,撤去品と新品とを対比させたものが図3の(a)(b)(c)である。なお,実際の検波出力は、しゅう動部の出力と導電部の出力が合成された値となるので、別にアルミニウム合金の導電部の上から測定した値をベクトル的に減算し、しゅう動部のみに対応する値を表示している。
【0019】
励磁周波数8Hz以上500Hz未満では、同じ、しゅう動部(ステンレス鋼)の残存厚さで、撤去品の出力が新品の出力に対して大きい。特に図3(a)の励磁周波数8Hzから400Hzでは、撤去品が1.3〜2倍程度高い。この周波数範囲では、ステンレス鋼の通電時の発熱等による材質変化が測定結果に影響を与えるため、必要な精度が得られない。
【0020】
励磁周波数が20kHzより大きくなると、飽和により残存厚さの変化に対する検波出力の変動が小さくなるので、必要な測定精度が得られない。図3(c)の30kHzから128kHzの代表例には、この飽和状態が示されている。
【0021】
図3(b)の励磁周波数500Hzから20kHzの代表例では、新品と撤去品で出力が略等しい。したがって、この範囲の励磁周波数で測定を行えば、アルサス電車線3の使用経歴を考慮しないで実用精度が確保ができる。なお、ステンレス鋼の残存厚さが厚い場合は、残存厚さに対する出力特性がカーブを描き直線性が損なわれる。したがって、予め測定した残存厚さと検波出力の関係に基づいて、測定対象物から得られた検波出力を残存厚さに線形変換する必要がある。この線形変換は、例えば、コンピュータ処理によって行う。
【0022】
すなわち、図3の(a)(b)(c)より、励磁周波数を500Hzから20kHzの範囲に選定すれば、アルサス電車線3の使用経歴を考慮しないで実用精度を確保した測定ができることになる。
【0023】
【発明の効果】
本発明の請求項1にかかる発明は、アルサス電車線のしゅう動部(ステンレス鋼)の残存厚さを、使用経歴による電気的特性の変化に影響されないで、実用精度を保って測定できるようになる。したがって、測定時間と測定人工を減らせるようになり、しゅう動部の残存厚さによる取り替え基準と比較して簡単に取り替え時期を判断することが可能になり、アルサス電車線の保守を容易に行うことができる。
【0024】
本発明の請求項2にかかる発明は、請求項1の方法を装置として具体化したもので、この構成によって、実際にアルサス電車線の連続測定が可能になり、アルサス電車線の摩耗測定を低コストで短時間に行えるようになる。
【図面の簡単な説明】
【図1】本発明のアルサス電車線の摩耗測定装置の構成を示す図。
【図2】図1の検出コイルの一例を示す回路図。
【図3】異なる励磁周波数範囲について、撤去品と新品を対比させて、しゅう動部の厚さに対する測定値の変化を示した特性図。
【図4】アルサス電車線及び集電器の断面図。
【符号の説明】
1 しゅう動部(ステンレス鋼)
1a 頂上部
2 導電部(アルミニウム合金)
3 アルサス電車線
[0001]
[Industrial applications]
TECHNICAL FIELD The present invention relates to a method and an apparatus for measuring wear of an Alsas train line used for a rigid train line installed to receive electricity from a substation by contacting a current collector in a monorail or a new transportation system. .
[0002]
[Prior art]
In the new transportation system, three or two rigid train lines are installed at a position lower than the platform on the side wall of the track surface. In the monorail, both the suspension type and the straddle type are provided with positive and negative rigid electric wires on both sides. The voltage of these rigid train lines is AC600V, DC750V, or the like.
[0003]
As shown in FIG. 4, the Alsas power line used for these rigid power lines uses a stainless steel for the sliding part 1 that comes into contact with the current collector in consideration of wear resistance, and a conductive part that supports the sliding part. The part 2 is made of an aluminum alloy which is a good conductor, and is called an Al (aluminum) suspension (stainless steel) trolley wire because of this combination of materials.
[0004]
Since the current collector attached to the vehicle travels in contact with the vehicle, the Alsas power line 3 wears from the top 1a of the sliding portion. Therefore, it is necessary to replace the wear before the wear reaches the conductive portion 2 of the aluminum alloy. Conventionally, for this maintenance, the remaining thickness of the trolley wire was directly measured with a caliper or an ultrasonic thickness gauge during a power outage at night and the amount of wear was grasped by recording the value.
[0005]
[Problems to be solved by the invention]
The measurement of the amount of wear by the above-mentioned calipers requires the detection of local wear, so that the number of measurement points is extremely large. Therefore, a large amount of man-made was required, and the work cost was very large.
[0006]
The method of using an ultrasonic thickness gauge measures the thickness of the sliding part by capturing the reflection from the interface between the sliding part and the conductive part. It is necessary to insert oil or the like so that air does not enter between the object and the object to be measured. Since this measurement is also a fixed point measurement similarly to the measurement using a caliper, it is necessary to increase the number of measurement points in order to find local wear, and the operation cost becomes extremely large.
[0007]
As a method for continuously measuring the thickness of the sliding portion, a method using eddy current is considered. This focuses on the difference in the material of the sliding part and the conductive part, and measures the thickness of the sliding part at a predetermined detection phase. However, the stainless steel of the sliding part generates heat due to the flow of a large current, and thus changes in electrical characteristics such as magnetic change with the lapse of use time. If there is such a change in the measured value due to the use time, measurement with practical accuracy cannot be performed.
[0008]
Therefore, an object of the present invention is to establish a method for continuously measuring the thickness of a sliding portion while using eddy currents and ensuring practical accuracy.
[0009]
[Means for Solving the Problems]
The method for measuring wear of an Alsas electric wire according to claim 1 of the present invention comprises the steps of: providing an excitation frequency along an apex of an Alsas electric wire in which a sliding portion of stainless steel is fixed on a conductive portion of an aluminum alloy; Is moved to one within the range of 500 Hz to 20 kHz, the eddy current detection coil is moved, and the output of the detection coil is detected at a phase at which the maximum detection output is obtained for stainless steel at the excitation frequency to be used. In this method, the remaining thickness of the sliding part is obtained from the magnitude of the output obtained by the detection based on the relationship between the remaining thickness of the sliding part and the detection output measured in advance.
[0010]
An abrasion measuring device for an Alsas electric wire according to claim 2 of the present invention comprises a coil for detecting eddy current whose excitation frequency is one in a range of 500 Hz to 20 kHz, and a sliding portion of stainless steel on a conductive portion of aluminum alloy. A moving means for moving the detection coil along the top of the sliding part of the Alsace train line to which is fixed, and performs phase detection at a phase at which the maximum detection output is obtained for stainless steel at the excitation frequency to be used. A phase detection circuit, comprising an arithmetic circuit for measuring the remaining thickness from the output of the phase detection circuit based on the relationship between the remaining thickness of the sliding part and the detection output, which is measured in advance for the Alsace train line, I do.
[0011]
Embodiment
A wear measuring device for an Alsace train line for carrying out the present invention is configured, for example, as shown in FIG. In FIG. 1, reference numeral 3 denotes an Alsace train line, 4 denotes a detection coil using a mutual induction coil, 5 denotes a moving means for moving the detection coil 4 along the top 1a of the sliding portion 1 of the Alsace train line, Reference numeral 6 denotes a phase detection circuit, 7 denotes an arithmetic circuit for obtaining the remaining thickness from the detection output, 8 denotes a judgment circuit, and 9 denotes recording means.
[0012]
Detection coil 4, as shown in FIG. 2, the exciting coil L 1 and the inductive coil L 2 facing the measurement object is a combination of the excitation coil L 3 and the induction coil L 4 used in the air-core state. The variable resistor R 1, R 2 and bridge connection to the induction coil L 2, L 4, as the difference between the induced output is taken out, to be measured, the sliding parts 1, the exciting coil L 1 and the induction coil when L 2 does not face, a variable resistor R 1, R 2 so that the output of the bridge becomes 0 previously adjusted zero point. When an exciting current having a predetermined frequency is applied to the exciting coils L 1 and L 3 connected in series, an induced output corresponding to the eddy current flowing in the sliding section 1 to be measured is taken out. The frequency of the exciting current is selected from the range of 500 Hz to 20 kHz for the reason described later.
[0013]
Moving means 5, the L 1 and L 2 of the detection coil 4, along a top portion 1a of the sliding portion of the Arthus catenary 3 is moved while maintaining a predetermined interval. This can be a structure in which the detection coil 4 is attached to a pantograph of an electric car, for example.
[0014]
Phase detection circuit 6 is constituted by a phase-shift circuit 6a and the detection circuit 6b, the output of the AC generator 10 in alternating signal of a predetermined phase obtained through the phase shift circuit 6a, generated in the induction coil L 2, L 4 Detects the difference between the induced outputs. This detection phase is a phase at which the maximum detection output is obtained for the stainless steel of the sliding section 1 at the used excitation frequency. The arithmetic circuit 7 obtains the remaining thickness from the output of the phase detection circuit based on the relationship between the remaining thickness of the sliding section and the detection output, which is measured in advance for the Alsace train line.
[0015]
The determination circuit 8 determines, for the measured remaining thickness, that a certain wear limit has been reached and is approaching the wear limit, and outputs the result. This determination result is recorded in the recording means 9 together with the data specifying the position. The remaining thickness during the measurement and the judgment result can be viewed on a monitor (not shown).
[0016]
When measuring the remaining thickness of the sliding portion 1 of the Alsas power line 3 using eddy current, a change in magnetic properties due to the use history of the Alsas power line 3 becomes a problem. The question is whether practical accuracy can be obtained if the relationship between the residual thickness measured with a new Alsas power line and the detection output is directly applied to the existing Alsas power line affected by heat and high current. It is.
[0017]
This will be described with reference to FIG. FIG. 3 shows a configuration of the removed product in which the thickness of the sliding portion is different from 0.5 mm, 1.0 mm, 1.5 mm, 2 mm, and 3.7 mm due to wear during actual use in the configuration shown in FIG. A new Alsas train line with the thickness of the sliding part changed to 0.5 mm, 1.0 mm, 1.5 mm, 2 mm, 3.7 mm, and 4.5 mm by artificially shaving the Alsace train line It was prepared and the measurement was performed while changing the excitation frequency from 8 Hz to 128 kHz.
[0018]
For each excitation frequency, the measured value of the Alsas power line 3 having a different thickness of the sliding part 1 is compared with the new product and the new product by setting the output of the new 4.5 mm thickness to 1 as shown in FIG. (A), (b) and (c). Since the actual detection output is a value obtained by combining the output of the sliding part and the output of the conductive part, the value measured separately from the conductive part of the aluminum alloy is vectorwise subtracted, and only the sliding part is output. The value corresponding to is displayed.
[0019]
When the excitation frequency is 8 Hz or more and less than 500 Hz, the output of the removed product is larger than the output of a new product at the same remaining thickness of the sliding portion (stainless steel). In particular, at the excitation frequency of 8 Hz to 400 Hz in FIG. 3A, the removed product is 1.3 to 2 times higher. In this frequency range, the required accuracy cannot be obtained because the material change due to heat generation or the like of the stainless steel during energization affects the measurement result.
[0020]
If the excitation frequency is higher than 20 kHz, the required measurement accuracy cannot be obtained because the fluctuation of the detection output with respect to the change in the remaining thickness is reduced due to saturation. This saturation state is shown in a typical example of 30 kHz to 128 kHz in FIG.
[0021]
In the representative example of the excitation frequency from 500 Hz to 20 kHz in FIG. 3B, the output is substantially equal between a new product and a removed product. Therefore, if the measurement is performed at the excitation frequency in this range, practical accuracy can be ensured without considering the usage history of the Alsace power line 3. When the remaining thickness of the stainless steel is large, the output characteristics with respect to the remaining thickness draw a curve, and the linearity is impaired. Therefore, it is necessary to linearly convert the detection output obtained from the measurement object into the remaining thickness based on the relationship between the remaining thickness measured in advance and the detection output. This linear conversion is performed by, for example, computer processing.
[0022]
That is, from FIGS. 3A, 3B, and 3C, if the excitation frequency is selected in the range of 500 Hz to 20 kHz, it is possible to perform measurement with practical accuracy secured without considering the history of use of the Alsace train line 3. .
[0023]
【The invention's effect】
The invention according to claim 1 of the present invention is intended to measure the remaining thickness of the sliding portion (stainless steel) of the Alsas train line while maintaining practical accuracy without being affected by changes in electrical characteristics due to the use history. Become. Therefore, measurement time and measurement artificial time can be reduced, and it becomes possible to easily determine the replacement time by comparing with the replacement reference based on the remaining thickness of the sliding part, and to easily maintain the Alsace train line. be able to.
[0024]
According to a second aspect of the present invention, the method of the first aspect is embodied as an apparatus. With this configuration, continuous measurement of the Alsace line can be actually performed, and wear measurement of the Alsace line can be reduced. It can be done in a short time at a low cost.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of an apparatus for measuring wear of an Alsace train line according to the present invention.
FIG. 2 is a circuit diagram showing an example of a detection coil of FIG.
FIG. 3 is a characteristic diagram showing a change in a measured value with respect to a thickness of a sliding portion by comparing a removed product with a new product in different excitation frequency ranges.
FIG. 4 is a cross-sectional view of an Alsace train line and a current collector.
[Explanation of symbols]
1 sliding part (stainless steel)
1a Top 2 Conductive part (aluminum alloy)
3 Alsace train line

Claims (2)

アルミニウム合金の導電部の上にステンレス鋼のしゅう動部を固着したアルサス電車線のしゅう動部の頂上部に沿って、励磁周波数を500Hz〜20kHzの範囲内の1つとした渦流の検出コイルを移動させ、検出コイルの出力を、使用する励磁周波数においてステンレス鋼に対して最大の検波出力が得られる位相で検波し、アルサス電車線に対して予め測定された、しゅう動部の残存厚さと検波出力の関係に基づき、検波によって得た出力の大きさから、しゅう動部の残存厚さを求めることを特徴とするアルサス電車線の摩耗測定方法。The eddy current detection coil whose excitation frequency is one in the range of 500 Hz to 20 kHz is moved along the top of the sliding part of the Alsas train line where the sliding part of stainless steel is fixed on the conductive part of aluminum alloy. Then, the output of the detection coil is detected at the phase at which the maximum detection output is obtained for stainless steel at the excitation frequency to be used. A method for measuring wear of an Alsas train line, wherein the remaining thickness of a sliding portion is obtained from the magnitude of output obtained by detection based on the relationship 励磁周波数を500Hz 〜20kHzの範囲内の1つとした渦流の検出コイルと、アルミニウム合金の導電部の上にステンレス鋼のしゅう動部を固着したアルサス電車線のしゅう動部の頂上部に沿って、前記検出コイルを移動させる移動手段と、使用する励磁周波数においてステンレス鋼に対して最大の検波出力が得られる位相で位相検波を行う位相検波回路と、アルサス電車線に対して予め測定された、しゅう動部の残存厚さと検波出力の関係に基づき、位相検波回路の出力から残存厚さを求める演算回路を具備したことを特徴とするアルサス電車線の摩耗測定装置。Along the top of the sliding part of the Alsas power line where the exciting frequency is set to one within the range of 500 Hz to 20 kHz and the sliding part made of stainless steel is fixed on the conductive part of aluminum alloy. Moving means for moving the detection coil, a phase detection circuit for performing phase detection at a phase at which the maximum detection output is obtained for stainless steel at the excitation frequency to be used, An apparatus for measuring wear of an Alsace train line, comprising an arithmetic circuit for obtaining a remaining thickness from an output of a phase detection circuit based on a relationship between a remaining thickness of a moving portion and a detection output.
JP2000385919A 2000-12-19 2000-12-19 Method and apparatus for measuring wear of Alsas train lines Expired - Fee Related JP3589975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000385919A JP3589975B2 (en) 2000-12-19 2000-12-19 Method and apparatus for measuring wear of Alsas train lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000385919A JP3589975B2 (en) 2000-12-19 2000-12-19 Method and apparatus for measuring wear of Alsas train lines

Publications (2)

Publication Number Publication Date
JP2002181508A JP2002181508A (en) 2002-06-26
JP3589975B2 true JP3589975B2 (en) 2004-11-17

Family

ID=18853105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000385919A Expired - Fee Related JP3589975B2 (en) 2000-12-19 2000-12-19 Method and apparatus for measuring wear of Alsas train lines

Country Status (1)

Country Link
JP (1) JP3589975B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4802081B2 (en) * 2006-10-31 2011-10-26 公益財団法人鉄道総合技術研究所 Thickness measuring device and thickness measuring program
CN105699483A (en) * 2016-03-15 2016-06-22 南昌航空大学 Aluminum alloy plate defect detection technology achieved through array eddy current detection

Also Published As

Publication number Publication date
JP2002181508A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
CA2357233C (en) Sensor head for acfm based crack detection
CN102001340B (en) Moving body system
KR101532555B1 (en) Fault detection for laminated core
CN102187182B (en) Method for the energy-saving operation of a magnetic-inductive flow meter
US20230084963A1 (en) Device, system and method for detecting leakage current for traction power system
JPH0324602B2 (en)
CN109696467A (en) F rail stress detection method and device based on magnetoelastic effect
JP5449222B2 (en) DC leakage detection device
JP3589975B2 (en) Method and apparatus for measuring wear of Alsas train lines
CN209656621U (en) A kind of F rail stress detection device based on magnetoelasticity
JP3833078B2 (en) Method and apparatus for measuring wear on Alsas train lines
JP6461698B2 (en) Electric leakage detection device and electric leakage detection method
EP1171338B1 (en) Current sensor
JP3562953B2 (en) Short circuit failure judgment device
CN110887877A (en) Railway contact line defect detection sensor and detection method
JP4367601B2 (en) Current measuring system, measuring apparatus and measuring method
JP6896250B2 (en) Open coil eddy current type sensor and rail displacement measurement method using this
JP6719111B2 (en) Rail wear measuring method using eddy current sensor and its measuring device
JP2001108659A (en) Eddy current prove for detecting metal surface flaw
KR101192456B1 (en) lateral rail displacement measuring system using electromagnetic induction ,the method and the sensor thereof
JPH05126799A (en) Deciding method for corrosion deterioration of three-layer metal wire
JP3516884B2 (en) Deterioration determination device for brazing part of trolley wire
JPH0827262B2 (en) Corrosion degradation determination method for double-layer metal wire
KR101013125B1 (en) current measurement sensor using temperature and oscillation and method thereof
JPH08285513A (en) Detecting device of abrasion limit of contact wire

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040818

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070827

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080827

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees