JP3589422B2 - Anisotropic conductive film - Google Patents

Anisotropic conductive film Download PDF

Info

Publication number
JP3589422B2
JP3589422B2 JP2000357372A JP2000357372A JP3589422B2 JP 3589422 B2 JP3589422 B2 JP 3589422B2 JP 2000357372 A JP2000357372 A JP 2000357372A JP 2000357372 A JP2000357372 A JP 2000357372A JP 3589422 B2 JP3589422 B2 JP 3589422B2
Authority
JP
Japan
Prior art keywords
group
conductive film
anisotropic conductive
cation
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000357372A
Other languages
Japanese (ja)
Other versions
JP2002161146A (en
Inventor
章 大谷
明典 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei EMD Corp
Original Assignee
Asahi Kasei EMD Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei EMD Corp filed Critical Asahi Kasei EMD Corp
Priority to JP2000357372A priority Critical patent/JP3589422B2/en
Publication of JP2002161146A publication Critical patent/JP2002161146A/en
Application granted granted Critical
Publication of JP3589422B2 publication Critical patent/JP3589422B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、2つの回路基板を互いに接着させ、かつ、同じ回路基板内の隣接する回路間を短絡させることなく、2つの回路基板の互いに向き合う回路間を電気的に接続させることのできる異方導電性フィルムに関する。
【0002】
【従来の技術】
最近の電子機器の高機能化、薄型化に伴い、微細な回路同士の接続、微小端子と微細な回路との接続等の必要性が増大してきており、その接続方法として、異方導電性フィルムが近年盛んに用いられてきている。異方導電性フィルムは、接着フィルム中に導電粒子を分散させたものであり、これを、接続しようとする回路間に挟み込み、所定の温度、圧力、時間により、熱圧着することにより、回路間の電気的接続および接着を行うと同時に、隣接する回路間では絶縁性を確保するために用いられる。更に、近年、接続しようとする回路部分が大型化してきていること、また、適応する基材が多様化してきていることから、熱圧着の際の熱ダメージや熱膨張収縮差による寸法変化が無視できない問題となってきている。そのため、より低温で接続でき、かつ、信頼性、保存安定性に優れる異方導電性フィルムが求められている。
【0003】
従来の異方導電性フィルムのバインダー樹脂は、大きく分けて、熱可塑性樹脂と熱硬化性樹脂の2つに分類できる。
【0004】
バインダー樹脂として熱可塑性樹脂を用いた異方導電性フィルムとしては、例えば、特開昭62−154746号公報、特開昭62−109878号公報が公知であるが、圧着する際の加熱温度を熱可塑性樹脂の溶融温度以上に制御することが必要である。そのため、使用する熱可塑性樹脂によっては、比較的低い温度で接続できる。また、化学反応を伴わないため、短時間で接続でき、従って、熱によるダメージを低く抑えることが可能である。しかし、これらの異方導電性フィルムを用いて、接続した場合の接続部分は、耐熱性、耐湿性、耐薬品性には、バインダー樹脂の特性上限界があり、接続信頼性、接続安定性に問題があった。
【0005】
バインダー樹脂として熱硬化性樹脂を用いた異方導電性フィルムとしては、硬化性樹脂としてエポキシ樹脂が、硬化剤としてアニオン重合型硬化剤である三級アミン類やイミダゾール類をマイクロカプセル化することにより保存安定性を高めることが知られている。
【0006】
このようなアニオン重合型硬化剤以外は、カチオン重合型硬化剤が知られている。カチオン重合型硬化剤としては、エネルギー線照射により硬化剤として作用する芳香族ジアゾニウム塩、芳香族スルホニウム塩などが知られている。また、エネルギー線照射以外に、加熱による硬化剤として作用する脂肪族スルホニウム塩、芳香族スルホニウム塩が知られている。
【0007】
【発明が解決しようとする課題】
アニオン重合型硬化剤を用いた熱硬化型異方導電性フィルムで回路基板を接合する際、充分に加熱硬化した場合は、耐熱性、耐湿性、耐薬品性に優れている。しかしながら、このタイプの異方導電性フィルムは、圧着時間を10秒以下にした場合、130℃以下の温度では、接続部の導通信頼性が不十分であり、低温反応性を高めた場合、保存性が悪く可使時間が短くなってしまう。また、ポリエチレンテレフタレート、ポリカーボネートなどのような軟化点の低い熱可塑性樹脂からなる回路基板に対しては熱的ダメージが大きく使用できないという問題があった。
【0008】
また、脂肪族スルホニウム塩、特開平07−090237に公知の如くベンジルカチオンを発生するスルホニウム塩を用いた場合、保存安定性と低温反応性のバランスをとることが難しい。
【0009】
本発明は、加熱温度130℃以下、加熱時間10秒以下の比較的低温短時間で回路同士を電気的に接合でき、かつ、保存安定性、接続信頼性に優れる異方導電性フィルムを提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明者らは、前記課題を解決するため、鋭意検討した結果、下記組成により低温接続性、保存安定性、接続信頼性に優れる異方導電性フィルムが得られることを見い出し、本発明をなすに至った。
【0011】
すなわち、本発明は、有機バインダー成分中に導電性粒子を分散させてなる異方導電性フィルムにおいて、有機バインダー成分がカチオン重合性物質を含み、かつ該カチオン重合性物質を含む有機バインダー成分100重量部に対して、下記一般式(1)で示されるカチオン発生剤を0.01〜10重量部配合し、かつ、前記カチオン発生剤より発生するカチオン種と反応するカチオン捕捉剤を前記カチオン発生剤100重量部に対して0.1〜15重量部配合したことを特徴とする異方導電性フィルムである。
【0012】
【化3】

Figure 0003589422
〔式(1)中、Rはアセチル基、メトキシカルボニル基、フェノキシカルボニル基、ベンジルオキシカルボニル基、ベンゾイル基、9−フルオレニルカルボニル基、のいずれかを、R、Rは独立して水素、ハロゲン、炭素数1〜6のアルキル基のいずれかを、Rは炭素数1〜6のアルキル基を、Qは、下記一般式(2)、α−ナフチルメチル基、β−ナフチルメチル基、のいずれかを示す。
【0013】
【化4】
Figure 0003589422
式(2)中、Rは水素、メチル、メトキシ、ハロゲンのいずれかである。Yは非求核性陰イオンである。〕
【0014】
【発明の実施の形態】
本発明について、以下具体的に説明する。本発明は、有機バインダー成分中に導電性粒子を分散させてなる異方導電性フィルムにおいて、有機バインダー成分がカチオン重合性物質を含み、かつ該カチオン重合性物質を含む有機バインダー成分100重量部に対して、下記一般式(1)で示されるカチオン発生剤を0.01〜10重量部配合し、かつ、前記カチオン発生剤より発生するカチオン種と反応するカチオン捕捉剤を前記カチオン発生剤100重量部に対して0.1〜15重量部配合したことを特徴とする異方導電性フィルムである。
【0015】
【化5】
Figure 0003589422
〔式中、Rはアセチル基、メトキシカルボニル基、フェノキシカルボニル基、ベンジルオキシカルボニル基、ベンゾイル基、9−フルオレニルカルボニル基、のいずれかを、R、Rは独立して水素、ハロゲン、炭素数1〜6のアルキル基のいずれかを、Rは炭素数1〜6のアルキル基を、Qは、下記一般式(2)、α−ナフチルメチル基、β−ナフチルメチル基、のいずれかを示す。
【0016】
【化6】
Figure 0003589422
式(2)中、Rは水素、メチル、メトキシ、ハロゲンのいずれかである。Yは非求核性陰イオンである。〕
【0017】
本発明に用いるカチオン発生剤としては、一般式(1)で示されるものであれば、いかなる構造でも構わないが、保存安定性の点から、50℃以上でカチオン種を発生するものが好ましい。
【0018】
本発明のカチオン発生剤の熱分解により発生するカチオン種としては、カチオン重合性物質との反応性が充分であれば、どのような構造でも差し支えないが、ベンジルカチオン種、α−ナフチルカチオン種、β−ナフチルカチオン種、アシルカチオン種が好ましい。接続形成性の点から、少なくとも1種がアシルカチオン種であることが好ましい。さらに、発生するカチオン種がアシルカチオンを含む少なくとも2種以上であることが特に好ましい。
【0019】
カチオン発生剤の対アニオンとしては、非求核性陰イオンであればよく、例としては、ヘキサクロロアンチモネート、ヘキサフルオロアンチモネート、ヘキサフルオロアルセネート、ヘキサフルオロホスフェート、テトラフルオロボレートである。安全性の点から、ヘキサフルオロホスフェート、テトラフルオロボレートが好ましく、安定性の点から、ヘキサフルオロホスフェートが特に好ましい。
【0020】
カチオン発生剤の配合量は、カチオン重合性物質を含む有機バインダー100重量部に対して0.01〜10重量部である。好ましくは、0.5〜5重量部である。配合量が少なすぎる場合、硬化が不十分となり、十分な電気的接続性、機械強度が得られず、配合量が多すぎる場合は、接続信頼性、保存安定性が低下する。
【0021】
本発明に用いるカチオン捕捉剤は、カチオン発生剤の熱分解により発生するカチオン種と反応するものであれば、いかなる構造でも差し支えないが、チオ尿素化合物、4−アルキルチオフェノール化合物、4−ヒドロキシフェニル−ジアルキルスルホニウム塩の中から選ばれた1種以上であることが好ましい。
【0022】
以下に具体的な例を示す。チオ尿素化合物としては、エチレンチオ尿素、N,N’−ジエチルチオ尿素、N,N’−ジブチルチオ尿素、トリメチルチオ尿素などである。 4−アルキルチオフェノール化合物としては、4−メチルチオフェノール、4−エチルチオフェノール、4−ブチルチオフェノールなどである。4−ヒドロキシフェニル−ジアルキルスルホニウム塩としては、4−ヒドロキシフェニル−ジメチルスルホニウム メチルサルフェート、4−ヒドロキシフェニル−ジエチルスルホニウム メチルサルフェート、4−ヒドロキシフェニル−ジブチルスルホニウム メチルサルフェートなどである。
【0023】
カチオン捕捉剤の配合量は、カチオン発生剤100重量部に対して、0.1〜15重量部である。好ましくは、カチオン発生剤100重量部に対して0.5〜7重量部である。配合量が少なすぎる場合は、接続信頼性が低下し、多すぎる場合は、接続性が低下する。
【0024】
有機バインダー成分中に分散させる導電性粒子としては、接続時に被接続回路との接触面積が増すため、圧着時に変形するものが好ましい。この場合の変形は、導電性粒子自体が変形するもの、及び、導電性粒子が凝集体を形成しており、圧着時に凝集構造を変えるもののいずれでも良い。
【0025】
導電性粒子としては、金、銀、銅、ニッケル、鉛、錫などの金属粒子、または、それらからなる合金、例えば、はんだ、銀銅合金等の粒子、カーボンなどの導電性粒子、それらの導電性粒子または非導電性のガラス、セラミックス、プラスチック粒子を核として表面に他の導電性材料を被覆したものである。さらに、導電性粒子を核とし、この核の表面を絶縁材料で被覆し、圧着した時に内部の導電性粒子が表面の絶縁層を排除し、被接続回路との接触を行えるようにしたものも有効である。このような導電性粒子を用いた場合、隣接する端子間の短絡を防ぎやすく、端子間隔の狭い被接続回路の場合にも使用できる。
【0026】
導電性粒子の粒径は0.1〜20μmであることが好ましい。粒子径が小さすぎる場合は、端子の表面粗さのバラツキに影響され接続が不安定になりやすく、また、大きすぎる場合は、隣接する端子間の短絡が起こりやすくなる。隣接する端子間の短絡を防止するため、接続抵抗を損なわない範囲で絶縁粒子を併用してもよい。
【0027】
導電性粒子の配合量は、隣接する端子間の絶縁性を確保しつつ、圧着方向の電気的接続が可能となる範囲が好ましい。好ましくは、バインダー成分に対して、0.03〜20体積%の範囲、より好ましくは、0.1〜10体積%の範囲である。導電性粒子の配合量が多すぎる場合は、隣接する端子間の絶縁性が不十分になりやすく、少なすぎる場合は、圧着方向の接続性が低下する。
【0028】
保存安定性を高めるために、有機バインダー成分中のカチオン硬化剤をマイクロカプセル化することは、有効である。マイクロカプセル化する方法としては、どのような方法でも構わないが、溶剤蒸発法、スプレードライ法、コアセルベーション法、界面重合法を用いるのが好ましい。
【0029】
有機バインダー成分中のカチオン重合性物質としては、酸重合性、または、酸硬化性の物質であり、例えば、エポキシ樹脂、ポリビニルエーテル、ポリスチレンなどである。前記カチオン重合性物質は、単独、あるいは、2種以上併用してもよい。前記カチオン重合性物質としては、エポキシ樹脂が好ましい。エポキシ樹脂は、1分子中に2個以上のエポキシ基を有する化合物であり、具体的には、グリシジルエーテル基、グリシジルエステル基、脂環式エポキシ基を有する化合物、分子内の二重結合をエポキシ化した化合物、それらの置換基を2種以上有する化合物が特に好ましい。
【0030】
本発明において有機バインダー成分は、バインダー樹脂とカチオン重合性物質とからなるが、カチオン重合性物質と混合可能なバインダー樹脂としては、熱可塑性樹脂、エポキシ樹脂と反応性のある熱硬化性樹脂などである。カチオン重合性物質と混合可能な熱可塑性樹脂としては、フェノキシ樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、アルキル化セルロース樹脂、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリエチレンフタレート樹脂等、カチオン重合性物質に相溶性のある樹脂である。これらの樹脂の中、水酸基、カルボキシル基等の極性基を有する樹脂は、カチオン重合性物質との相溶性に優れるため好ましい。また、カチオン重合性物質は、カチオンにより重合もしくは硬化して前記バインダー樹脂とともに有機バインダー成分として機能する。
【0031】
本発明を実施例に基づいて説明する。
実施例1
3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレート25g、1,2,3,4−ブタンテトラカルボン酸と3−シクロヘキサンオキシド−1−メタノールのエステルからなる脂環式エポキシ樹脂25g、平均分子量25000のフェノキシ樹脂50gを重量比でトルエン−酢酸エチルの混合溶剤(1対1)に溶解し、固形分50%の溶液とした。
【0032】
特開平6−223633号公報の実施例記載の方法により銀銅合金粉末を作製した。平均銀濃度は0.5(原子比)であった。気流分級機を用いて銀銅合金粉末を分級し、平均粒径5μmの導電性粒子を得た。
【0033】
4−メトキシカルボニルオキシ−フェニルベンジルメチルスルホニウム ヘキサフルオロホスフェート100、N,N’−ジエチルチオ尿素3となるように配合しγ−ブチロラクトンに溶解して、50重量%の溶液とした。固形重量比で樹脂成分100、4−メトキシカルボニルオキシ−ベンジルメチルスルホニウム ヘキサフルオロホスフェート及びN,N’−ジメチルチオ尿素の合計が0.5となるように配合し、更に、導電性粒子を3体積%配合し、分散させた。その後、厚さ50μmのポリエチレンテレフタレートフィルム上に塗布し、40℃で送風乾燥し、膜厚18μmの異方導電性フィルムを得た。
【0034】
実施例2
実施例1の4−メトキシカルボニルオキシ−フェニルベンジルメチルスルホニウム ヘキサフルオロホスフェートにかえて、4−フェノキシカルボニルオキシ−フェニル−α−ナフチルメチルスルホニウム ヘキサフルオロホスフェートを使用し、N,N’−ジエチルチオ尿素にかえて4−メチルチオフェノールを使用した以外は、実施例1と同様にして異方導電性フィルムを得た。
【0035】
実施例3
実施例1の4−メトキシカルボニルオキシ−フェニルベンジルメチルスルホニウム ヘキサフルオロホスフェートにかえて、4−ベンジルオキシカルボニルオキシ−フェニル−m−クロロ−ベンジルメチルスルホニウム ヘキサフルオロホスフェートを使用した以外は、実施例1と同様にして異方導電性フィルムを得た。
【0036】
実施例4
実施例1の3,4−エポキシシクロヘキシルメチル−3,4−エポキシシクロヘキサンカルボキシレートにかえて、ビス−(3,4−エポキシシクロヘキシル)アジペートを使用し、N,N’−ジエチルチオ尿素にかえて4−ヒドロキシフェニル−ジメチルスルホニウム メチルサルフェートを使用した以外は、実施例1と同様にして異方導電性フィルムを得た。
【0037】
実施例5
実施例1の4−メトキシカルボニルオキシ−フェニルベンジルメチルスルホニウム ヘキサフルオロホスフェート及びN,N’−ジメチルチオ尿素の合計の配合量を0.1重量部としたした以外は、実施例1と同様にして異方導電性フィルムを得た。
【0038】
実施例6
実施例1の4−メトキシカルボニルオキシ−フェニルベンジルメチルスルホニウム ヘキサフルオロホスフェート及びN,N’−ジメチルチオ尿素の合計の配合量を5重量部としたした以外は、実施例1と同様にして異方導電性フィルムを得た。
【0039】
実施例7
実施例1の導電性粒子の配合量を0.5体積%とした以外は、実施例1と同様にして異方導電性フィルムを得た。
【0040】
実施例8
実施例1の導電性粒子の配合量を8体積%とした以外は、実施例1と同様にして異方導電性フィルムを得た。
【0041】
実施例9
実施例1の導電性粒子をベンゾグアナミン樹脂を核とする粒子の表面に厚み0.2μmのニッケル層を設け、そのニッケル層の外側に、厚み0.02μmの金層を設けた平均粒径6μmの導電性粒子にかえた以外は、実施例1と同様にして、異方導電性フィルムを得た。
【0042】
実施例10
実施例1の導電性粒子を、平均単粒子径2μm、凝集粒径10μmにニッケル粒子にかえた以外は、実施例1と同様にして、異方導電性フィルムを得た。
【0043】
比較例1
実施例1のN,N’−ジメチルチオ尿素を配合しないこと以外は、実施例1と同様にして、異方導電性フィルムを得た。
【0044】
比較例2
実施例1の4−メトキシカルボニルオキシ−フェニルベンジルメチルスルホニウム ヘキサフルオロホスフェートにかえて、4−ヒドロキシフェニルジメチルスルホニウム ヘキサフルオロアンチモネートを使用した以外は、実施例1と同様にして異方導電性フィルムを得た。
【0045】
比較例3
実施例1の4−メトキシカルボニルオキシ−フェニルベンジルメチルスルホニウム ヘキサフルオロホスフェート100、N,N’−ジエチルチオ尿素20となるよう配合した以外は、実施例1と同様にして異方導電性フィルムを得た。
【0046】
比較例4
実施例1の4−メトキシカルボニルオキシ−フェニルベンジルメチルスルホニウム ヘキサフルオロホスフェート100、N,N’−ジエチルチオ尿素0.05となるよう配合した以外は、実施例1と同様にして異方導電性フィルムを得た。
【0047】
比較例5
実施例1の4−メトキシカルボニルオキシ−フェニルベンジルメチルスルホニウム ヘキサフルオロホスフェートにかえて、2−ブテニルテトラメチレンスルホニウム ヘキサフルオロホスフェートにかえた以外は、実施例1と同様にして異方導電性フィルムを得た。
【0048】
(接続抵抗値測定方法)
全面に酸化インジウム錫(ITO)の薄膜を形成した厚み200μmのポリカーボネートフィルム基板(表面抵抗値300Ω/sq)上に幅2mmの異方導電性フィルムを仮貼りし、2.5mm幅の圧着ヘッドを用いて50℃、0.3MPa、3秒間加圧した後、ポリエチレンテレフタレートのベースフィルムを剥離する。そこへ、配線幅100μm、配線ピッチ200μm、厚み18μmの銅配線上に0.3μmの金メッキを施した回路を200本有するフレキシブルプリント配線板(材質ポリイミド樹脂、厚み25μm)を仮接続した後、120℃、10秒、0.8MPa加圧圧着する。圧着後、隣接端子間の抵抗値を四端子法の抵抗計で測定し、接続抵抗値とする。
【0049】
(保存安定性)
異方導電性フィルムを密閉容器の中に入れ、25℃で2週間保存した後、上記と同様にして接続抵抗値を測定し、保存前の接続抵抗値との比較を行う。
【0050】
(耐環境性試験)
圧着したフレキシブルプリント配線板を105℃、1.2気圧のプレシャークッカー試験に8時間かけ、その後の接続抵抗値を測定し、試験前の接続抵抗値との比較を行う。
【0051】
(剥離強度)
圧着したフレキシブルプリント配線板を前記環境試験にかけ、25℃で1時間放置後、幅10mmに切断し、インストロンを用いて90°ピール強度を測定する。引っ張り速度50mm/分で行った。測定値を剥離強度とする。
【0052】
以上の結果を表1に示す。
【0053】
【表1】
Figure 0003589422
【0054】
このように本発明による実施例は、比較例に比べ、保存後の接続抵抗値変化が低く、かつ、プレッシャークッカー試験による接続抵抗値変化も低く、剥離強度も高いことが示された。
【0055】
【発明の効果】
本発明の組成物は、圧着温度130℃以下、圧着時間10秒以下の比較的低温短時間で回路同士を電気的に接合でき、かつ接続信頼性、剥離強度に優れる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an anisotropic bonding method in which two circuit boards are adhered to each other and electrically connected between the opposing circuits of the two circuit boards without short-circuiting between adjacent circuits in the same circuit board. The present invention relates to a conductive film.
[0002]
[Prior art]
As electronic devices have become more sophisticated and thinner in recent years, there has been an increasing need for connections between fine circuits, connections between fine terminals and fine circuits, and the like. Has been actively used in recent years. The anisotropic conductive film is a film in which conductive particles are dispersed in an adhesive film, and is sandwiched between circuits to be connected, and is thermocompression-bonded at a predetermined temperature, pressure, and time. Are used to secure electrical insulation between adjacent circuits at the same time as electrical connection and bonding of the circuit. Furthermore, in recent years, since the circuit portion to be connected has been increased in size and the applicable base material has been diversified, dimensional changes due to thermal damage and thermal expansion / shrinkage difference during thermocompression bonding are ignored. It is becoming an impossible problem. Therefore, an anisotropic conductive film that can be connected at a lower temperature and has excellent reliability and storage stability has been demanded.
[0003]
Conventional binder resins for anisotropic conductive films can be broadly classified into two types: thermoplastic resins and thermosetting resins.
[0004]
As the anisotropic conductive film using a thermoplastic resin as a binder resin, for example, JP-A-62-154746 and JP-A-62-109878 are known. It is necessary to control the temperature above the melting temperature of the plastic resin. Therefore, connection can be made at a relatively low temperature depending on the thermoplastic resin used. Further, since no chemical reaction is involved, connection can be made in a short time, and therefore, damage due to heat can be suppressed. However, when these anisotropic conductive films are used for connection, the connection parts are limited in the heat resistance, moisture resistance, and chemical resistance due to the characteristics of the binder resin. There was a problem.
[0005]
As an anisotropic conductive film using a thermosetting resin as a binder resin, epoxy resin as a curable resin and microcapsules of tertiary amines and imidazoles, which are anionic polymerization type curing agents, as a curing agent It is known to increase storage stability.
[0006]
Other than such anionic polymerization type curing agents, cationic polymerization type curing agents are known. As the cationic polymerization type curing agent, an aromatic diazonium salt, an aromatic sulfonium salt, and the like, which act as a curing agent upon irradiation with energy rays, are known. In addition to the energy beam irradiation, aliphatic sulfonium salts and aromatic sulfonium salts that act as a curing agent by heating are known.
[0007]
[Problems to be solved by the invention]
When a circuit board is joined with a thermosetting anisotropic conductive film using an anionic polymerization type curing agent and is sufficiently cured by heating, it is excellent in heat resistance, moisture resistance and chemical resistance. However, this type of anisotropic conductive film has an insufficient connection reliability at a temperature of 130 ° C. or less when the pressing time is set to 10 seconds or less, and when the low-temperature reactivity is enhanced, The pot life is short due to poor quality. Further, there is a problem that a circuit board made of a thermoplastic resin having a low softening point, such as polyethylene terephthalate or polycarbonate, has a large thermal damage and cannot be used.
[0008]
When an aliphatic sulfonium salt or a sulfonium salt that generates a benzyl cation is used as known in JP-A-07-090237, it is difficult to balance storage stability with low-temperature reactivity.
[0009]
The present invention provides an anisotropic conductive film that can electrically connect circuits at a relatively low temperature and a short time of a heating temperature of 130 ° C. or less and a heating time of 10 seconds or less, and has excellent storage stability and connection reliability. The purpose is to:
[0010]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above problems, and as a result, have found that an anisotropic conductive film having excellent low-temperature connectivity, storage stability, and connection reliability can be obtained by the following composition, and constitute the present invention. Reached.
[0011]
That is, the present invention provides an anisotropic conductive film in which conductive particles are dispersed in an organic binder component, wherein the organic binder component contains a cationically polymerizable substance, and the organic binder component containing the cationically polymerizable substance has a weight of 100%. Parts by weight of a cation generator represented by the following general formula (1) in an amount of 0.01 to 10 parts by weight, and a cation trapping agent that reacts with a cation species generated from the cation generator. An anisotropic conductive film characterized in that 0.1 to 15 parts by weight is blended with respect to 100 parts by weight.
[0012]
Embedded image
Figure 0003589422
[In formula (1), R 1 represents any one of an acetyl group, a methoxycarbonyl group, a phenoxycarbonyl group, a benzyloxycarbonyl group, a benzoyl group, and a 9-fluorenylcarbonyl group, and R 2 and R 3 independently represent R 4 is an alkyl group having 1 to 6 carbon atoms, Q is a general formula (2) shown below, α-naphthylmethyl group, β-naphthyl A methyl group.
[0013]
Embedded image
Figure 0003589422
In the formula (2), R 5 is any of hydrogen, methyl, methoxy, and halogen. Y - is a non-nucleophilic anion. ]
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention will be specifically described below. The present invention provides an anisotropic conductive film in which conductive particles are dispersed in an organic binder component, wherein the organic binder component contains a cationic polymerizable substance, and 100 parts by weight of the organic binder component containing the cationic polymerizable substance. On the other hand, 0.01 to 10 parts by weight of a cation generator represented by the following general formula (1) is blended, and a cation trapping agent that reacts with a cation species generated from the cation generator is mixed with 100 parts of the cation generator. It is an anisotropic conductive film characterized by being blended in an amount of 0.1 to 15 parts by weight per part.
[0015]
Embedded image
Figure 0003589422
[Wherein, R 1 represents any one of acetyl, methoxycarbonyl, phenoxycarbonyl, benzyloxycarbonyl, benzoyl, and 9-fluorenylcarbonyl; R 2 and R 3 independently represent hydrogen, Halogen is any of alkyl groups having 1 to 6 carbon atoms, R 4 is an alkyl group having 1 to 6 carbon atoms, Q is the following general formula (2), α-naphthylmethyl group, β-naphthylmethyl group, Indicates one of
[0016]
Embedded image
Figure 0003589422
In the formula (2), R 5 is any of hydrogen, methyl, methoxy, and halogen. Y - is a non-nucleophilic anion. ]
[0017]
The cation generator used in the present invention may have any structure as long as it is represented by the general formula (1), but from the viewpoint of storage stability, a cation generator that generates cation species at 50 ° C. or higher is preferable.
[0018]
As the cation species generated by thermal decomposition of the cation generator of the present invention, any structure may be used as long as the reactivity with the cation polymerizable substance is sufficient, but a benzyl cation species, an α-naphthyl cation species, β-naphthyl cations and acyl cations are preferred. From the viewpoint of connection formation, it is preferable that at least one is an acyl cation species. Further, it is particularly preferable that the generated cation species is at least two or more species including an acyl cation.
[0019]
The counter anion of the cation generator may be any non-nucleophilic anion, and examples include hexachloroantimonate, hexafluoroantimonate, hexafluoroarsenate, hexafluorophosphate, and tetrafluoroborate. From the viewpoint of safety, hexafluorophosphate and tetrafluoroborate are preferable, and from the viewpoint of stability, hexafluorophosphate is particularly preferable.
[0020]
The amount of the cation generator is 0.01 to 10 parts by weight based on 100 parts by weight of the organic binder containing the cationically polymerizable substance. Preferably, it is 0.5 to 5 parts by weight. If the amount is too small, curing will be insufficient, and sufficient electrical connectivity and mechanical strength will not be obtained. If the amount is too large, connection reliability and storage stability will decrease.
[0021]
The cation scavenger used in the present invention may have any structure as long as it reacts with a cation species generated by thermal decomposition of the cation generator, but may be any of thiourea compounds, 4-alkylthiophenol compounds, and 4-hydroxyphenyl- It is preferably at least one selected from dialkylsulfonium salts.
[0022]
Specific examples are shown below. Examples of the thiourea compound include ethylene thiourea, N, N'-diethylthiourea, N, N'-dibutylthiourea, and trimethylthiourea. Examples of the 4-alkylthiophenol compound include 4-methylthiophenol, 4-ethylthiophenol, and 4-butylthiophenol. Examples of the 4-hydroxyphenyl-dialkylsulfonium salt include 4-hydroxyphenyl-dimethylsulfonium methyl sulfate, 4-hydroxyphenyl-diethylsulfonium methyl sulfate, and 4-hydroxyphenyl-dibutylsulfonium methyl sulfate.
[0023]
The compounding amount of the cation scavenger is 0.1 to 15 parts by weight based on 100 parts by weight of the cation generator. Preferably, it is 0.5 to 7 parts by weight based on 100 parts by weight of the cation generator. If the amount is too small, the connection reliability will be reduced, and if it is too large, the connectivity will be reduced.
[0024]
As the conductive particles to be dispersed in the organic binder component, those which are deformed at the time of press bonding are preferable because the contact area with the circuit to be connected increases at the time of connection. The deformation in this case may be either the deformation of the conductive particles themselves or the deformation of the conductive particles forming an aggregate and changing the aggregate structure at the time of pressing.
[0025]
Examples of the conductive particles include metal particles such as gold, silver, copper, nickel, lead, and tin, or alloys thereof, for example, particles of solder, silver-copper alloy, and the like, conductive particles such as carbon, and conductive particles thereof. It is made by coating conductive particles or non-conductive glass, ceramics, or plastic particles as nuclei on the surface with another conductive material. In addition, there is also a type in which conductive particles are used as a nucleus, and the surface of this nucleus is coated with an insulating material, and when crimped, the conductive particles inside eliminate the insulating layer on the surface and make contact with a connected circuit. It is valid. When such conductive particles are used, a short circuit between adjacent terminals can be easily prevented, and the conductive particles can be used for a connected circuit having a narrow terminal interval.
[0026]
The conductive particles preferably have a particle size of 0.1 to 20 μm. If the particle diameter is too small, the connection tends to be unstable due to variations in the surface roughness of the terminals, and if it is too large, a short circuit between adjacent terminals tends to occur. In order to prevent a short circuit between adjacent terminals, insulating particles may be used together as long as the connection resistance is not impaired.
[0027]
The compounding amount of the conductive particles is preferably in a range that enables electrical connection in the crimping direction while ensuring insulation between adjacent terminals. Preferably, it is in the range of 0.03 to 20% by volume, more preferably 0.1 to 10% by volume, based on the binder component. If the amount of the conductive particles is too large, the insulation between adjacent terminals tends to be insufficient. If the amount is too small, the connectivity in the crimping direction decreases.
[0028]
To enhance the storage stability, it is effective to microencapsulate the cationic curing agent in the organic binder component. As a method for microencapsulation, any method may be used, but it is preferable to use a solvent evaporation method, a spray drying method, a coacervation method, or an interfacial polymerization method.
[0029]
The cationically polymerizable substance in the organic binder component is an acid-polymerizable or acid-curable substance, such as an epoxy resin, polyvinyl ether, or polystyrene. The cationically polymerizable substances may be used alone or in combination of two or more. As the cationic polymerizable substance, an epoxy resin is preferable. The epoxy resin is a compound having two or more epoxy groups in one molecule, and specifically, a compound having a glycidyl ether group, a glycidyl ester group, an alicyclic epoxy group, or a compound having an epoxy group to form a double bond in the molecule. Compounds which have two or more substituents are particularly preferred.
[0030]
In the present invention, the organic binder component is composed of a binder resin and a cationically polymerizable substance, and as the binder resin that can be mixed with the cationically polymerizable substance, a thermoplastic resin, a thermosetting resin reactive with an epoxy resin, or the like. is there. Thermoplastic resins that can be mixed with the cationically polymerizable substance include phenoxy resins, polyvinyl acetal resins, polyvinyl butyral resins, alkylated cellulose resins, polyester resins, acrylic resins, urethane resins, polyethylene phthalate resins, and other cationically polymerizable substances. It is a soluble resin. Among these resins, a resin having a polar group such as a hydroxyl group or a carboxyl group is preferable because of excellent compatibility with the cationically polymerizable substance. Further, the cationically polymerizable substance is polymerized or cured by a cation and functions as an organic binder component together with the binder resin.
[0031]
The present invention will be described based on examples.
Example 1
25 g of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 25 g of an alicyclic epoxy resin comprising an ester of 1,2,3,4-butanetetracarboxylic acid and 3-cyclohexaneoxide-1-methanol, 50 g of a phenoxy resin having an average molecular weight of 25,000 was dissolved in a mixed solvent (1: 1) of toluene-ethyl acetate at a weight ratio to obtain a solution having a solid content of 50%.
[0032]
A silver-copper alloy powder was prepared by the method described in the example of JP-A-6-223633. The average silver concentration was 0.5 (atomic ratio). The silver-copper alloy powder was classified using an airflow classifier to obtain conductive particles having an average particle size of 5 μm.
[0033]
4-methoxycarbonyloxy- phenylbenzylmethylsulfonium hexafluorophosphate 100 and N, N'-diethylthiourea 3 were mixed together and dissolved in γ-butyrolactone to obtain a 50% by weight solution. The resin component 100, 4-methoxycarbonyloxy-benzylmethylsulfonium hexafluorophosphate and N, N'-dimethylthiourea were blended so that the total of the resin components was 0.5 in terms of solid weight ratio. Compounded and dispersed. Then, it was applied on a polyethylene terephthalate film having a thickness of 50 μm and dried by blowing air at 40 ° C. to obtain an anisotropic conductive film having a thickness of 18 μm.
[0034]
Example 2
Instead of 4-methoxycarbonyloxy- phenylbenzylmethylsulfonium hexafluorophosphate of Example 1, 4-phenoxycarbonyloxy-phenyl-α-naphthylmethylsulfonium hexafluorophosphate was used, and N, N′-diethylthiourea was used. An anisotropic conductive film was obtained in the same manner as in Example 1 except that 4-methylthiophenol was used.
[0035]
Example 3
Instead of phenyl benzyl methyl sulfonium hexafluorophosphate, 4-benzyloxy carbonyloxy - - 4-methoxycarbonyloxy of Example 1-phenyl -m- chloro - except using benzyl methyl sulfonium hexafluorophosphate, as in Example 1 Similarly, an anisotropic conductive film was obtained.
[0036]
Example 4
Bis- (3,4-epoxycyclohexyl) adipate was used in place of 3,4-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate of Example 1, and 4 in place of N, N'-diethylthiourea. An anisotropic conductive film was obtained in the same manner as in Example 1, except that -hydroxyphenyl-dimethylsulfonium methyl sulfate was used.
[0037]
Example 5
Example 1 was repeated in the same manner as in Example 1 except that the total amount of 4-methoxycarbonyloxy- phenylbenzylmethylsulfonium hexafluorophosphate and N, N'-dimethylthiourea was 0.1 part by weight. One side conductive film was obtained.
[0038]
Example 6
Anisotropically conductive in the same manner as in Example 1 except that the total amount of 4-methoxycarbonyloxy- phenylbenzylmethylsulfonium hexafluorophosphate and N, N'-dimethylthiourea was changed to 5 parts by weight. A functional film was obtained.
[0039]
Example 7
An anisotropic conductive film was obtained in the same manner as in Example 1 except that the amount of the conductive particles in Example 1 was changed to 0.5% by volume.
[0040]
Example 8
An anisotropic conductive film was obtained in the same manner as in Example 1, except that the blending amount of the conductive particles in Example 1 was changed to 8% by volume.
[0041]
Example 9
The conductive particles of Example 1 were provided with a nickel layer having a thickness of 0.2 μm on the surface of the particles having the benzoguanamine resin as a nucleus, and a gold layer having a thickness of 0.02 μm was provided outside the nickel layer. An anisotropic conductive film was obtained in the same manner as in Example 1, except that the conductive particles were replaced with conductive particles.
[0042]
Example 10
An anisotropic conductive film was obtained in the same manner as in Example 1, except that the conductive particles of Example 1 were changed to nickel particles with an average single particle diameter of 2 μm and an aggregate particle diameter of 10 μm.
[0043]
Comparative Example 1
An anisotropic conductive film was obtained in the same manner as in Example 1 except that N, N'-dimethylthiourea was not blended.
[0044]
Comparative Example 2
An anisotropic conductive film was prepared in the same manner as in Example 1 except that 4-hydroxyphenyldimethylsulfonium hexafluoroantimonate was used instead of 4-methoxycarbonyloxy- phenylbenzylmethylsulfonium hexafluorophosphate in Example 1. Obtained.
[0045]
Comparative Example 3
An anisotropic conductive film was obtained in the same manner as in Example 1, except that 4-methoxycarbonyloxy- phenylbenzylmethylsulfonium hexafluorophosphate 100 and N, N'-diethylthiourea 20 were blended. .
[0046]
Comparative Example 4
An anisotropic conductive film was prepared in the same manner as in Example 1 except that 4-methoxycarbonyloxy- phenylbenzylmethylsulfonium hexafluorophosphate 100 in Example 1 and N, N′-diethylthiourea 0.05 were blended. Obtained.
[0047]
Comparative Example 5
An anisotropic conductive film was produced in the same manner as in Example 1 except that 4-methoxycarbonyloxy- phenylbenzylmethylsulfonium hexafluorophosphate in Example 1 was replaced with 2-butenyltetramethylenesulfonium hexafluorophosphate. Obtained.
[0048]
(Connection resistance measurement method)
A 2 mm wide anisotropic conductive film is temporarily attached on a 200 μm thick polycarbonate film substrate (surface resistance value 300 Ω / sq) having a thin film of indium tin oxide (ITO) formed on the entire surface, and a 2.5 mm wide pressure bonding head is attached. After pressing at 50 ° C. and 0.3 MPa for 3 seconds, the polyethylene terephthalate base film is peeled off. After temporarily connecting a flexible printed wiring board (material: polyimide resin, thickness: 25 μm) having 200 circuits each having a wiring width of 100 μm, a wiring pitch of 200 μm, and a thickness of 18 μm, on which a gold plating of 0.3 μm is applied on a copper wiring, 120 Pressure bonding is performed at 0.8 ° C. for 10 seconds. After crimping, the resistance value between the adjacent terminals is measured with a four-terminal resistance meter, and the measured value is defined as the connection resistance value.
[0049]
(Storage stability)
After placing the anisotropic conductive film in a closed container and storing it at 25 ° C. for 2 weeks, the connection resistance value is measured in the same manner as above, and compared with the connection resistance value before storage.
[0050]
(Environmental resistance test)
The crimped flexible printed wiring board is subjected to a pre-shear cooker test at 105 ° C. and 1.2 atm for 8 hours, and thereafter the connection resistance value is measured and compared with the connection resistance value before the test.
[0051]
(Peel strength)
The pressed flexible printed wiring board is subjected to the environmental test, left at 25 ° C. for 1 hour, cut into a width of 10 mm, and measured for 90 ° peel strength using an Instron. The test was performed at a pulling speed of 50 mm / min. The measured value is taken as the peel strength.
[0052]
Table 1 shows the above results.
[0053]
[Table 1]
Figure 0003589422
[0054]
As described above, the examples according to the present invention showed that the change in connection resistance after storage was lower than that of the comparative example, the change in connection resistance by the pressure cooker test was lower, and the peel strength was higher.
[0055]
【The invention's effect】
The composition of the present invention can electrically connect circuits with each other at a relatively low temperature and a short time of 130 ° C. or less and a bonding time of 10 seconds or less, and has excellent connection reliability and peel strength.

Claims (4)

有機バインダー成分中に導電性粒子を分散させてなる異方導電性フィルムにおいて、有機バインダー成分がカチオン重合性物質を含み、かつ該カチオン重合性物質を含む有機バインダー成分100重量部に対して、下記一般式(1)で示されるカチオン発生剤を0.01〜10重量部配合し、かつ、前記カチオン発生剤より発生するカチオン種と反応するカチオン捕捉剤を前記カチオン発生剤100重量部に対して0.1〜15重量部配合したことを特徴とする異方導電性フィルム。
Figure 0003589422
〔式(1)中、Rはアセチル基、メトキシカルボニル基、フェノキシカルボニル基、ベンジルオキシカルボニル基、ベンゾイル基、9−フルオレニルカルボニル基、のいずれかを、R、Rは独立して水素、ハロゲン、炭素数1〜6のアルキル基のいずれかを、Rは炭素数1〜6のアルキル基を、Qは、下記一般式(2)、α−ナフチルメチル基、β−ナフチルメチル基、のいずれかを示す。
Figure 0003589422
式(2)中、Rは水素、メチル、メトキシ、ハロゲンのいずれかである。Yは非求核性陰イオンである。〕
In an anisotropic conductive film obtained by dispersing conductive particles in an organic binder component, the organic binder component contains a cationically polymerizable substance, and 100 parts by weight of the organic binder component containing the cationically polymerizable substance, 0.01 to 10 parts by weight of the cation generator represented by the general formula (1) is mixed, and a cation trapping agent that reacts with a cation species generated from the cation generator is added to 100 parts by weight of the cation generator. An anisotropic conductive film characterized by being added in an amount of 0.1 to 15 parts by weight.
Figure 0003589422
[In the formula (1), R 1 represents any one of an acetyl group, a methoxycarbonyl group, a phenoxycarbonyl group, a benzyloxycarbonyl group, a benzoyl group, and a 9-fluorenylcarbonyl group, and R 2 and R 3 independently represent R 4 is an alkyl group having 1 to 6 carbon atoms, Q is a general formula (2) shown below, α-naphthylmethyl group, β-naphthyl A methyl group.
Figure 0003589422
In the formula (2), R 5 is any of hydrogen, methyl, methoxy, and halogen. Y - is a non-nucleophilic anion. ]
カチオン捕捉剤がチオ尿素化合物、4−アルキルチオフェノール化合物、4−ヒドロキシフェニル−ジアルキルスルホニウム塩の中から選ばれた1種以上であることを特徴とする請求項1記載の異方導電性フィルム。The anisotropic conductive film according to claim 1, wherein the cation scavenger is at least one selected from a thiourea compound, a 4-alkylthiophenol compound, and a 4-hydroxyphenyl-dialkylsulfonium salt. カチオン発生剤中の非求核性陰イオンがリン系の陰イオンであることを特徴とする請求項1又は2記載の異方導電性フィルム。3. The anisotropic conductive film according to claim 1, wherein the non-nucleophilic anion in the cation generator is a phosphorus-based anion. カチオン発生剤より発生するカチオン種が少なくとも2種以上であることを特徴とする請求項1〜3のいずれかに記載の異方導電性フィルム。The anisotropic conductive film according to any one of claims 1 to 3, wherein at least two types of cations are generated from the cation generator.
JP2000357372A 2000-11-24 2000-11-24 Anisotropic conductive film Expired - Lifetime JP3589422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000357372A JP3589422B2 (en) 2000-11-24 2000-11-24 Anisotropic conductive film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000357372A JP3589422B2 (en) 2000-11-24 2000-11-24 Anisotropic conductive film

Publications (2)

Publication Number Publication Date
JP2002161146A JP2002161146A (en) 2002-06-04
JP3589422B2 true JP3589422B2 (en) 2004-11-17

Family

ID=18829452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000357372A Expired - Lifetime JP3589422B2 (en) 2000-11-24 2000-11-24 Anisotropic conductive film

Country Status (1)

Country Link
JP (1) JP3589422B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227199A (en) * 2011-04-15 2012-11-15 Asahi Kasei E-Materials Corp Method of manufacturing connection structure, and connection structure

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030037017A (en) * 2001-11-01 2003-05-12 엘지전선 주식회사 Anisotropic conductive adhesive film
KR100423237B1 (en) * 2001-11-21 2004-03-18 엘지전선 주식회사 Anisotropic conductive films with enhanced adhesion
US20070213429A1 (en) * 2006-03-10 2007-09-13 Chih-Min Cheng Anisotropic conductive adhesive
JP4910747B2 (en) * 2007-02-13 2012-04-04 富士通株式会社 Capacitor manufacturing method
DE102007046900C5 (en) * 2007-09-28 2018-07-26 Heraeus Sensor Technology Gmbh High-temperature sensor and a method for its production
CN103081236B (en) * 2010-08-06 2016-03-09 旭化成电子材料株式会社 Anisotropic conductive adhesive film and curing agent
JP6002518B2 (en) * 2012-09-21 2016-10-05 デクセリアルズ株式会社 Anisotropic conductive film, connection method, and joined body
JP6462702B2 (en) * 2015-04-16 2019-01-30 古河電気工業株式会社 Conductive adhesive film and dicing die bonding film
JP6265242B2 (en) * 2016-09-26 2018-01-24 日立化成株式会社 Anisotropic conductive adhesive composition
JP2019189698A (en) * 2018-04-20 2019-10-31 三新化学工業株式会社 Method of stabilizing epoxy resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012227199A (en) * 2011-04-15 2012-11-15 Asahi Kasei E-Materials Corp Method of manufacturing connection structure, and connection structure

Also Published As

Publication number Publication date
JP2002161146A (en) 2002-06-04

Similar Documents

Publication Publication Date Title
JP5373973B2 (en) Anisotropic conductive adhesive film and curing agent
JP3907217B2 (en) Circuit connection material and circuit connection method using the connection material
JP3589422B2 (en) Anisotropic conductive film
KR101391696B1 (en) Anisotropic conductive composition and film
JP2015167106A (en) Anisotropic conductive film, and connection structure
JP4235888B2 (en) Conductive paste
JPH10298526A (en) Composition for connecting circuit and film using the same
JP5472279B2 (en) Conductive paste, and prepreg, metal foil-clad laminate, and printed wiring board using the same
JP4053744B2 (en) Adhesive composition for semiconductor device and adhesive sheet for semiconductor device using the same
JP2002204052A (en) Circuit connecting material and method for connecting circuit terminal using the same as well as connecting structure
Bolger Conductive adhesives
JP3137578B2 (en) Conductive particles for anisotropic conductive adhesive film, method for producing the same, and anisotropic conductive adhesive film
JP6326867B2 (en) Connection structure manufacturing method and connection structure
JP2007162019A (en) Circuit connecting material and method for connecting circuit using the same
JPH11130841A (en) Epoxy resin composition, adhesive, composition for circuit connection and film using the same
JP5816456B2 (en) Anisotropic conductive connection material, film laminate, connection method and connection structure
JP2005197032A (en) Anisotropic conductive film
JPH10273635A (en) Connecting member for circuit and production of circuit board
JP5143329B2 (en) Manufacturing method of circuit connection body
JPS63110506A (en) Anisotropic conducting sheet
JPH09165435A (en) Anisotropic conductive film
JP2001332137A (en) Anisotropic conductive film
JP2005082632A (en) Anisotropically conducting adhesive and connection structure
JP3046081B2 (en) Anisotropic conductive film
JP2000311730A (en) Anisotropic conductive film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040520

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040813

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3589422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090827

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100827

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110827

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120827

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term