JP3587418B2 - Method for producing vinyl polymer - Google Patents

Method for producing vinyl polymer Download PDF

Info

Publication number
JP3587418B2
JP3587418B2 JP00390097A JP390097A JP3587418B2 JP 3587418 B2 JP3587418 B2 JP 3587418B2 JP 00390097 A JP00390097 A JP 00390097A JP 390097 A JP390097 A JP 390097A JP 3587418 B2 JP3587418 B2 JP 3587418B2
Authority
JP
Japan
Prior art keywords
mmol
vinyl polymer
carbon atoms
producing
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00390097A
Other languages
Japanese (ja)
Other versions
JPH1072503A (en
Inventor
恭尚 岸本
正人 日下部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP00390097A priority Critical patent/JP3587418B2/en
Priority to DE69710130T priority patent/DE69710130T2/en
Priority to EP97109952A priority patent/EP0816385B1/en
Priority to CN97117110.6A priority patent/CN1171405A/en
Publication of JPH1072503A publication Critical patent/JPH1072503A/en
Priority to US09/116,541 priority patent/US6291612B1/en
Application granted granted Critical
Publication of JP3587418B2 publication Critical patent/JP3587418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、制御された分子量と狭い分子量分布とを有するビニル系重合体の製造方法に関する。
【0002】
【従来の技術】
重合体の分子量及び分子量分布は、重合体の流動特性等の諸特性に大きな影響を及ぼす。従って、制御された分子量と狭い分子量分布とを有する重合体を得ることは得られた重合体及びその重合体を用いて得られる組成物の諸特性をコントロールするうえで重要な技術である。
【0003】
制御された分子量と狭い分子量分布とを有するビニル系重合体を簡便に得る方法としては、例えば、J.Am.Chem.Soc.、117、5614〜5615(1995);Macromolecules、28、7901〜7910(1995)等には、有機ハロゲン化物を開始剤とし、1価のハロゲン化銅と2,2′−ビピリジル化合物等の電子供与性物質とから得られる1価の銅錯体を触媒として使用してビニル系単量体をリビングラジカル重合させる方法が開示されている。この方法は、スチレン、アクリル酸メチル等に対しては制御された分子量と狭い分子量分布とを有する重合体を与える。
【0004】
【発明が解決しようとする課題】
しかしながら、この方法により得られるビニル系重合体の分子量分布は充分に狭いものとはいえない。特にアクリル酸ブチル、アクリル酸ヘキシル、アクリル酸−2−エチルヘキシル等のアクリル酸エステル類、又は、メタクリル酸メチル、メタクリル酸エチル等のメタクリル酸エステル類に適用した場合には、得られるビニル系重合体の分子量分布はやや広くなってしまう。従って、更に狭い分子量分布を有するビニル系重合体を得る方法が望まれている。
【0005】
本発明は、上記に鑑み、制御された分子量と狭い分子量分布とを有するビニル系重合体の製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、有機ハロゲン化物を重合開始剤とし、1価の銅化合物を触媒としてビニル系単量体を重合させるビニル系重合体の製造方法であって、上記重合の際に、25℃における比誘電率が10以上の有機化合物を溶媒として用いるビニル系重合体の製造方法である。
【0007】
以下に本発明を詳述する。
【0008】
本発明においては、重合開始剤として有機ハロゲン化物を用いる。上記有機ハロゲン化物としては特に限定されず、例えば、四塩化炭素、四臭化炭素、塩化アリル、臭化アリル、ヨウ化アリル、α,α′−ジクロロ−o−キシレン、α,α′−ジクロロ−m−キシレン、α,α′−ジクロロ−p−キシレン、α,α′−ジブロモ−o−キシレン、α,α′−ジブロモ−m−キシレン、α,α′−ジブロモ−p−キシレン等のキシレン誘導体;o−ビス(α−クロロエチル)ベンゼン、m−ビス(α−クロロエチル)ベンゼン、p−ビス(α−クロロエチル)ベンゼン、o−ビス(α−ブロモエチル)ベンゼン、m−ビス(α−ブロモエチル)ベンゼン、p−ビス(α−ブロモエチル)ベンゼン等のベンゼン誘導体;α−クロロ酢酸メチル、α−クロロ酢酸エチル等のα−クロロ酢酸エステル;α,α−ジクロロ酢酸メチル、α,α−ジクロロ酢酸エチル等のα,α−ジクロロ酢酸エステル;α,α,α−トリクロロ酢酸メチル、α,α,α−トリクロロ酢酸エチル等のα,α,α−トリクロロ酢酸エステル;α−クロロプロピオン酸メチル、α−クロロプロピオン酸エチル等のα−クロロプロピオン酸エステル;α−クロロイソ酪酸メチル、α−クロロイソ酪酸エチル等のα−クロロイソ酪酸エステル;α−ブロモ酢酸メチル、α−ブロモ酢酸エチル等のα−ブロモ酢酸エステル;α,α−ジブロモ酢酸メチル、α,α−ジブロモ酢酸エチル等のα,α−ジブロモ酢酸エステル;α,α,α−トリブロモ酢酸メチル、α,α,α−トリブロモ酢酸エチル等のα,α,α−トリブロモ酢酸エステル;α−ブロモプロピオン酸メチル、α−ブロモプロピオン酸エチル等のα−ブロモプロピオン酸エステル;α−ブロモイソ酪酸メチル、α−ブロモイソ酪酸エチル等のα−ブロモイソ酪酸エステル等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
【0009】
本発明においては、触媒として1価の銅化合物を用いる。上記銅化合物としては特に限定されず、例えば、塩化第一銅、臭化第一銅、ヨウ化第一銅、シアン化第一銅等が挙げられる。
【0010】
上記銅化合物は、電子供与性物質と併用することが好ましい。上記電子供与性物質としては特に限定されず、例えば、2,2′−ビピリジル、4,4′−ジメチル−2,2′−ビピリジル等のビピリジル化合物;1,10−フェナントロリン、4,7−ジメチル−1,10−フェナントロリン、5,6−ジメチル−1,10−フェナントロリン、3,4,7,8−テトラメチル−1,10−フェナントロリン等のフェナントロリン化合物等の窒素原子含有複素環化合物等が挙げられる。
【0011】
本発明において用いられるビニル系単量体としては特に限定されず、各種のものを用いることができ、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸−n−プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸−n−ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸−t−ブチル、(メタ)アクリル酸−n−ペンチル、(メタ)アクリル酸−n−ヘキシル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸−n−ヘプチル、(メタ)アクリル酸−n−オクチル、(メタ)アクリル酸−2−エチルヘキシル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸フェニル等の(メタ)アクリル酸エステル類;スチレン、2−メチルスチレン、3−メチルスチレン、4−メチルスチレン、2−クロロスチレン、3−クロロスチレン、4−クロロスチレン、2−(クロロメチル)スチレン、3−(クロロメチル)スチレン、4−(クロロメチル)スチレン、2−メトキシスチレン、3−メトキシスチレン、4−メトキシスチレン、2−(メトキシカルボニル)スチレン、3−(メトキシカルボニル)スチレン、4−(メトキシカルボニル)スチレン、α−メチルスチレン等のスチレン誘導体;無水マレイン酸等が挙げられる。これらは単独で用いてもよく、2種以上を併用してもよい。
【0012】
本発明においては、上記ビニル系単量体を重合させる際に、溶媒として25℃で測定した比誘電率が10以上の有機化合物を用いる。
上記25℃で測定した比誘電率が10以上の有機化合物としては特に限定されないが、本発明においては、下記一般式(1)で表されるカルボニル化合物を好適に用いることができる。
【0013】
【化2】

Figure 0003587418
【0014】
式中、R、Rは、同一又は異なって、水素、炭素数1〜10のアルキル基、炭素数1〜10のアリール基又は炭素数1〜10のアラルキル基である。
このようなカルボニル化合物の具体例としては特に限定されず、例えば、アセトン、2−ブタノン、2−ペンタノン、3−ペンタノン、2−ヘキサノン、2−ヘプタノン、4−メチル−2−ペンタノン等の非環状脂肪族ケトン類;シクロヘキサノン、2−メチルシクロヘキサノン、3−メチルシクロヘキサノン、4−メチルシクロヘキサノン等の環状脂肪族ケトン類;アセトフェノン、2−メチルアセトフェノン、3−メチルアセトフェノン、4−メチルアセトフェノン等の芳香族ケトン類等を挙げることができる。
【0015】
また、上記25℃で測定した比誘電率が10以上の有機化合物としては、下記一般式(2)で表されるニトロ化合物を好適に用いることができる。
−NO (2)
式中、Rは、炭素数1〜10のアルキル基、炭素数1〜10のアリール基又は炭素数1〜10のアラルキル基である。
【0016】
このようなニトロ化合物の具体例としては特に限定されず、例えば、ニトロメタン、ニトロエタン、ニトロプロパン、ニトロベンゼン等が挙げられる。
【0017】
また、上記25℃で測定した比誘電率が10以上の有機化合物としては、下記一般式(3)で表されるニトリル化合物を好適に用いることができる。
−CN (3)
式中、Rは、上記一般式(2)における場合と同じ。
このようなニトリル化合物の具体例としては特に限定されず、例えば、アセトニトリル、プロピオニトリル、ベンゾニトリル等が挙げられる。
【0018】
また、上記25℃で測定した比誘電率が10以上の有機化合物としては、下記一般式(4)で表されるアルコール化合物を好適に用いることができる。
−OH (4)
式中、Rは、上記一般式(2)における場合と同じ。
このようなアルコール化合物の具体例としては特に限定されず、例えば、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、シクロヘキシルアルコール、ベンジルアルコール等が挙げられる。
【0019】
本発明においては、上記一般式(1)で表されるカルボニル化合物、上記一般式(2)で表されるニトロ化合物、上記一般式(3)で表されるニトリル化合物、及び、上記一般式(4)で表されるアルコール化合物を単独で用いてもよいし、2種以上を併用してもよい。
【0020】
また、上記25℃で測定した比誘電率が10以上の有機化合物以外の他の溶媒を併用してもよい。上記他の溶媒としては特に限定されず、例えば、ヘキサン、トルエン、酢酸エチル、テトラヒドロフラン等の有機化合物等が挙げられる。
上記他の溶媒を用いる場合においては、上記25℃で測定した比誘電率が10以上の有機化合物は、全溶媒量の10〜100体積%含有されることが好ましい。10体積%未満であると、得られるビニル系重合体の分子量分布が広くなる。
【0021】
本発明においては、上記ビニル系単量体を重合させる際に用いられる全溶媒量は特に限定されないが、適度な反応速度を達成するために、上記ビニル系単量体の体積の0.5〜10倍量が好ましい。
【0022】
上記ビニル系単量体を重合させる際において、上記重合の温度は、上記ビニル系単量体の種類等に応じて適宜に設定することができるが、一般には、60〜150℃が好ましい。
【0023】
【実施例】
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。
【0024】
実施例1
30mLの耐圧ガラス反応容器に、アクリル酸ブチル(10mL、9.94g、69.8mmol)、α,α′−ジブロモ−p−キシレン(370mg、1.4mmol)、臭化第一銅(200mg、1.4mmol)、2,2′−ビピリジル(652mg、4.2mmol)、及び、アセトン(比誘電率20.70、10mL)を仕込み、真空脱気を3回行って溶存酸素を除去した後、封管した。混合物を130℃に加熱し、3時間反応させた。混合物を酢酸エチルで希釈し、10%塩酸で3回、ブラインで1回洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、溶媒を減圧下留去し、ポリ(アクリル酸ブチル)4.26gを得た(重合収率47.6%)。
【0025】
GPC測定(ポリスチレン換算)により求めた重合体の数平均分子量は3900、分散度(Mw/Mn)は1.17であった。
【0026】
実施例2
30mLの耐圧ガラス反応容器に、アクリル酸メチル(3.1mL、3.0g、34.9mmol)、α,α′−ジブロモ−p−キシレン(185mg、0.70mmol)、臭化第一銅(100mg、0.70mmol)、2,2′−ビピリジル(326mg、2.1mmol)、4−メチル−2−ペンタノン(20℃における比誘電率13.11、3.14mL)を仕込み、窒素ガスを10分間吹き込んで溶存酸素を除去した後、封管した。混合物を130℃に加熱し、0.5時間反応させた。混合物を酢酸エチルで希釈し、10%塩酸で3回、ブラインで1回洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、溶媒を減圧下留去し、ポリ(アクリル酸メチル)2.07gを得た(重合収率68.8%)。
【0027】
GPC測定(ポリスチレン換算)により求めた重合体の数平均分子量は3900、分散度は1.31であった。
実施例3
30mLの耐圧ガラス反応容器に、アクリル酸ブチル(5mL、4.47g、34.9mmol)、α,α′−ジブロモ−p−キシレン(185mg、0.70mmol)、臭化第一銅(100mg、0.70mmol)、2,2′−ビピリジル(326mg、2.1mmol)、及び、アセトニトリル(比誘電率36.0、5mL)を仕込み、真空脱気を3回行って溶存酸素を除去した後、封管した。混合物を150℃に加熱し、9時間反応させた。混合物を酢酸エチルで希釈し、10%塩酸で3回、ブラインで1回洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、溶媒を減圧下留去し、ポリ(アクリル酸ブチル)1.41gを得た(重合収率31.5%)。
【0028】
GPC測定(ポリスチレン換算)により求めた重合体の数平均分子量は2800、分散度は1.21であった。
【0029】
実施例4
30mLの耐圧ガラス反応容器に、アクリル酸ブチル(5mL、4.47g、34.9mmol)、α−ブロモプロピオン酸エチル(0.090mL、0.70mmol)、臭化第一銅(100mg、0.70mmol)、2,2′−ビピリジル(326mg、2.1mmol)、及び、アセトニトリル(5mL)を仕込み、真空脱気を3回行って溶存酸素を除去した後、封管した。混合物を130℃に加熱し、5時間反応させた。混合物を酢酸エチルで希釈し、10%塩酸で3回、ブラインで1回洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、溶媒を減圧下留去し、ポリ(アクリル酸ブチル)2.95gを得た(重合収率66.0%)。
【0030】
GPC測定(ポリスチレン換算)により求めた重合体の数平均分子量は3600、分散度は1.13であった。
【0031】
実施例5
30mLの耐圧ガラス反応容器に、アクリル酸ブチル(5mL、4.47g、34.9mmol)、α,α′−ジブロモ−p−キシレン(185mg、0.70mmol)、臭化第一銅(100mg、0.70mmol)、2,2′−ビピリジル(326mg、2.1mmol)、アセトニトリル(2.5mL)、及び、酢酸エチル(比誘電率6.02、2.5mL)を仕込み、真空脱気を3回行って溶存酸素を除去した後、封管した。混合物を130℃に加熱し、6時間反応させた。混合物を酢酸エチルで希釈し、10%塩酸で3回、ブラインで1回洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、溶媒を減圧下留去し、ポリ(アクリル酸ブチル)1.41gを得た(重合収率31.5%)。
【0032】
GPC測定(ポリスチレン換算)により求めた重合体の数平均分子量は5100、分散度は1.15であった。
【0033】
実施例6
30mLの耐圧ガラス反応容器に、アクリル酸ブチル(5mL、4.47g、34.9mmol)、α,α′−ジブロモ−p−キシレン(185mg、0.70mmol)、臭化第一銅(100mg、0.70mmol)、2,2′−ビピリジル(326mg、2.1mmol)、アセトニトリル(1mL)、及び、酢酸エチル(4mL)を仕込み、真空脱気を3回行って溶存酸素を除去した後、封管した。混合物を130℃に加熱し、2時間反応させた。混合物を酢酸エチルで希釈し、10%塩酸で3回、ブラインで1回洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、溶媒を減圧下留去し、ポリ(アクリル酸ブチル)3.79gを得た(重合収率84.8%)。
【0034】
GPC測定(ポリスチレン換算)により求めた重合体の数平均分子量は5700、分散度は1.26であった。
【0035】
実施例7
30mLの耐圧ガラス反応容器に、アクリル酸ブチル(5mL、4.47g、34.9mmol)、α−ブロモプロピオン酸エチル(0.090mL、0.70mmol)、臭化第一銅(100mg、0.70mmol)、2,2′−ビピリジル(326mg、2.1mmol)、及び、ベンゾニトリル(比誘電率25.20、5mL)を仕込み、真空脱気を3回行って溶存酸素を除去した後、封管した。混合物を130℃に加熱し、2時間反応させた。混合物を酢酸エチルで希釈し、10%塩酸で3回、ブラインで1回洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、溶媒を減圧下留去し、ポリ(アクリル酸ブチル)2.48gを得た(重合収率55.5%)。
【0036】
GPC測定(ポリスチレン換算)により求めた重合体の数平均分子量は3600、分散度は1.16であった。
【0037】
実施例8
30mLの耐圧ガラス反応容器に、アクリル酸ブチル(5mL、4.47g、34.9mmol)、α−ブロモプロピオン酸エチル(0.090mL、0.70mmol)、臭化第一銅(100mg、0.70mmol)、2,2′−ビピリジル(326mg、2.1mmol)、及び、ニトロエタン(30℃における比誘電率28.06、5mL)を仕込み、真空脱気を3回行って溶存酸素を除去した後、封管した。混合物を130℃に加熱し、6時間反応させた。混合物を酢酸エチルで希釈し、10%塩酸で3回、ブラインで1回洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、溶媒を減圧下留去し、ポリ(アクリル酸ブチル)1.97gを得た(重合収率44.1%)。
【0038】
GPC測定(ポリスチレン換算)により求めた重合体の数平均分子量は2000、分散度は1.23であった。
【0039】
実施例9
30mLの耐圧ガラス反応容器に、アクリル酸メチル(3.1mL、3.0g、34.9mmol)、α,α′−ジブロモ−p−キシレン(185mg、0.70mmol)、臭化第一銅(100mg、0.70mmol)、2,2′−ビピリジル(326mg、2.1mmol)、アセトニトリル(0.63mL)、及び、酢酸エチル(2.51mL)を仕込み、真空脱気を3回行って溶存酸素を除去した後、封管した。混合物を130℃に加熱し、2時間反応させた。混合物を酢酸エチルで希釈し、10%塩酸で3回、ブラインで1回洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、溶媒を減圧下留去し、ポリ(アクリル酸メチル)2.09gを得た(重合収率70.0%)。
【0040】
GPC測定(ポリスチレン換算)により求めた重合体の数平均分子量は4300、分散度は1.18であった。
【0041】
実施例10
30mLの耐圧ガラス反応容器に、アクリル酸メチル(3.1mL、3.0g、34.9mmol)、α,α′−ジブロモ−p−キシレン(185mg、0.70mmol)、臭化第一銅(100mg、0.70mmol)、2,2′−ビピリジル(326mg、2.1mmol)、エタノール(比誘電率24.55、0.63mL)、及び、酢酸エチル(2.51mL)を仕込み、真空脱気を3回行って溶存酸素を除去した後、封管した。混合物を130℃に加熱し、2時間反応させた。混合物を酢酸エチルで希釈し、10%塩酸で3回、ブラインで1回洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、溶媒を減圧下留去し、ポリ(アクリル酸メチル)2.01gを得た(重合収率67.0%)。
GPC測定(ポリスチレン換算)により求めた重合体の数平均分子量は3600、分散度は1.37であった。
【0042】
比較例1
30mLの耐圧ガラス反応容器に、アクリル酸ブチル(5mL、4.47g、34.9mmol)、α,α′−ジブロモ−p−キシレン(185mg、0.70mmol)、臭化第一銅(100mg、0.70mmol)、2,2′−ビピリジル(326mg、2.1mmol)を仕込み、真空脱気を3回行って溶存酸素を除去した後、封管した。混合物を130℃に加熱し、1時間反応させた。混合物を酢酸エチルで希釈し、10%塩酸で3回、ブラインで1回洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、溶媒を減圧下留去し、ポリ(アクリル酸ブチル)4.45gを得た(重合収率99.6%)。
【0043】
GPC測定(ポリスチレン換算)により求めた重合体の数平均分子量は6300、分散度は1.75であった。
【0044】
比較例2
30mLの耐圧ガラス反応容器に、アクリル酸ブチル(5mL、4.47g、34.9mmol)、α,α′−ジブロモ−p−キシレン(185mg、0.70mmol)、臭化第一銅(100mg、0.70mmol)、2,2′−ビピリジル(326mg、2.1mmol)、及び、酢酸エチル(比誘電率6.02、5mL)を仕込み、真空脱気を3回行って溶存酸素を除去した後、封管した。混合物を130℃に加熱し、6時間反応させた。混合物を酢酸エチルで希釈し、10%塩酸で3回、ブラインで1回洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、溶媒を減圧下留去し、ポリ(アクリル酸ブチル)4.31gを得た(重合収率96.4%)。
【0045】
GPC測定(ポリスチレン換算)により求めた重合体の数平均分子量は6300、分散度は1.77であった。
【0046】
比較例3
30mLの耐圧ガラス反応容器に、アクリル酸ブチル(5mL、4.47g、34.9mmol)、α,α′−ジブロモ−p−キシレン(185mg、0.70mmol)、臭化第一銅(100mg、0.70mmol)、2,2′−ビピリジル(326mg、2.1mmol)、及び、トルエン(比誘電率2.38、5mL)を仕込み、真空脱気を3回行って溶存酸素を除去した後、封管した。混合物を130℃に加熱し、4時間反応させた。混合物を酢酸エチルで希釈し、10%塩酸で3回、ブラインで1回洗浄した。有機層を無水硫酸ナトリウムで乾燥した後、溶媒を減圧下留去し、ポリ(アクリル酸ブチル)4.41gを得た(重合収率98.7%)。
【0047】
GPC測定(ポリスチレン換算)により求めた重合体の数平均分子量は5800、分散度は1.92であった。
【0048】
結果をまとめたものを表1に示す。なお、表1中、BAはアクリル酸ブチル、MAはアクリル酸メチル、ブロムキシレンはα,α′−ジブロモ−p−キシレン、ブロム酸はα−ブロモプロピオン酸エチル、ビピリジルは2,2′−ビピリジルを示す。
【0049】
【表1】
Figure 0003587418
【0050】
【発明の効果】
本発明のビニル系重合体の製造方法は、上述の通りであるので、スチレン、(メタ)アクリル酸エステル等のビニル系単量体から制御された分子量と狭い分子量分布とを有する重合体を簡便に得ることができる。更に、本発明により得られるビニル系重合体は分子量分布が狭いので、従来の方法により得られる同じ骨格と分子量とを有する分散度の大きなビニル系重合体よりも粘度が小さくなる。従って、本発明により得られるビニル系重合体は、作業性の優れた樹脂組成物の原料となり得る。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a vinyl polymer having a controlled molecular weight and a narrow molecular weight distribution.
[0002]
[Prior art]
The molecular weight and molecular weight distribution of a polymer greatly affect various properties of the polymer such as flow characteristics. Therefore, obtaining a polymer having a controlled molecular weight and a narrow molecular weight distribution is an important technique for controlling various properties of the obtained polymer and a composition obtained by using the polymer.
[0003]
A method for easily obtaining a vinyl polymer having a controlled molecular weight and a narrow molecular weight distribution is described in, for example, J. Am. Am. Chem. Soc. Macromolecules, 28, 7901-7910 (1995), etc., in which an organic halide is used as an initiator and monovalent copper halide and an electron donor such as a 2,2′-bipyridyl compound are disclosed. There is disclosed a method of subjecting a vinyl monomer to living radical polymerization using a monovalent copper complex obtained from an acidic substance as a catalyst. This method gives polymers having a controlled molecular weight and a narrow molecular weight distribution for styrene, methyl acrylate and the like.
[0004]
[Problems to be solved by the invention]
However, the molecular weight distribution of the vinyl polymer obtained by this method cannot be said to be sufficiently narrow. Especially when applied to acrylates such as butyl acrylate, hexyl acrylate, and 2-ethylhexyl acrylate, or methacrylates such as methyl methacrylate and ethyl methacrylate, the obtained vinyl polymer is obtained. Has a slightly broader molecular weight distribution. Therefore, a method for obtaining a vinyl polymer having a narrower molecular weight distribution is desired.
[0005]
In view of the above, an object of the present invention is to provide a method for producing a vinyl polymer having a controlled molecular weight and a narrow molecular weight distribution.
[0006]
[Means for Solving the Problems]
The present invention relates to a method for producing a vinyl polymer in which a vinyl monomer is polymerized using an organic halide as a polymerization initiator and a monovalent copper compound as a catalyst. This is a method for producing a vinyl polymer using an organic compound having a dielectric constant of 10 or more as a solvent.
[0007]
Hereinafter, the present invention will be described in detail.
[0008]
In the present invention, an organic halide is used as a polymerization initiator. The organic halide is not particularly limited and includes, for example, carbon tetrachloride, carbon tetrabromide, allyl chloride, allyl bromide, allyl iodide, α, α′-dichloro-o-xylene, α, α′-dichloro -M-xylene, α, α'-dichloro-p-xylene, α, α'-dibromo-o-xylene, α, α'-dibromo-m-xylene, α, α'-dibromo-p-xylene, etc. Xylene derivatives; o-bis (α-chloroethyl) benzene, m-bis (α-chloroethyl) benzene, p-bis (α-chloroethyl) benzene, o-bis (α-bromoethyl) benzene, m-bis (α-bromoethyl) ) Benzene derivatives such as benzene and p-bis (α-bromoethyl) benzene; α-chloroacetates such as α-methyl methyl acetate and α-ethyl ethyl acetate; methyl α, α-dichloroacetate; α, α-dichloroacetate such as ethyl α-dichloroacetate; α, α, α-trichloroacetate such as methyl α, α, α-trichloroacetate and ethyl α, α, α-trichloroacetate; α-chloropropion Α-chloropropionate such as methyl acrylate and ethyl α-chloropropionate; α-chloroisobutyrate such as methyl α-chloroisobutyrate and ethyl α-chloroisobutyrate; methyl α-bromoacetate and ethyl α-bromoacetate α, α-bromoacetate; α, α-dibromoacetate, such as methyl α, α-dibromoacetate, α, α-dibromoacetate; methyl α, α, α-tribromoacetate, α, α, α-tribromoacetate Α, α, α-tribromoacetic acid ester such as methyl α-bromopropionate, ethyl α-bromopropionate, etc. Le; alpha-bromoisobutyrate methyl, alpha-bromoisobutyrate such as alpha-bromoisobutyrate ethyl. These may be used alone or in combination of two or more.
[0009]
In the present invention, a monovalent copper compound is used as a catalyst. The copper compound is not particularly limited, and examples thereof include cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, and the like.
[0010]
The copper compound is preferably used in combination with an electron donating substance. The electron donating substance is not particularly limited, and examples thereof include bipyridyl compounds such as 2,2'-bipyridyl and 4,4'-dimethyl-2,2'-bipyridyl; 1,10-phenanthroline, and 4,7-dimethyl Heterocyclic compounds containing nitrogen atoms such as phenanthroline compounds such as -1,10-phenanthroline, 5,6-dimethyl-1,10-phenanthroline and 3,4,7,8-tetramethyl-1,10-phenanthroline. Can be
[0011]
The vinyl monomer used in the present invention is not particularly limited, and various types can be used. For example, methyl (meth) acrylate, ethyl (meth) acrylate, -n- (meth) acrylate Propyl, isopropyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, n-pentyl (meth) acrylate, (meth) acryl Acid-n-hexyl, cyclohexyl (meth) acrylate, n-heptyl (meth) acrylate, n-octyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, nonyl (meth) acrylate, (Meth) acrylates such as decyl (meth) acrylate, dodecyl (meth) acrylate, and phenyl (meth) acrylate; styrene 2-methylstyrene, 3-methylstyrene, 4-methylstyrene, 2-chlorostyrene, 3-chlorostyrene, 4-chlorostyrene, 2- (chloromethyl) styrene, 3- (chloromethyl) styrene, 4- (Chloromethyl) styrene, 2-methoxystyrene, 3-methoxystyrene, 4-methoxystyrene, 2- (methoxycarbonyl) styrene, 3- (methoxycarbonyl) styrene, 4- (methoxycarbonyl) styrene, α-methylstyrene, etc. Styrene derivatives; maleic anhydride and the like. These may be used alone or in combination of two or more.
[0012]
In the present invention, when polymerizing the vinyl-based monomer, an organic compound having a relative dielectric constant of 10 or more measured at 25 ° C. is used as a solvent.
The organic compound having a relative dielectric constant of 10 or more measured at 25 ° C. is not particularly limited, but in the present invention, a carbonyl compound represented by the following general formula (1) can be suitably used.
[0013]
Embedded image
Figure 0003587418
[0014]
In the formula, R 1 and R 2 are the same or different and are hydrogen, an alkyl group having 1 to 10 carbon atoms, an aryl group having 1 to 10 carbon atoms, or an aralkyl group having 1 to 10 carbon atoms.
Specific examples of such a carbonyl compound are not particularly limited, and examples thereof include non-cyclic compounds such as acetone, 2-butanone, 2-pentanone, 3-pentanone, 2-hexanone, 2-heptanone, and 4-methyl-2-pentanone. Aliphatic ketones; cycloaliphatic ketones such as cyclohexanone, 2-methylcyclohexanone, 3-methylcyclohexanone, and 4-methylcyclohexanone; aromatic ketones such as acetophenone, 2-methylacetophenone, 3-methylacetophenone, and 4-methylacetophenone And the like.
[0015]
As the organic compound having a relative dielectric constant of 10 or more measured at 25 ° C., a nitro compound represented by the following general formula (2) can be suitably used.
R 3 -NO 2 (2)
In the formula, R 3 is an alkyl group having 1 to 10 carbon atoms, an aryl group having 1 to 10 carbon atoms, or an aralkyl group having 1 to 10 carbon atoms.
[0016]
Specific examples of such a nitro compound are not particularly limited, and include, for example, nitromethane, nitroethane, nitropropane, nitrobenzene and the like.
[0017]
Further, as the organic compound having a relative dielectric constant of 10 or more measured at 25 ° C., a nitrile compound represented by the following general formula (3) can be suitably used.
R 3 -CN (3)
In the formula, R 3 is the same as in the general formula (2).
Specific examples of such a nitrile compound are not particularly limited, and include, for example, acetonitrile, propionitrile, benzonitrile and the like.
[0018]
Further, as the organic compound having a relative dielectric constant of 10 or more measured at 25 ° C., an alcohol compound represented by the following general formula (4) can be suitably used.
R 3 -OH (4)
In the formula, R 3 is the same as in the general formula (2).
Specific examples of such alcohol compounds are not particularly limited, and include, for example, methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, cyclohexyl alcohol, benzyl alcohol and the like.
[0019]
In the present invention, the carbonyl compound represented by the general formula (1), the nitro compound represented by the general formula (2), the nitrile compound represented by the general formula (3), The alcohol compound represented by 4) may be used alone or in combination of two or more.
[0020]
Further, a solvent other than the organic compound having a relative dielectric constant of 10 or more measured at 25 ° C. may be used in combination. The other solvent is not particularly limited, and examples thereof include organic compounds such as hexane, toluene, ethyl acetate, and tetrahydrofuran.
When the other solvent is used, the organic compound having a relative dielectric constant of 10 or more measured at 25 ° C. is preferably contained in an amount of 10 to 100% by volume based on the total amount of the solvent. When the content is less than 10% by volume, the molecular weight distribution of the obtained vinyl polymer becomes wide.
[0021]
In the present invention, the total amount of the solvent used when polymerizing the vinyl monomer is not particularly limited, but in order to achieve an appropriate reaction rate, the volume of the vinyl monomer is 0.5 to A 10-fold amount is preferred.
[0022]
When polymerizing the vinyl-based monomer, the polymerization temperature can be appropriately set according to the type of the vinyl-based monomer and the like. In general, the temperature is preferably from 60 to 150 ° C.
[0023]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
[0024]
Example 1
In a 30 mL pressure-resistant glass reaction vessel, butyl acrylate (10 mL, 9.94 g, 69.8 mmol), α, α′-dibromo-p-xylene (370 mg, 1.4 mmol), cuprous bromide (200 mg, .4 mmol), 2,2'-bipyridyl (652 mg, 4.2 mmol), and acetone (dielectric constant: 20.70, 10 mL), vacuum degassing was performed three times to remove dissolved oxygen, and then sealed. Piped. The mixture was heated to 130 ° C. and reacted for 3 hours. The mixture was diluted with ethyl acetate and washed three times with 10% hydrochloric acid and once with brine. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 4.26 g of poly (butyl acrylate) (polymerization yield: 47.6%).
[0025]
The number average molecular weight of the polymer determined by GPC measurement (in terms of polystyrene) was 3,900, and the degree of dispersion (Mw / Mn) was 1.17.
[0026]
Example 2
In a 30 mL pressure-resistant glass reaction vessel, methyl acrylate (3.1 mL, 3.0 g, 34.9 mmol), α, α′-dibromo-p-xylene (185 mg, 0.70 mmol), cuprous bromide (100 mg) , 0.70 mmol), 2,2'-bipyridyl (326 mg, 2.1 mmol), and 4-methyl-2-pentanone (relative dielectric constant at 20 ° C. 13.11, 3.14 mL), and nitrogen gas was supplied for 10 minutes. After removing dissolved oxygen by blowing, the tube was sealed. The mixture was heated to 130 ° C. and reacted for 0.5 hours. The mixture was diluted with ethyl acetate and washed three times with 10% hydrochloric acid and once with brine. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 2.07 g of poly (methyl acrylate) (polymerization yield: 68.8%).
[0027]
The number average molecular weight of the polymer determined by GPC measurement (in terms of polystyrene) was 3,900, and the degree of dispersion was 1.31.
Example 3
In a 30 mL pressure-resistant glass reaction vessel, butyl acrylate (5 mL, 4.47 g, 34.9 mmol), α, α′-dibromo-p-xylene (185 mg, 0.70 mmol), cuprous bromide (100 mg, 0 .70 mmol), 2,2'-bipyridyl (326 mg, 2.1 mmol), and acetonitrile (dielectric constant: 36.0, 5 mL), and vacuum degassing was performed three times to remove dissolved oxygen. Piped. The mixture was heated to 150 ° C. and reacted for 9 hours. The mixture was diluted with ethyl acetate and washed three times with 10% hydrochloric acid and once with brine. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 1.41 g of poly (butyl acrylate) (polymerization yield: 31.5%).
[0028]
The number average molecular weight of the polymer determined by GPC measurement (in terms of polystyrene) was 2,800, and the degree of dispersion was 1.21.
[0029]
Example 4
In a 30 mL pressure-resistant glass reaction vessel, butyl acrylate (5 mL, 4.47 g, 34.9 mmol), ethyl α-bromopropionate (0.090 mL, 0.70 mmol), cuprous bromide (100 mg, 0.70 mmol) ), 2,2'-bipyridyl (326 mg, 2.1 mmol) and acetonitrile (5 mL) were charged, and the mixture was subjected to vacuum degassing three times to remove dissolved oxygen and then sealed. The mixture was heated to 130 ° C. and reacted for 5 hours. The mixture was diluted with ethyl acetate and washed three times with 10% hydrochloric acid and once with brine. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 2.95 g of poly (butyl acrylate) (polymerization yield: 66.0%).
[0030]
The number average molecular weight of the polymer determined by GPC measurement (in terms of polystyrene) was 3,600, and the degree of dispersion was 1.13.
[0031]
Example 5
In a 30 mL pressure-resistant glass reaction vessel, butyl acrylate (5 mL, 4.47 g, 34.9 mmol), α, α′-dibromo-p-xylene (185 mg, 0.70 mmol), cuprous bromide (100 mg, 0 .70 mmol), 2,2'-bipyridyl (326 mg, 2.1 mmol), acetonitrile (2.5 mL), and ethyl acetate (relative permittivity 6.02, 2.5 mL), and vacuum degassing was performed three times. After removing dissolved oxygen, the tube was sealed. The mixture was heated to 130 ° C. and reacted for 6 hours. The mixture was diluted with ethyl acetate and washed three times with 10% hydrochloric acid and once with brine. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 1.41 g of poly (butyl acrylate) (polymerization yield: 31.5%).
[0032]
The number average molecular weight of the polymer determined by GPC measurement (in terms of polystyrene) was 5,100, and the degree of dispersion was 1.15.
[0033]
Example 6
In a 30 mL pressure-resistant glass reaction vessel, butyl acrylate (5 mL, 4.47 g, 34.9 mmol), α, α′-dibromo-p-xylene (185 mg, 0.70 mmol), cuprous bromide (100 mg, 0 .70 mmol), 2,2'-bipyridyl (326 mg, 2.1 mmol), acetonitrile (1 mL), and ethyl acetate (4 mL), and vacuum degassing was performed three times to remove dissolved oxygen. did. The mixture was heated to 130 ° C. and reacted for 2 hours. The mixture was diluted with ethyl acetate and washed three times with 10% hydrochloric acid and once with brine. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 3.79 g of poly (butyl acrylate) (polymerization yield: 84.8%).
[0034]
The number average molecular weight of the polymer determined by GPC measurement (in terms of polystyrene) was 5,700, and the degree of dispersion was 1.26.
[0035]
Example 7
In a 30 mL pressure-resistant glass reaction vessel, butyl acrylate (5 mL, 4.47 g, 34.9 mmol), ethyl α-bromopropionate (0.090 mL, 0.70 mmol), cuprous bromide (100 mg, 0.70 mmol) ), 2,2'-bipyridyl (326 mg, 2.1 mmol) and benzonitrile (relative permittivity 25.20, 5 mL) were charged, vacuum degassing was performed three times to remove dissolved oxygen, and then sealed. did. The mixture was heated to 130 ° C. and reacted for 2 hours. The mixture was diluted with ethyl acetate and washed three times with 10% hydrochloric acid and once with brine. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 2.48 g of poly (butyl acrylate) (polymerization yield: 55.5%).
[0036]
The number average molecular weight of the polymer determined by GPC measurement (in terms of polystyrene) was 3,600, and the degree of dispersion was 1.16.
[0037]
Example 8
In a 30 mL pressure-resistant glass reaction vessel, butyl acrylate (5 mL, 4.47 g, 34.9 mmol), ethyl α-bromopropionate (0.090 mL, 0.70 mmol), cuprous bromide (100 mg, 0.70 mmol) ), 2,2'-bipyridyl (326 mg, 2.1 mmol), and nitroethane (dielectric constant of 28.06 at 30 ° C., 5 mL), and vacuum degassing was performed three times to remove dissolved oxygen. It was sealed. The mixture was heated to 130 ° C. and reacted for 6 hours. The mixture was diluted with ethyl acetate and washed three times with 10% hydrochloric acid and once with brine. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 1.97 g of poly (butyl acrylate) (polymerization yield: 44.1%).
[0038]
The number average molecular weight of the polymer determined by GPC measurement (in terms of polystyrene) was 2,000, and the degree of dispersion was 1.23.
[0039]
Example 9
In a 30 mL pressure-resistant glass reaction vessel, methyl acrylate (3.1 mL, 3.0 g, 34.9 mmol), α, α′-dibromo-p-xylene (185 mg, 0.70 mmol), cuprous bromide (100 mg) , 0.70 mmol), 2,2'-bipyridyl (326 mg, 2.1 mmol), acetonitrile (0.63 mL), and ethyl acetate (2.51 mL), and vacuum degassing was performed three times to remove dissolved oxygen. After removal, the tube was sealed. The mixture was heated to 130 ° C. and reacted for 2 hours. The mixture was diluted with ethyl acetate and washed three times with 10% hydrochloric acid and once with brine. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 2.09 g of poly (methyl acrylate) (polymerization yield: 70.0%).
[0040]
The number average molecular weight of the polymer determined by GPC measurement (in terms of polystyrene) was 4,300, and the degree of dispersion was 1.18.
[0041]
Example 10
In a 30 mL pressure-resistant glass reaction vessel, methyl acrylate (3.1 mL, 3.0 g, 34.9 mmol), α, α′-dibromo-p-xylene (185 mg, 0.70 mmol), cuprous bromide (100 mg) , 0.70 mmol), 2,2'-bipyridyl (326 mg, 2.1 mmol), ethanol (dielectric constant 24.55, 0.63 mL), and ethyl acetate (2.51 mL). After removing the dissolved oxygen by performing the reaction three times, the tube was sealed. The mixture was heated to 130 ° C. and reacted for 2 hours. The mixture was diluted with ethyl acetate and washed three times with 10% hydrochloric acid and once with brine. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 2.01 g of poly (methyl acrylate) (polymerization yield: 67.0%).
The number average molecular weight of the polymer determined by GPC measurement (in terms of polystyrene) was 3,600, and the degree of dispersion was 1.37.
[0042]
Comparative Example 1
In a 30 mL pressure-resistant glass reaction vessel, butyl acrylate (5 mL, 4.47 g, 34.9 mmol), α, α′-dibromo-p-xylene (185 mg, 0.70 mmol), cuprous bromide (100 mg, 0 .70 mmol) and 2,2'-bipyridyl (326 mg, 2.1 mmol), vacuum degassing was performed three times to remove dissolved oxygen, and the tube was sealed. The mixture was heated to 130 ° C. and reacted for 1 hour. The mixture was diluted with ethyl acetate and washed three times with 10% hydrochloric acid and once with brine. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 4.45 g of poly (butyl acrylate) (polymerization yield: 99.6%).
[0043]
The number average molecular weight of the polymer determined by GPC measurement (in terms of polystyrene) was 6,300, and the degree of dispersion was 1.75.
[0044]
Comparative Example 2
In a 30 mL pressure-resistant glass reaction vessel, butyl acrylate (5 mL, 4.47 g, 34.9 mmol), α, α′-dibromo-p-xylene (185 mg, 0.70 mmol), cuprous bromide (100 mg, 0 .70 mmol), 2,2'-bipyridyl (326 mg, 2.1 mmol), and ethyl acetate (relative permittivity 6.02, 5 mL), and vacuum degassing was performed three times to remove dissolved oxygen. It was sealed. The mixture was heated to 130 ° C. and reacted for 6 hours. The mixture was diluted with ethyl acetate and washed three times with 10% hydrochloric acid and once with brine. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 4.31 g of poly (butyl acrylate) (polymerization yield: 96.4%).
[0045]
The number average molecular weight of the polymer determined by GPC measurement (in terms of polystyrene) was 6,300, and the degree of dispersion was 1.77.
[0046]
Comparative Example 3
In a 30 mL pressure-resistant glass reaction vessel, butyl acrylate (5 mL, 4.47 g, 34.9 mmol), α, α′-dibromo-p-xylene (185 mg, 0.70 mmol), cuprous bromide (100 mg, 0 .70 mmol), 2,2'-bipyridyl (326 mg, 2.1 mmol), and toluene (relative dielectric constant 2.38, 5 mL), and vacuum degassing was performed three times to remove dissolved oxygen. Piped. The mixture was heated to 130 ° C. and reacted for 4 hours. The mixture was diluted with ethyl acetate and washed three times with 10% hydrochloric acid and once with brine. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to obtain 4.41 g of poly (butyl acrylate) (polymerization yield: 98.7%).
[0047]
The number average molecular weight of the polymer determined by GPC measurement (in terms of polystyrene) was 5,800, and the degree of dispersion was 1.92.
[0048]
Table 1 summarizes the results. In Table 1, BA is butyl acrylate, MA is methyl acrylate, bromoxylene is α, α′-dibromo-p-xylene, bromoic acid is ethyl α-bromopropionate, and bipyridyl is 2,2′-bipyridyl. Is shown.
[0049]
[Table 1]
Figure 0003587418
[0050]
【The invention's effect】
Since the method for producing a vinyl polymer of the present invention is as described above, a polymer having a controlled molecular weight and a narrow molecular weight distribution from vinyl monomers such as styrene and (meth) acrylate can be easily prepared. Can be obtained. Further, since the vinyl polymer obtained by the present invention has a narrow molecular weight distribution, the viscosity is smaller than that of a vinyl polymer having the same skeleton and the same molecular weight, which is obtained by a conventional method and has a high degree of dispersion. Therefore, the vinyl polymer obtained by the present invention can be a raw material for a resin composition having excellent workability.

Claims (4)

有機ハロゲン化物を重合開始剤とし、1価の銅化合物を触媒としてアクリル酸エステル類又はメタクリル酸エステル類を重合させるビニル系重合体の製造方法であって、
前記重合の際に、25℃における比誘電率が10以上の有機化合物を溶媒として用いることを特徴とするビニル系重合体の製造方法。
A method for producing a vinyl polymer in which an organic halide is used as a polymerization initiator and an acrylic acid ester or a methacrylic acid ester is polymerized using a monovalent copper compound as a catalyst,
A method for producing a vinyl polymer, wherein an organic compound having a relative dielectric constant at 25 ° C. of 10 or more is used as a solvent during the polymerization.
25℃における比誘電率が10以上の有機化合物が、
下記一般式(1);
Figure 0003587418
(式中、R1 、R2 は、同一又は異なって、水素、炭素数1〜10のアルキル基、炭素数1〜10のアリール基又は炭素数1〜10のアラルキル基を表す。)で表されるカルボニル化合物、
下記一般式(2);
3 −NO2 (2)
(式中、R3 は、炭素数1〜10のアルキル基、炭素数1〜10のアリール基又は炭素数1〜10のアラルキル基を表す。)で表されるニトロ化合物、
下記一般式(3);
3 −CN (3)
(式中、R3 は、前記と同じ。)で表されるニトリル化合物、及び、
下記一般式(4);
3 −OH (4)
(式中、R3 は、前記と同じ。)で表されるアルコール化合物からなる群より選択される少なくとも1種である請求項1記載のビニル系重合体の製造方法。
An organic compound having a relative dielectric constant of 10 or more at 25 ° C.
The following general formula (1);
Figure 0003587418
(Wherein, R 1 and R 2 are the same or different and represent hydrogen, an alkyl group having 1 to 10 carbon atoms, an aryl group having 1 to 10 carbon atoms or an aralkyl group having 1 to 10 carbon atoms). Carbonyl compound,
The following general formula (2):
R 3 -NO 2 (2)
(Wherein, R 3 represents an alkyl group having 1 to 10 carbon atoms, an aryl group having 1 to 10 carbon atoms or an aralkyl group having 1 to 10 carbon atoms),
The following general formula (3):
R 3 -CN (3)
(Wherein, R 3 is the same as described above); and
The following general formula (4);
R 3 -OH (4)
(Wherein, R 3 is the same.) At least one method for producing a vinyl polymer according to claim 1, wherein that is selected from the group consisting of alcohol compounds represented by.
25℃における比誘電率が10以上の有機化合物が、全溶媒量の10〜100体積%含有される請求項1又は2記載のビニル系重合体の製造方法。3. The method for producing a vinyl polymer according to claim 1, wherein the organic compound having a relative dielectric constant of 10 or more at 25 [deg.] C. is contained in an amount of 10 to 100% by volume based on the total amount of the solvent. 有機ハロゲン化物を重合開始剤とし、1価の銅化合物を触媒としてアクリル酸ブチルを重合させるビニル系重合体の製造方法であって、A method for producing a vinyl polymer in which butyl acrylate is polymerized using an organic halide as a polymerization initiator and a monovalent copper compound as a catalyst,
前記重合の際に、アセトニトリルを溶媒として用いることを特徴とするビニル系重合体の製造方法。A method for producing a vinyl polymer, wherein acetonitrile is used as a solvent during the polymerization.
JP00390097A 1996-06-26 1997-01-13 Method for producing vinyl polymer Expired - Lifetime JP3587418B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP00390097A JP3587418B2 (en) 1996-06-26 1997-01-13 Method for producing vinyl polymer
DE69710130T DE69710130T2 (en) 1996-06-26 1997-06-18 Process for the production of vinyl polymers
EP97109952A EP0816385B1 (en) 1996-06-26 1997-06-18 Process for preparing vinyl polymer
CN97117110.6A CN1171405A (en) 1996-06-26 1997-06-26 Process for preparing vinyl polymer
US09/116,541 US6291612B1 (en) 1996-06-26 1998-07-16 Process for preparing vinyl polymer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP18656796 1996-06-26
JP8-186567 1996-06-26
JP00390097A JP3587418B2 (en) 1996-06-26 1997-01-13 Method for producing vinyl polymer

Publications (2)

Publication Number Publication Date
JPH1072503A JPH1072503A (en) 1998-03-17
JP3587418B2 true JP3587418B2 (en) 2004-11-10

Family

ID=26337561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00390097A Expired - Lifetime JP3587418B2 (en) 1996-06-26 1997-01-13 Method for producing vinyl polymer

Country Status (1)

Country Link
JP (1) JP3587418B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69925121T2 (en) * 1998-06-01 2006-01-19 Kaneka Corp. Polymerization

Also Published As

Publication number Publication date
JPH1072503A (en) 1998-03-17

Similar Documents

Publication Publication Date Title
EP0816385B1 (en) Process for preparing vinyl polymer
Pietrasik et al. Silica‐Polymethacrylate Hybrid Particles Synthesized Using High‐Pressure Atom Transfer Radical Polymerization
Fleischmann et al. Copolymerization of methacrylic acid with methyl methacrylate by SET‐LRP
Fleischmann et al. SET‐LRP of methyl methacrylate initiated with CCl4 in the presence and absence of air
Fleischmann et al. SET‐LRP of methyl methacrylate initiated with sulfonyl halides
Koh et al. A simple route to functional highly branched structures: RAFT homopolymerization of divinylbenzene
Wu et al. Macromolecular brushes synthesized by “grafting from” approach based on “click chemistry” and RAFT polymerization
Nguyen et al. Synthesis of ultrahigh molar mass poly (2-hydroxyethyl methacrylate) by single-electron transfer living radical polymerization
JP2002540234A (en) Catalytic method for controlled polymerization of free radically (co) polymerizable monomers and functional polymer systems produced thereby
Feng et al. Synthesis of well‐defined amphiphilic graft copolymer bearing poly (2‐acryloyloxyethyl ferrocenecarboxylate) side chains via successive SET‐LRP and ATRP
Wang et al. Polymerization of styrene in alcohol/water mediated by a macro‐RAFT agent of poly (N‐isopropylacrylamide) trithiocarbonate: From homogeneous to heterogeneous RAFT polymerization
WO2006093050A1 (en) Hyper-branched polymer and process for production of the same
JPH01158007A (en) Styrene based polymer and production thereof
Hou et al. Synthesis of poly (2-hydroxyethyl methacrylate) end-capped with asymmetric functional groups via atom transfer radical polymerization
Li et al. Synthesis of starlike PtBA‐g‐PEO amphiphilic graft copolymer via highly efficient Cu‐catalyzed SET‐NRC reaction at ambient temperature
JP2020514423A5 (en)
Li et al. Doubly thermoresponsive brush‐linear‐linear ABC triblock copolymer nanoparticles prepared through dispersion RAFT polymerization
Wiltshire et al. Degradable star polymers with high “click” functionality
JP6787824B2 (en) Method for Producing Poly (Meta) Acrylate Containing Hydrolyzable Cyril Group
Jiao et al. Efficient one-pot synthesis of uniform, surface-functionalized, and “living” polymer microspheres by reverse atom transfer radical precipitation polymerization
JP3587418B2 (en) Method for producing vinyl polymer
JPH09272715A (en) Alkenyl-terminated (meth)acrylic polymer and its production
Zhao et al. Amphiphilic polymer conetworks prepared by controlled radical polymerization using a nitroxide cross‐linker
Wang et al. Synthesis and properties of organic/inorganic hybrid nanoparticles prepared using atom transfer radical polymerization
JP5101816B2 (en) Hyperbranched polymer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040806

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term