JP3587126B2 - High tensile hot-dip galvanized steel sheet excellent in ductility and method for producing the same - Google Patents

High tensile hot-dip galvanized steel sheet excellent in ductility and method for producing the same Download PDF

Info

Publication number
JP3587126B2
JP3587126B2 JP2000119294A JP2000119294A JP3587126B2 JP 3587126 B2 JP3587126 B2 JP 3587126B2 JP 2000119294 A JP2000119294 A JP 2000119294A JP 2000119294 A JP2000119294 A JP 2000119294A JP 3587126 B2 JP3587126 B2 JP 3587126B2
Authority
JP
Japan
Prior art keywords
steel sheet
hot
dip galvanized
cooling
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000119294A
Other languages
Japanese (ja)
Other versions
JP2001003150A (en
Inventor
崇 小林
坂田  敬
章翁 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000119294A priority Critical patent/JP3587126B2/en
Publication of JP2001003150A publication Critical patent/JP2001003150A/en
Application granted granted Critical
Publication of JP3587126B2 publication Critical patent/JP3587126B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、高張力溶融亜鉛めっき鋼板に係り、とくに連続溶融亜鉛めっきラインで製造される高張力溶融亜鉛めっき鋼板の延性の向上に関する。
【0002】
【従来の技術】
近年、地球環境の保全という観点から、自動車の燃費改善が要求されている。さらに加えて、衝突時に乗員を保護するため、自動車車体の安全性向上も要求されている。このようなことから、自動車車体の軽量化および自動車車体の強化が積極的に進められている。自動車車体の軽量化と強化を同時に満足させるには、部品素材を高強度化することが効果的であると言われており、最近では高張力鋼板が自動車部品に積極的に使用されている。
【0003】
鋼板を素材とする自動車部品の多くがプレス加工によって成形されるため、自動車部品用鋼板には優れたプレス成形性が要求される。優れたプレス成形性を実現するには、第一義的には高い延性を確保することが肝要である。そのため、自動車部品用高張力鋼板には、高い延性を有することが強く求められている。
延性に優れる高張力鋼板としては、フェライトと低温変態相との複合組織からなる組織強化型鋼板が提案されている。この組織強化型鋼板では、フェライトとマルテンサイトの複合組織を有する二相組織鋼板が代表的である。また最近では、残留オーステナイトに起因する変態誘起塑性を利用した高延性鋼板も実用化の段階に至っている。
【0004】
一方、自動車部品には、適用部位によっては高い耐食性も要求される。このような部位に適用される部品素材には、合金化溶融亜鉛めっき鋼板を主体とする溶融亜鉛めっき鋼板が好適である。
したがって、自動車車体の軽量化および強化をより一層推進するためには、耐食性に優れ、しかも延性に優れる高張力溶融亜鉛めっき鋼板が必要不可欠な素材となっている。
【0005】
しかし、現在、溶融亜鉛めっき鋼板の多くは、連続溶融亜鉛めっきラインで製造されている。これら連続溶融亜鉛めっきラインは、焼鈍設備とめっき設備とを連続化して設置していることが多く、焼鈍後のめっき処理により、焼鈍後の冷却がめっき温度で中断されている。このため、工程全体での平均冷却速度を大きくすることが困難となる。
【0006】
したがって、連続溶融亜鉛めっきラインで製造される高張力溶融亜鉛めっき鋼板では、一般に冷却速度の大きい冷却条件下で生成するマルテンサイトや残留オーステナイトをめっき処理後の鋼板中に含有させることは難しい。
連続溶融亜鉛めっきラインで、組織強化型高張力溶融亜鉛めっき鋼板を製造する方法としては、CrやMoといった焼入性を高める合金元素を多量に添加し、マルテンサイト等の低温変態相の生成を容易にする方法がある。しかし、合金元素の多量添加は、製造コストの上昇を招くという問題がある。
【0007】
また、例えば、特公昭62−40405 号公報には、C:0.005 〜0.15%、Mn:0.3 〜2.0 %、Cr:0.03〜0.8 %を含有する薄鋼板をAc変態点〜Ac変態点間に加熱したのち、冷却途中に溶融亜鉛めっき処理を行い、さらに500 ℃〜Ac変態点間の温度に加熱する合金化処理を施し、その後300 ℃まで冷却する連続溶融亜鉛めっきラインを用いた組織強化型合金化溶融亜鉛めっき高張力鋼板の製造方法が提案されている。この合金化溶融亜鉛めっき高張力鋼板の製造方法においては、Ac変態点〜Ac変態点間に加熱後の冷却、および合金化処理後300 ℃までの冷却を、CrとMn量と関連づけられた式で規定される臨界冷却速度以上の冷却速度で行うことを特徴としており、フェライト素地中に主としてマルテンサイトからなる低温変態組織を含む二相組織鋼板とし、その鋼板上に合金化亜鉛めっき層を有する鋼板としている。
【0008】
しかしながら、特公昭62−40405 号公報に記載された技術では、連続溶融亜鉛めっきラインで焼鈍後やめっき処理後の冷却条件を、各鋼板の組成に合致して調整する必要がある。このような冷却条件の調整は、連続亜鉛めっきラインの設備上の制約から問題があった。また、特公昭62−40405 号公報に記載された技術で製造された鋼板の延性も十分なものとは言えなかった。
【0009】
一方、特公昭62−40405 号公報に記載された組織強化型溶融亜鉛めっき高張力鋼板とは異なり、連続溶融亜鉛めっきラインを用いて、焼戻マルテンサイトを利用して、成形性に優れる高張力溶融亜鉛めっき鋼板を得る方法が提示されている。
例えば、特開平6−93340 号公報には、連続溶融亜鉛めっきラインにおいて、再結晶温度以上かつAc変態点以上に加熱保持し、その後M点以下に急冷し、ついでM点以上の温度であって少なくとも溶融亜鉛浴温度および合金化炉温度に加熱したのち、溶融亜鉛槽に浸漬する高強度合金化溶融亜鉛めっき鋼板の製造方法が提案されている。
【0010】
また、特開平6−108152号公報には、(Ac変態点−50℃)〜900 ℃の温度にて少なくとも1sec 以上保持することを含む再結晶焼鈍工程と、亜鉛めっきを施す工程と、これらの工程の後にAc変態点以下250 ℃以上の温度にて再加熱処理を施す工程を有し、再結晶焼鈍工程の後でかつ再加熱処理工程前に、M点より高い温度から、合金元素量に依存する臨界冷却速度以上の冷却速度で、M点以下まで冷却する曲げ加工性に優れた高強度合金化溶融亜鉛めっき鋼板の製造方法が提案されている。
【0011】
特開平6−93340 号公報、特開平6−108152号公報に記載された技術は、いずれも、鋼板をめっき前あるいは合金化処理前にオーステナイト温度域からM点以下の温度に焼入れてマルテンサイト組織の鋼板とし、これを再加熱して焼戻マルテンサイトとする高強度合金化溶融亜鉛めっき鋼板の製造方法である。
しかしながら、特開平6−93340 号公報、特開平6−108152号公報に記載された技術で製造された鋼板は、いずれも、自動車部品等の素材用として現在要求される延性を十分満足できず、更なる延性の向上が望まれていた。
【0012】
【発明が解決しようとする課題】
本発明は、上記した従来技術の問題を解決し、自動車部品用素材として十分な延性を有し、強度−伸びバランスに優れる高張力溶融亜鉛めっき鋼板およびその製造方法を提供するものである。本発明の高張力溶融亜鉛めっき鋼板は、連続溶融亜鉛めっきラインを利用して製造されるのが望ましい。
【0013】
【課題を解決するための手段】
本発明者らは、連続溶融亜鉛めっきラインを用いて高延性高張力溶融亜鉛めっき鋼板を製造するため、鋼板の組成およびミクロ組織の観点から鋭意研究を重ねた。その結果、溶融亜鉛めっき処理後に得られる高張力溶融亜鉛めっき鋼板の組織を焼戻マルテンサイト、残留オーステナイトを含み、残部をフェライトと低温変態相とからなる複合組織とすることにより、鋼板に優れた延性を発現せしめることが可能であることを知見した。
【0014】
さらに、鋼板の組織を焼戻マルテンサイト、残留オーステナイトを含み、残部をフェライトと低温変態相とからなる複合組織とするには、化学成分を所定の範囲に調整した鋼板の組織を、まずラス状マルテンサイトを含む組織を有する組織とし、さらに連続溶融亜鉛めっきラインにて所定の条件下で再加熱処理およびめっき処理を施すことにより、焼戻マルテンサイト、残留オーステナイトを含み、残部をフェライトと低温変態相とからなる上記複合組織とすることができ、極めて延性に優れる高張力溶融亜鉛めっき鋼板とすることが可能であるという知見を得た。
【0015】
本発明は、上記した知見に基づいて構成されたものである。
すなわち、第1の本発明は、鋼板表層に溶融亜鉛めっき層または合金化溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板であって、
前記鋼板が、質量%で、C:0.05〜0.20%、Si:0.3 〜1.8 %、Mn:1.0 〜 3.0 %を含み、残部Feおよび不可避的不純物からなる組成と、焼戻マルテンサイト、残留オーステナイト、フェライトおよび低温変態相からなる複合組織を有し、かつ前記焼戻マルテンサイトを体積率で20%以上、前記残留オーステナイトを体積率で2%以上含むことを特徴とする延性に優れる高張力溶融亜鉛めっき鋼板であり、また、第1の本発明では、前記組成に加え、さらに、次の(a群)〜(d群)
(a群):Cr、Moのうちの1種または2種を合計で、0.05〜1.0 質量%、
(b群):B:0.003 質量%以下、
(c群):Ti、Nb、Vのうちから選ばれた1種または2種以上を合計で、0.01〜0.1 質量%
(d群):Ca、REM のうちから選ばれた1種または2種を合計で、0.01質量%以下
のうちから選ばれた1群または2群以上を含有してもよい。
【0016】
また、第2の本発明は、質量%で、C:0.05〜0.20%、Si:0.3 〜1.8 %、Mn:1.0 〜3.0 %を含み、残部Feおよび不可避的不純物からなる組成を有する鋼板に、(Ac変態点−50℃)以上の温度で、5sec 以上保持する一次熱処理を施した後、10℃/sec 以上の冷却速度でM点以下の温度まで冷却する一次工程と、ついで、(Ac変態点〜Ac変態点)の間の温度域で5〜120sec間保持する二次熱処理を施した後、5℃/sec 以上の冷却速度で500 ℃以下の温度まで冷却する二次工程と、ついで溶融亜鉛めっき処理を施し前記鋼板表面に溶融亜鉛めっき皮膜を形成したのち、5℃/sec 以上の冷却速度で300 ℃まで冷却する三次工程とを順次施すことを特徴とする延性に優れる高張力溶融亜鉛めっき鋼板の製造方法であり、また、第2の本発明では、前記三次工程が、溶融亜鉛めっき処理を施し前記鋼板表面に溶融亜鉛めっき皮膜を形成したのち、450 ℃〜550 ℃の温度域まで再加熱して溶融亜鉛めっき皮膜の合金化処理を施し、該合金化処理後に5℃/sec 以上の冷却速度で300 ℃まで冷却する工程であることが好ましい。
【0017】
また、第2の本発明では、前記組成に加え、さらに、次(a群)〜(d群)
(a群):Cr、Moのうちの1種または2種を合計で、0.05〜1.0 質量%、
(b群):B:0.003 質量%以下、
(c群):Ti、Nb、Vのうちから選ばれた1種または2種以上を合計で、0.01〜0.1 質量%、
(d群):Ca、REM のうちから選ばれた1種または2種を合計で、0.01質量%以下
のうちから選ばれた1群または2群以上を含有してもよい。
【0018】
また、第2の本発明では、前記鋼板を、最終熱間圧延が(Ar変態点−50℃)以上の温度で行われた熱延鋼板とし、前記一次工程に代えて、最終熱間圧延後の冷却をM点以下の温度まで10℃/sec 以上の冷却速度で急冷する熱延鋼板組織調整工程とすることが可能である。
【0019】
【発明の実施の形態】
本発明の高張力溶融亜鉛めっき鋼板は、鋼板表層に溶融亜鉛めっき層または合金化溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板である。
まず、本発明に用いる鋼板の組成限定理由について説明する。なお、本発明では、組成における%は質量%を意味する。
【0020】
C:0.05〜0.20%
Cは、鋼板の高強度化に必須の元素であり、さらに残留オーステナイトや低温変態相の生成に効果があり、不可欠の元素である。しかし、C含有量が0.05%未満では所望の高強度化が得られず、一方、0.20%を超えると、溶接性の劣化を招く。このため、Cは0.05〜0.20%の範囲に限定した。
【0021】
Mn:1.0 〜3.0 %
Mnは、固溶強化により鋼を強化するとともに、鋼の焼入性を向上し、さらに残留オーステナイトや低温変態相の生成を促進する作用を有する。このような作用は、Mn含有量が1.0 %以上で認められる。一方、3.0 %を超えて含有しても効果が飽和し、含有量に見合う効果が期待できなくなりコストの上昇を招く。このため、Mnは1.0 〜3.0 %の範囲に限定した。
【0022】
Si:0.3 〜1.8 %
Siは、固溶強化により鋼を強化するとともに、オーステナイトを安定化し、残留オーステナイト相の生成を促進する作用を有する。このような作用は、Si含有量が0.3 %以上で認められる。一方、1.8 %を超えて含有すると、めっき性が顕著に劣化する。このため、Siは0.3 〜1.8 %の範囲に限定した。
【0023】
さらに、本発明の鋼板では、必要に応じて、上記した化学成分に加え、下記に示す(a群)〜(d群)のうちの1種または2種以上をさらに添加することが可能である。
(a群):Cr、Moのうちの1種または2種を合計で、0.05〜1.0 %
CrおよびMoは、鋼の焼入性を向上し、低温変態相の生成を促進する作用を有する元素である。このような作用は、CrおよびMoのうちの1種または2種を合計で0.05%以上含有して認められる。一方、合計で1.0 %を超えて含有しても効果が飽和し、含有量に見合う効果を期待できず、経済的に不利となる。このため、Cr、Moのうちの1種または2種を合計で0.05〜1.0 %の範囲に限定するのが望ましい。
【0024】
(b群):B:0.003 %以下、
Bは、鋼の焼入性を向上する作用を有する元素であり、必要に応じ含有できる。しかし、B含有量が0.003 %を超えると、効果が飽和するため、Bは0.003 %以下に限定するのが望ましい。なお、0.001 〜0.002 %が一層好ましい。
(c群):Ti、Nb、Vのうちから選ばれた1種または2種以上を合計で、0.01〜0.1 %
Ti、Nb、Vは、炭窒化物を形成し、鋼を析出強化により高強度化する作用を有しており、必要に応じて添加できる。このような作用は、Ti、Nb、Vのうちから選ばれた1種または2種以上を合計で、0.01%以上で認められる。一方、合計で0.1 %を超えて含有しても、過度に高強度化し、延性が低下する。このため、Ti、Nb、Vのうちの1種または2種以上の含有量は、合計で、0.01〜0.1 %の範囲に限定するのが好ましい。
【0025】
(d群):Ca、REM のうちから選ばれた1種または2種を合計で、0.01%以下 Ca、REM は、硫化物系介在物の形態を制御する作用を有し、これにより、鋼板の伸びフランジ特性を向上させる効果を有する。このような効果はCa、REM のうちから選ばれた1種または2種の含有量が合計で、0.01%を超えると飽和する。このため、Ca、REM のうちの1種または2種の含有量は合計で、0.01%以下に限定するのが好ましい。
【0026】
本発明に用いる鋼板は、上記した化学成分以外は、残部Feおよび不可避的不純物からなる。不可避的不純物としては、Al:0.1 %以下、P:0.05%以下、S:0.02%以下が許容できる。
さらに、本発明の鋼板は、上記した組成と、焼戻マルテンサイト、残留オーステナイト、フェライトおよび低温変態相からなる複合組織を有する鋼板である。なお、本発明における焼戻マルテンサイトとは、ラス状のマルテンサイトを(Ac変態点〜Ac変態点)の温度域に短時間加熱保持した際に生成する相を指す。
【0027】
焼戻マルテンサイトは、焼戻前のラス状マルテンサイトの形態を引継いだ微細な内部構造を有する相である。焼戻マルテンサイトは、焼戻しによって軟質化しており十分な塑性変形能を有するため、高張力鋼板の延性向上に有効な相である。本発明の鋼板では、このような焼戻マルテンサイト相を、体積率で20%以上含有する。焼戻マルテンサイト量が20%未満では、顕著な延性向上効果が期待できない。このため、複合組織中の焼戻マルテンサイト量は20%以上に限定した。なお、焼戻マルテンサイト量が、80%を超えると、鋼板の高強度化が困難となるため、80%以下とするのが好ましい。
【0028】
残留オーステナイトは、加工時にマルテンサイトに歪誘起変態し、局所的に加えられた加工歪を広く分散させ、鋼板の延性を向上する作用を有する。本発明鋼板では、このような残留オーステナイトを体積率で2%以上含有する。残留オーステナイト量が2%未満では、顕著な延性の向上が期待できない。このため、残留オーステナイト量は2%以上に限定した。また、残留オーステナイト量は、好ましくは5%以上である。なお、残留オーステナイト量は多いほどよいが、連続溶融亜鉛めっきラインの熱履歴を経て製造される本発明鋼板では、実際的には10%以下となる。
【0029】
本発明の鋼板における複合組織では、上記した焼戻マルテンサイトと残留オーステナイト以外は、フェライトおよび低温変態相である。
フェライトは、鉄炭化物を含まない軟質な相であり、高い変形能を有し、鋼板の延性を向上させる。本発明鋼板では、フェライトを体積率で30%以上含有するのが好ましい。30%未満では延性の向上が少ない。一方、70%を超えると鋼板の高強度化が困難となるため、70%以下とするのが好ましい。
【0030】
一方、本発明でいう低温変態相とは、焼戻しされていないマルテンサイトあるいはベイナイトを指す。これらの低温変態相は、本発明の製造方法における二次工程以降の冷却過程中に生成する。マルテンサイト、ベイナイトとも硬質相であり、鋼板強度を増加させる。低温変態相量は、本発明では特に限定しない。鋼板の強度に応じて適宜配分すればよい。また、強度の増加を十分図るためには、低温変態相は、硬質なマルテンサイトとするのが好適である。
【0031】
軟質相であるフェライトと硬質相である低温変態相とが、焼戻マルテンサイト、残留オーステナイトとともに複合組織を構成することにより、軟質相から硬質相までが混在する微細組織となって、鋼板の高延性化や低降伏比化が実現し鋼板の成形性が著しく向上する。
本発明の高張力溶融亜鉛めっき鋼板は、上記した組成および上記した複合組織を有する鋼板の表層に、溶融亜鉛めっき層、または合金化溶融亜鉛めっき層が形成されためっき鋼板である。めっき層の目付量は、使用部位による耐食性要求により適宜決定すればよく、とくに規定されない。自動車の構造部品に使用される鋼板では、溶融亜鉛めっき層の厚さ(目付量)は30〜60g/m とするのが好ましい。
【0032】
次に、本発明の高張力溶融亜鉛めっき鋼板の製造方法について説明する。
まず、上記した組成を有する溶鋼を溶製し、通常の公知の方法で鋳造し、通常の公知の方法で熱間圧延、あるいはさらに冷間圧延して、鋼板とする。また、必要に応じて、酸洗あるいは焼鈍等の工程を加えることができる。
本発明では、上記した組成を有する鋼板に、一次熱処理後冷却しマルテンサイトを含有する組織とする一次工程(▲1▼)と、ついで連続溶融亜鉛めっきラインにて二次熱処理を施し、一次工程で形成されたマルテンサイトの焼戻しと、冷却後に残留オーステナイトおよび低温変態相を生成するための鋼板組織の一部再オーステナイト化を図る二次工程(▲2▼)とを施し、しかるのち亜鉛めっき処理する三次工程(▲3▼)を施し、延性に優れる高張力溶融亜鉛めっき鋼板を得る。
【0033】
▲1▼一次工程
一次工程では、鋼板に(Ac変態点−50℃)以上の温度で少なくとも5sec 以上保持する一次熱処理を施した後、M点以下の温度まで10℃/sec 以上の冷却速度で急冷する。この一次工程により、鋼板中にラス状マルテンサイトが20%(体積率)以上生成される。本発明でいう焼戻マルテンサイトを得るためには、前組織としてラス状マルテンサイトを含む組織とすることが必要である。
【0034】
一次熱処理の加熱保持温度が(Ac変態点−50℃)未満、あるいは保持時間が5sec 未満では、加熱保持中に生成するオーステナイト量が少なく、冷却後に得られるラス状マルテンサイト量が不足する。また、一次熱処理後の冷却速度が10℃/sec 未満では、冷却後の鋼板組織をラス状マルテンサイトを含む組織とすることができない。なお、一次熱処理後の冷却速度の上限は、鋼板の形状を良好に保つためには100 ℃/sec 以下とするのが好ましい。また、保持時間は5sec 以上120sec以下とするのが好ましい。
【0035】
なお、めっき母板として、最終熱間圧延が(Ar変態点−50℃)以上の温度で行われた熱延鋼板を使用する場合には、この一次工程は、最終圧延後の冷却を、M点以下の温度まで10℃/sec 以上の冷却速度で急冷することにより、この一次工程の代わりとすることができる。ただし、冷却後の鋼板組織の均質化を図るためには、一次工程は熱間圧延後に独立した工程として行うのが好ましい。
【0036】
▲2▼二次工程
二次工程では、一次工程により20%以上のラス状マルテンサイトを生成させた鋼板に、さらに(Ac変態点〜Ac変態点)の間の温度域で5〜120sec間保持する二次熱処理を施した後、5℃/sec 以上の冷却速度で500 ℃以下の温度まで冷却する。この二次工程により、一次工程により生成したラス状マルテンサイトを焼戻マルテンサイトとするとともに、最終的に残留オーステナイト、低温変態相を生成させるための鋼板組織の一部再オーステナイト化を図る。なお、この二次工程は、焼鈍設備と溶融亜鉛めっき設備を兼ね備えた連続溶融亜鉛めっきラインで行うのが好ましい。
【0037】
二次熱処理における加熱保持温度がAc変態点未満では、オーステナイトが再生成せず、冷却後に残留オーステナイトや低温変態相が得られない。また、保持温度がAc変態点を超えると、焼戻マルテンサイトの再オーステナイト化を招く。
また、二次熱処理における加熱保持時間が5sec 未満ではオーステナイトの再生成が不十分であるため、冷却後に十分な量の残留オーステナイトが得られない。また、120secを超えると、焼戻マルテンサイトの再オーステナイト化が進行し、必要量の焼戻マルテンサイトを得ることが困難となる。
【0038】
また、二次熱処理後の500 ℃までの冷却速度が5℃/sec 未満では、冷却速度が遅く二次熱処理で生成したオーステナイトがフェライト、パーライト等に変態し、残留オーステナイトや低温変態相とならない。なお、二次熱処理後の冷却速度は5℃/sec 以上50℃/sec 以下とするのが好ましい。
なお、この二次工程は、焼鈍設備と溶融亜鉛めっき設備を兼ね備えた連続溶融亜鉛めっきラインで行うのが好ましい。連続溶融亜鉛めっきラインで行うことにより二次工程後直ちに三次工程に移行でき、生産性が向上する。
【0039】
▲3▼三次工程
三次工程では、二次工程を施された鋼板に溶融亜鉛めっき処理を施し、5℃/sec 以上の冷却速度で300 ℃まで冷却する。溶融亜鉛めっき処理は、通常、連続溶融亜鉛めっきラインで行われている処理条件でよく、特に限定する必要はない。しかし、極端な高温でのめっき処理は、必要な残留オーステナイト量の確保が困難となる。このため、500 ℃以下でのめっき処理とするのが好ましい。また、めっき後の冷却速度が極端に小さいときは、残留オーステナイトの確保が困難となる。このため、めっき処理後から 300℃までの温度範囲における冷却速度は5℃/sec 以上に限定するのが好ましい。なお、好ましくは50℃/sec 以下である。また、めっき処理後、必要に応じて目付量調整のためのワイピングを行ってもよいのはいうまでもない。
【0040】
また、溶融亜鉛めっき処理後、合金化処理を施してもよい。合金化処理は、溶融亜鉛めっき処理後、450 ℃〜550 ℃の温度域まで再加熱し溶融亜鉛めっき皮膜の合金化を行う。合金化処理後は、5℃/sec 以上の冷却速度で300 ℃まで冷却するのが好ましい。高温での合金化は、必要な残留オーステナイト量の確保が困難となり、鋼板の延性が低下する。このため、合金化温度の上限は 550℃に限定するのが好ましい。また、合金化温度が450 ℃未満では、合金化の進行が遅く生産性が低下する。また、合金化処理後の冷却速度が極端に低い場合には、必要な残留オーステナイトの確保が困難になる。このため、合金化処理後から 300℃までの温度範囲における冷却速度を5℃/sec 以上に限定するのが好ましい。
【0041】
なお、めっき処理後あるいは合金化処理後の鋼板には、形状矯正、表面粗度等の調整のための調質圧延を加えてもよい。また、樹脂あるいは油脂コーティング、各種塗装等の処理を施しても何ら不都合はない。
本発明は、焼鈍設備とめっき設備および合金化処理設備を連続した溶融亜鉛めっきラインにおいて鋼板の二次加熱と溶融亜鉛めっきおよび合金化処理を行うことを前提としているが、各工程を独立した設備あるいは工程において実施することも可能である。
【0042】
【実施例】
(実施例1)
表1に示す組成の鋼を転炉で溶製し、連続鋳造法で鋳片とした。得られた鋳片を板厚2.6mm まで熱間圧延し、次いで酸洗したのち、冷間圧延により板厚1.0mm の鋼板を得た。
【0043】
次いで、これら冷延鋼板に、連続焼鈍ラインで、表2に示す一次工程条件で加熱保持後冷却する一次工程を施した。一次工程後、組織調査を行い、ラス状マルテンサイト量を測定した。さらに、一次工程済のこれら鋼板に、連続溶融亜鉛めっきラインにて、表2に示す二次工程条件で、加熱保持した後冷却する二次工程を施したのち、引続き溶融亜鉛めっき処理を施し、一部については溶融亜鉛めっき処理後に再加熱する溶融亜鉛めっき皮膜の合金化処理を行い、冷却する三次工程を施した。得られた鋼板について、ミクロ組織および機械的特性を調査し表3に示す。
【0044】
溶融亜鉛めっき処理は、浴温 475℃のめっき槽に鋼板を浸漬して行い、引き上げて片面当たりの目付量が50g/m となるようにガスワイピングにより目付量を調整した。なお、めっき皮膜の合金化処理を行う場合には、ワイピング処理の後、10℃/sec の加熱速度で 500℃まで昇温し、合金化処理した。合金化処理時の保持時間はめっき皮膜中の鉄含有率が9〜11%となるように調整した。
【0045】
鋼板のミクロ組織観察は、鋼板断面を光学顕微鏡あるいは走査型電子顕微鏡で行った。ミクロ組織中のラス状マルテンサイト量および焼戻マルテンサイト量は、倍率1000倍の断面組織写真を用いて、画像解析により任意に設定した 100mm四方の正方形領域内に存在する該当相の占有面積率を求め、該当相の体積率とした。また、残留オーステナイト量は、鋼板より採取した試片を板厚方向の中心面まで研磨し、板厚中心面での回折X線強度測定により求めた。入射X線には MoKα線を使用し、試片中の残留オーステナイト相の{111 }、{200 }、{220 }、{311 }各面の回折X線強度比を求め、これらの平均値を残留オーステナイトの体積率とした。
【0046】
また、機械的特性は、鋼板から圧延直角方向に採取したJIS 5 号引張試験片を用いて、降伏強さ(降伏点)YP、引張強さTS、伸びElを測定した。
これらの結果を表3に示す。
【0047】
【表1】

Figure 0003587126
【0048】
【表2】
Figure 0003587126
【0049】
【表3】
Figure 0003587126
【0050】
表3から、本発明例は、引張強さTSが590MPa以上、伸びElが30%以上、かつ強度−伸びバランス(TS×El)が21000MPa%以上と、強度−伸びバランスに優れた高延性高張力溶融亜鉛めっき鋼板となっている。
一方、本発明の範囲を外れる比較例では、延性が十分でなく、強度−伸びバランスが低下している。
【0051】
板No.5は、一次熱処理での保持時間が短く、冷却後に得られるラス状マルテンサイト量が少なくなり、めっき処理後の焼戻マルテンサイト量が低下し、強度−伸びバランスが低下している。また、鋼板No.6は、二次熱処理の保持温度が高すぎたため、めっき処理後の焼戻マルテンサイト量が少なく、強度−伸びバランスが低下している。また、鋼板No.7は、二次熱処理の保持温度が低すぎたため、めっき処理後に残留オーステナイトが生成せず、強度−伸びバランスが低下している。また、鋼板No.8は、二次熱処理での保持時間が短すぎたため、めっき処理後に残留オーステナイト量が少なくなり、強度−伸びバランスが低下している。また、鋼板No.9 は逆に二次熱処理での保持時間が長すぎたため、めっき処理後の焼戻マルテンサイト量が少なくなり、強度−伸びバランスが低下している。鋼板No.10 は、二次熱処理後の冷却速度が小さく、また、鋼板No.11 は合金化処理後 300℃までの冷却速度が小さく、めっき処理後の残留オーステナイト量が少なくなり、強度−伸びバランスが低下している。鋼板No.13 は、一次熱処理後の冷却速度が小さく、冷却後に得られるラス状マルテンサイト量が少なくなり、めっき処理後の焼戻マルテンサイト量が少なく、強度−伸びバランスが低下している。
【0052】
鋼板No.18 〜20は、鋼板の組成が本発明範囲を外れ、焼戻マルテンサイト、あるいは残留オーステナイトの生成量が少なくなり、強度−伸びバランスが低下ししている。
(実施例2)
表1に示す組成の鋼Bを転炉で溶製し、連続鋳造法にて鋳片とした。得られた鋳片に板厚2.3mm まで熱間圧延する熱延工程と、熱間圧延後、直ちに表4に示す条件で急冷し、コイル状に巻き取る熱延鋼板組織調整工程とを施した。この熱延鋼板組織調整工程を、本発明の製造方法における一次工程の代替とした。熱延鋼板組織調整工程後、鋼板のミクロ組織調査を行い、ラス状マルテンサイトの量を測定した。
【0053】
次いで、この熱延鋼板に、連続溶融亜鉛めっきラインにて、表4に示す二次工程条件で、加熱保持した後冷却する二次工程を施した後、引続き溶融亜鉛めっき処理を施し、さらに溶融亜鉛めっき皮膜の合金化処理を行い、次いで冷却する三次工程を施した。
溶融亜鉛めっき処理は、実施例1と同様に行った。得られた鋼板について、実施例1と同様にミクロ組織および機械的特性を調査し表5に示す。
【0054】
【表4】
Figure 0003587126
【0055】
【表5】
Figure 0003587126
【0056】
表5から、本発明例の溶融亜鉛めっき鋼板は、590MPa以上の引張強さTSを有し、強度−伸びバランス(TS×El)が23000MPa%以上であり、延性に優れた高張力溶融亜鉛めっき鋼板となっている。
【0057】
【発明の効果】
本発明によれば、かかる高張力溶融亜鉛めっき鋼板は非常に優れた延性を有し、自動車部品に代表される成形品素材として実に好適な高張力溶融亜鉛めっき鋼板が、安価にしかも安定して製造でき、産業上格段の効果を奏する。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a high-strength hot-dip galvanized steel sheet, and more particularly to improvement of ductility of a high-tensile hot-dip galvanized steel sheet manufactured by a continuous hot-dip galvanizing line.
[0002]
[Prior art]
2. Description of the Related Art In recent years, from the viewpoint of preserving the global environment, there has been a demand for improved fuel efficiency of automobiles. In addition, in order to protect occupants in the event of a collision, there is a demand for improved safety of the vehicle body. For these reasons, reductions in the weight of automobile bodies and reinforcement of automobile bodies have been actively promoted. It is said that it is effective to increase the strength of component materials in order to satisfy the weight reduction and strengthening of an automobile body at the same time. Recently, high-tensile steel sheets have been actively used for automobile components.
[0003]
Since many automotive parts made of steel sheets are formed by press working, steel sheets for automotive parts are required to have excellent press formability. In order to realize excellent press formability, it is essential to secure high ductility in the first place. Therefore, high tensile strength steel sheets for automobile parts are strongly required to have high ductility.
As a high-tensile steel sheet having excellent ductility, a structure-reinforced steel sheet having a composite structure of ferrite and a low-temperature transformation phase has been proposed. A typical example of the structure strengthened steel sheet is a two-phase structure steel sheet having a composite structure of ferrite and martensite. Recently, a highly ductile steel sheet utilizing transformation induced plasticity caused by retained austenite has also reached the stage of practical use.
[0004]
On the other hand, automotive parts are also required to have high corrosion resistance depending on the application site. A hot-dip galvanized steel sheet mainly composed of an alloyed hot-dip galvanized steel sheet is suitable for a component material applied to such a part.
Therefore, in order to further reduce the weight and strengthen the automobile body, a high-strength hot-dip galvanized steel sheet having excellent corrosion resistance and excellent ductility is an indispensable material.
[0005]
However, at present, most hot-dip galvanized steel sheets are manufactured in a continuous hot-dip galvanizing line. In these continuous hot-dip galvanizing lines, the annealing equipment and the plating equipment are often installed in a continuous manner, and the cooling after annealing is interrupted at the plating temperature due to the plating treatment after annealing. For this reason, it is difficult to increase the average cooling rate in the entire process.
[0006]
Therefore, in a high-strength hot-dip galvanized steel sheet manufactured in a continuous hot-dip galvanizing line, it is generally difficult to include martensite and residual austenite generated under cooling conditions with a high cooling rate in the steel sheet after the plating treatment.
In a continuous hot-dip galvanizing line, a method of manufacturing a structure-strengthened high-strength hot-dip galvanized steel sheet is to add a large amount of alloying elements, such as Cr and Mo, that enhance hardenability and to generate a low-temperature transformation phase such as martensite. There are ways to make it easier. However, there is a problem that the addition of a large amount of alloying elements causes an increase in manufacturing cost.
[0007]
Further, for example, Japanese Patent Publication No. Sho 62-40405 discloses a thin film containing C: 0.005 to 0.15%, Mn: 0.3 to 2.0%, and Cr: 0.03 to 0.8%. Ac steel plate 1 Transformation point ~ Ac 3 After heating between the transformation points, hot-dip galvanizing is performed during cooling, and then 500 ° C. to Ac 1 There has been proposed a method for producing a structure-strengthened alloyed hot-dip galvanized high-strength steel sheet using a continuous hot-dip galvanizing line that is subjected to an alloying process of heating to a temperature between transformation points and then cooled to 300 ° C. In this method for producing a galvannealed high-strength steel sheet, Ac 1 Transformation point ~ Ac 3 It is characterized in that the cooling after heating between the transformation points and the cooling to 300 ° C. after the alloying treatment are performed at a cooling rate higher than the critical cooling rate specified by the equation related to the amounts of Cr and Mn. A two-phase structure steel sheet including a low-temperature transformation structure mainly composed of martensite in a base material, and a steel sheet having an alloyed galvanized layer on the steel sheet.
[0008]
However, in the technique described in Japanese Patent Publication No. 62-40405, it is necessary to adjust the cooling conditions after annealing or plating in a continuous hot-dip galvanizing line in accordance with the composition of each steel sheet. Adjustment of such cooling conditions has a problem due to restrictions on equipment of a continuous galvanizing line. Further, the ductility of the steel sheet manufactured by the technique described in Japanese Patent Publication No. 62-40405 was not sufficient.
[0009]
On the other hand, unlike the structure-strengthened hot-dip galvanized high-strength steel sheet described in Japanese Patent Publication No. 62-40405, a high-tensile steel excellent in formability is formed by using tempered martensite using a continuous hot-dip galvanizing line. A method for obtaining a hot-dip galvanized steel sheet has been proposed.
For example, Japanese Unexamined Patent Publication No. Hei 6-93340 discloses that a continuous hot-dip galvanizing line has a recrystallization temperature or higher and Ac 1 Heat and hold above the transformation point, then S Quenched below the point and then M S A method for producing a high-strength alloyed hot-dip galvanized steel sheet that is heated to at least the temperature of a hot-dip zinc bath and at the temperature of an alloying furnace and then immersed in a hot-dip zinc bath has been proposed.
[0010]
Japanese Patent Application Laid-Open No. 6-108152 discloses (Ac 3 (Transformation point −50 ° C.) to a temperature of 900 ° C. for at least 1 sec or more, a recrystallization annealing step, a step of galvanizing, and an Ac after these steps. 1 A step of performing a reheating treatment at a temperature not higher than the transformation point and not lower than 250 ° C., after the recrystallization annealing step and before the reheating treatment step, S From a temperature higher than the point, at a cooling rate higher than the critical cooling rate depending on the amount of alloying elements, S A method for producing a high-strength alloyed hot-dip galvanized steel sheet excellent in bending workability, which cools to below a point, has been proposed.
[0011]
In each of the techniques described in JP-A-6-93340 and JP-A-6-108152, the steel sheet is heated from the austenite temperature range before plating or alloying. S This is a method for producing a high-strength galvannealed steel sheet having a martensite structure by quenching the steel sheet to a temperature equal to or lower than the temperature, and reheating the steel sheet to obtain tempered martensite.
However, none of the steel sheets manufactured by the techniques described in JP-A-6-93340 and JP-A-6-108152 cannot sufficiently satisfy the ductility currently required for materials such as automobile parts. Further improvement in ductility has been desired.
[0012]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, and provides a high-strength hot-dip galvanized steel sheet having sufficient ductility as a material for automobile parts and excellent in strength-elongation balance, and a method for producing the same. The high tensile galvanized steel sheet of the present invention is desirably manufactured using a continuous galvanizing line.
[0013]
[Means for Solving the Problems]
The present inventors have conducted intensive studies from the viewpoint of the composition and microstructure of the steel sheet in order to manufacture a high ductility and high tensile galvanized steel sheet using a continuous hot-dip galvanizing line. As a result, the structure of the high-strength hot-dip galvanized steel sheet obtained after the hot-dip galvanizing treatment was tempered martensite, including retained austenite, and the balance being a composite structure composed of ferrite and a low-temperature transformation phase, thereby excelling in the steel sheet. It has been found that ductility can be expressed.
[0014]
Further, in order to obtain a composite structure including tempered martensite and retained austenite and a balance of ferrite and a low-temperature transformation phase, the structure of the steel sheet in which the chemical composition is adjusted to a predetermined range is firstly changed to a lath structure. A structure having a structure containing martensite, and further subjected to reheating treatment and plating treatment under predetermined conditions in a continuous hot-dip galvanizing line, including tempered martensite, retained austenite, and the remainder being ferrite and low-temperature transformation. It has been found that it is possible to obtain the above-mentioned composite structure composed of phases and to obtain a high tensile galvanized steel sheet having extremely excellent ductility.
[0015]
The present invention has been made based on the above findings.
That is, the first present invention is a hot-dip galvanized steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on a steel sheet surface layer,
The steel sheet contains, by mass%, C: 0.05 to 0.20%, Si: 0.3 to 1.8%, and Mn: 1.0 to 3.0%, with the balance being Fe and unavoidable impurities. And a composite structure composed of tempered martensite, retained austenite, ferrite and a low-temperature transformation phase, and contains the tempered martensite in a volume ratio of 20% or more and the retained austenite in a volume ratio of 2% or more. It is a high tensile galvanized steel sheet excellent in ductility characterized by the fact that, in the first invention, in addition to the above composition, the following (group a) to (d group)
(A group): 0.05 to 1.0 mass% of one or two of Cr and Mo in total,
(Group b): B: 0.003% by mass or less,
(Group c): 0.01 to 0.1% by mass in total of one or more selected from Ti, Nb and V
(D group): 0.01% by mass or less in total of one or two selected from Ca and REM
One or two or more groups selected from the above may be contained.
[0016]
The second present invention contains, by mass%, C: 0.05 to 0.20%, Si: 0.3 to 1.8%, Mn: 1.0 to 3.0%, and the balance Fe And a steel sheet having a composition consisting of unavoidable impurities, (Ac 3 (Transformation point −50 ° C.) or more, and after performing a primary heat treatment for 5 seconds or more, M is cooled at a cooling rate of 10 ° C./sec or more. S A primary step of cooling to a temperature below the point, then (Ac 1 Transformation point ~ Ac 3 After performing a secondary heat treatment for 5 to 120 seconds in the temperature range between (transformation point) and cooling at a cooling rate of 5 ° C./sec or more to a temperature of 500 ° C. or less, and then a galvanizing treatment And forming a hot-dip galvanized film on the surface of the steel sheet, and sequentially performing a tertiary step of cooling the steel sheet to 300 ° C. at a cooling rate of 5 ° C./sec or more. In a second aspect of the present invention, the tertiary step is a step of performing hot-dip galvanizing to form a hot-dip galvanized film on the surface of the steel sheet, and then reheating to a temperature range of 450 ° C. to 550 ° C. Preferably, the hot-dip galvanized film is subjected to an alloying treatment, and after the alloying treatment, is cooled to 300 ° C. at a cooling rate of 5 ° C./sec or more.
[0017]
In the second aspect of the present invention, in addition to the composition, the following (group a) to (d group)
(A group): 0.05 to 1.0 mass% of one or two of Cr and Mo in total,
(Group b): B: 0.003% by mass or less,
(Group c): one or more selected from Ti, Nb and V in total of 0.01 to 0.1% by mass;
(D group): 0.01% by mass or less in total of one or two selected from Ca and REM
One or two or more groups selected from the above may be contained.
[0018]
In the second invention, the steel sheet is subjected to final hot rolling (Ar 3 (Transformation point −50 ° C.) or more, and after the final hot rolling, cooling is performed by M S It can be a hot rolled steel sheet structure adjusting step of quenching at a cooling rate of 10 ° C./sec or more to a temperature below the point.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The high-strength hot-dip galvanized steel sheet of the present invention is a hot-dip galvanized steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on the surface layer of the steel sheet.
First, the reasons for limiting the composition of the steel sheet used in the present invention will be described. In the present invention,% in the composition means mass%.
[0020]
C: 0.05 to 0.20%
C is an element indispensable for increasing the strength of the steel sheet, and has an effect on generation of retained austenite and a low-temperature transformation phase, and is an indispensable element. However, if the C content is less than 0.05%, the desired high strength cannot be obtained, while if it exceeds 0.20%, the weldability deteriorates. For this reason, C is limited to the range of 0.05 to 0.20%.
[0021]
Mn: 1.0 to 3.0%
Mn has the effect of strengthening the steel by solid solution strengthening, improving the hardenability of the steel, and further promoting the generation of retained austenite and a low-temperature transformation phase. Such an effect is observed when the Mn content is 1.0% or more. On the other hand, if the content exceeds 3.0%, the effect saturates, and an effect corresponding to the content cannot be expected, resulting in an increase in cost. For this reason, Mn was limited to the range of 1.0 to 3.0%.
[0022]
Si: 0.3 to 1.8%
Si has the effect of strengthening steel by solid solution strengthening, stabilizing austenite, and promoting generation of a retained austenite phase. Such an effect is recognized when the Si content is 0.3% or more. On the other hand, when the content exceeds 1.8%, the plating property is remarkably deteriorated. For this reason, Si was limited to the range of 0.3 to 1.8%.
[0023]
Furthermore, in the steel sheet of the present invention, one or more of the following (groups) to (d) can be further added, if necessary, in addition to the above chemical components. .
(Group a): 0.05 to 1.0% in total of one or two of Cr and Mo
Cr and Mo are elements that have the effect of improving the hardenability of steel and promoting the formation of a low-temperature transformation phase. Such an effect is observed when one or two of Cr and Mo are contained in a total amount of 0.05% or more. On the other hand, if the content exceeds 1.0% in total, the effect saturates, and an effect commensurate with the content cannot be expected, resulting in economic disadvantage. Therefore, it is desirable to limit one or two of Cr and Mo to a range of 0.05 to 1.0% in total.
[0024]
(Group b): B: 0.003% or less,
B is an element having an effect of improving the hardenability of steel, and can be contained as necessary. However, if the B content exceeds 0.003%, the effect is saturated, so it is desirable to limit B to 0.003% or less. In addition, 0.001 to 0.002% is more preferable.
(Group c): 0.01 to 0.1% in total of one or more selected from Ti, Nb and V
Ti, Nb, and V form a carbonitride and have the effect of strengthening the steel by precipitation strengthening, and can be added as necessary. Such an effect is observed at a total of 0.01% or more of one or more selected from Ti, Nb, and V. On the other hand, if the total content exceeds 0.1%, the strength becomes excessively high, and the ductility decreases. Therefore, the content of one or more of Ti, Nb, and V is preferably limited to a total range of 0.01 to 0.1%.
[0025]
(D group): 0.01% or less in total of one or two selected from Ca and REM Ca, REM has an effect of controlling the form of sulfide-based inclusions, This has the effect of improving the stretch flange characteristics of the steel sheet. Such an effect is saturated when the content of one or two selected from Ca and REM exceeds 0.01% in total. Therefore, the content of one or two of Ca and REM is preferably limited to 0.01% or less in total.
[0026]
The steel sheet used in the present invention is composed of the balance Fe and unavoidable impurities other than the chemical components described above. As inevitable impurities, Al: 0.1% or less, P: 0.05% or less, and S: 0.02% or less are acceptable.
Furthermore, the steel sheet of the present invention is a steel sheet having the above composition and a composite structure composed of tempered martensite, retained austenite, ferrite, and a low-temperature transformation phase. The tempered martensite in the present invention refers to lath-like martensite (Ac 1 Transformation point ~ Ac 3 (Transformation point).
[0027]
Tempered martensite is a phase having a fine internal structure that inherits the form of lath martensite before tempering. Tempered martensite is a phase that is effective for improving the ductility of a high-strength steel sheet because it is softened by tempering and has sufficient plastic deformability. The steel sheet of the present invention contains such a tempered martensite phase in a volume ratio of 20% or more. If the amount of tempered martensite is less than 20%, a remarkable ductility improving effect cannot be expected. For this reason, the amount of tempered martensite in the composite structure is limited to 20% or more. If the amount of tempered martensite exceeds 80%, it is difficult to increase the strength of the steel sheet.
[0028]
The retained austenite has a function of transforming martensite into strain during processing, dispersing locally applied work strain widely, and improving ductility of the steel sheet. The steel sheet of the present invention contains such retained austenite in a volume ratio of 2% or more. If the amount of retained austenite is less than 2%, remarkable improvement in ductility cannot be expected. For this reason, the amount of retained austenite was limited to 2% or more. The amount of retained austenite is preferably at least 5%. The larger the amount of retained austenite is, the better, but it is actually 10% or less in the steel sheet of the present invention manufactured through the thermal history of the continuous galvanizing line.
[0029]
In the composite structure of the steel sheet of the present invention, except for the above-mentioned tempered martensite and retained austenite, it is a ferrite and a low-temperature transformation phase.
Ferrite is a soft phase that does not contain iron carbide, has high deformability, and improves the ductility of a steel sheet. The steel sheet of the present invention preferably contains ferrite in a volume ratio of 30% or more. If it is less than 30%, the improvement in ductility is small. On the other hand, if it exceeds 70%, it becomes difficult to increase the strength of the steel sheet.
[0030]
On the other hand, the low-temperature transformation phase referred to in the present invention refers to martensite or bainite that has not been tempered. These low-temperature transformation phases are generated during the cooling process after the second step in the production method of the present invention. Both martensite and bainite are hard phases and increase the strength of the steel sheet. The amount of the low-temperature transformation phase is not particularly limited in the present invention. What is necessary is just to distribute suitably according to the intensity | strength of a steel plate. In order to sufficiently increase the strength, it is preferable that the low-temperature transformation phase is hard martensite.
[0031]
Ferrite, which is a soft phase, and low-temperature transformation phase, which is a hard phase, form a composite structure together with tempered martensite and retained austenite. The ductility and the low yield ratio are realized, and the formability of the steel sheet is significantly improved.
The high-strength hot-dip galvanized steel sheet of the present invention is a coated steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer formed on a surface layer of a steel sheet having the above-described composition and the above-described composite structure. The basis weight of the plating layer may be appropriately determined according to the corrosion resistance requirement depending on the use site, and is not particularly specified. In steel sheets used for structural parts of automobiles, the thickness (weight per unit area) of the hot-dip galvanized layer is 30 to 60 g / m. 2 It is preferred that
[0032]
Next, a method for producing a high-strength hot-dip galvanized steel sheet according to the present invention will be described.
First, molten steel having the above-described composition is melted, cast by an ordinary known method, and hot-rolled or further cold-rolled by an ordinary known method to obtain a steel sheet. If necessary, a step such as pickling or annealing can be added.
In the present invention, the steel sheet having the above-described composition is subjected to a primary heat treatment and then cooled to form a structure containing martensite ((1)), and then subjected to a secondary heat treatment in a continuous hot-dip galvanizing line. Tempering of the martensite formed in step 2 and a secondary step (2) of partially re-austenizing the steel sheet structure for generating retained austenite and a low-temperature transformation phase after cooling, followed by galvanizing treatment Tertiary step (3) to obtain a high tensile galvanized steel sheet having excellent ductility.
[0033]
(1) Primary process
In the primary process, (Ac 3 (Transformation point −50 ° C.) After performing a primary heat treatment at a temperature of not less than 5 sec. S Rapid cooling to a temperature below the point at a cooling rate of 10 ° C./sec or more. By this primary process, 20% (volume ratio) of lath martensite is generated in the steel sheet. In order to obtain tempered martensite in the present invention, it is necessary to have a structure containing lath martensite as a prestructure.
[0034]
The heat retention temperature of the primary heat treatment is (Ac 3 If the transformation point is less than -50 ° C) or the holding time is less than 5 seconds, the amount of austenite generated during heating and holding is small, and the amount of lath martensite obtained after cooling is insufficient. If the cooling rate after the primary heat treatment is less than 10 ° C./sec, the steel sheet structure after cooling cannot be a structure containing lath martensite. The upper limit of the cooling rate after the primary heat treatment is preferably 100 ° C./sec or less in order to keep the shape of the steel sheet good. Further, it is preferable that the holding time is 5 seconds or more and 120 seconds or less.
[0035]
In addition, the final hot rolling was carried out as (Ar) 3 When a hot-rolled steel sheet performed at a temperature of (transformation point −50 ° C.) or higher is used, the primary step is to perform cooling after final rolling by M S By quenching at a cooling rate of 10 ° C./sec or more to a temperature below the point, this primary step can be substituted. However, in order to homogenize the structure of the steel sheet after cooling, it is preferable that the primary step be performed as an independent step after hot rolling.
[0036]
(2) Secondary process
In the secondary step, (Ac) was further added to the steel sheet in which lath martensite of 20% or more was generated in the primary step. 1 Transformation point ~ Ac 3 After performing the secondary heat treatment for 5 to 120 seconds in the temperature range between the (transformation point), it is cooled to a temperature of 500 ° C. or less at a cooling rate of 5 ° C./sec or more. By this secondary process, the lath martensite generated in the primary process is converted into tempered martensite, and finally, the steel sheet structure for partially generating a retained austenite and a low-temperature transformation phase is re-austenitized. Note that this secondary step is preferably performed in a continuous hot-dip galvanizing line having both annealing equipment and hot-dip galvanizing equipment.
[0037]
The heating holding temperature in the secondary heat treatment is Ac 1 Below the transformation point, austenite does not regenerate, and no residual austenite or low-temperature transformation phase is obtained after cooling. Also, when the holding temperature is Ac 3 Exceeding the transformation point causes tempering martensite to re-austenite.
If the heating and holding time in the secondary heat treatment is less than 5 seconds, austenite is not sufficiently regenerated, so that a sufficient amount of retained austenite cannot be obtained after cooling. On the other hand, if it exceeds 120 sec, the re-austenitization of tempered martensite proceeds, and it becomes difficult to obtain a required amount of tempered martensite.
[0038]
If the cooling rate to 500 ° C. after the secondary heat treatment is less than 5 ° C./sec, the cooling rate is too slow to transform austenite formed by the secondary heat treatment into ferrite, pearlite, etc., and do not become a retained austenite or a low-temperature transformation phase. Note that the cooling rate after the second heat treatment is preferably set to 5 ° C./sec or more and 50 ° C./sec or less.
Note that this secondary step is preferably performed in a continuous hot-dip galvanizing line having both annealing equipment and hot-dip galvanizing equipment. By using the continuous hot-dip galvanizing line, the process can be shifted to the tertiary process immediately after the secondary process, and the productivity is improved.
[0039]
(3) Tertiary process
In the tertiary step, the steel sheet subjected to the secondary step is subjected to a hot-dip galvanizing treatment and cooled to 300 ° C. at a cooling rate of 5 ° C./sec or more. The hot-dip galvanizing treatment may be performed under the processing conditions usually performed in a continuous hot-dip galvanizing line, and there is no particular limitation. However, plating at an extremely high temperature makes it difficult to secure a necessary amount of retained austenite. For this reason, it is preferable to perform the plating treatment at 500 ° C. or lower. When the cooling rate after plating is extremely low, it is difficult to secure retained austenite. For this reason, it is preferable that the cooling rate in the temperature range from after the plating treatment to 300 ° C. be limited to 5 ° C./sec or more. In addition, it is preferably 50 ° C./sec or less. Needless to say, after plating, wiping for adjusting the basis weight may be performed as necessary.
[0040]
After the hot-dip galvanizing treatment, an alloying treatment may be performed. In the alloying treatment, after the hot-dip galvanizing treatment, reheating to a temperature range of 450 ° C. to 550 ° C. is performed to alloy the hot-dip galvanized film. After the alloying treatment, it is preferable to cool to 300 ° C. at a cooling rate of 5 ° C./sec or more. Alloying at a high temperature makes it difficult to secure the required amount of retained austenite, and reduces the ductility of the steel sheet. For this reason, the upper limit of the alloying temperature is preferably limited to 550 ° C. On the other hand, if the alloying temperature is lower than 450 ° C., the progress of alloying is slow and the productivity is reduced. Further, when the cooling rate after the alloying treatment is extremely low, it becomes difficult to secure the necessary retained austenite. For this reason, it is preferable to limit the cooling rate in the temperature range from after the alloying treatment to 300 ° C. to 5 ° C./sec or more.
[0041]
The steel sheet after the plating treatment or the alloying treatment may be subjected to temper rolling for shape correction, adjustment of surface roughness and the like. Further, there is no inconvenience even if a treatment such as resin or oil coating or various kinds of painting is performed.
The present invention is based on the premise that the steel sheet is subjected to secondary heating, hot-dip galvanizing, and alloying in a continuous hot-dip galvanizing line with annealing equipment, plating equipment, and alloying treatment equipment. Alternatively, it can be performed in a process.
[0042]
【Example】
(Example 1)
Steels having the compositions shown in Table 1 were melted in a converter and cast into pieces by a continuous casting method. The obtained slab was hot-rolled to a sheet thickness of 2.6 mm, then pickled, and then cold-rolled to obtain a steel sheet having a sheet thickness of 1.0 mm.
[0043]
Next, these cold-rolled steel sheets were subjected to a primary step of cooling after heating and holding under the primary step conditions shown in Table 2 in a continuous annealing line. After the first step, the structure was examined and the amount of lath martensite was measured. Furthermore, after the steel sheet subjected to the primary process is subjected to a secondary process of cooling after heating and holding under the secondary process conditions shown in Table 2 in a continuous hot-dip galvanizing line, and subsequently subjected to a hot-dip galvanizing process, Part of the alloy was subjected to an alloying treatment of a hot-dip galvanized film to be reheated after the hot-dip galvanizing treatment, and a tertiary step of cooling was performed. The microstructure and mechanical properties of the obtained steel sheet were investigated and are shown in Table 3.
[0044]
The hot-dip galvanizing treatment is performed by immersing the steel sheet in a plating bath at a bath temperature of 475 ° C., and is lifted to have a basis weight per side of 50 g / m. 2 The basis weight was adjusted by gas wiping so that In the case of performing the alloying treatment of the plating film, after the wiping treatment, the temperature was increased to 500 ° C. at a heating rate of 10 ° C./sec, and the alloying treatment was performed. The holding time during the alloying treatment was adjusted so that the iron content in the plating film was 9 to 11%.
[0045]
The microstructure of the steel sheet was observed by using an optical microscope or a scanning electron microscope on the cross section of the steel sheet. The amount of lath martensite and the amount of tempered martensite in the microstructure are arbitrarily set by image analysis using a cross-sectional structure photograph at a magnification of 1000 times, and the occupied area ratio of the relevant phase present in a 100 mm square region Was determined as the volume ratio of the relevant phase. The amount of retained austenite was determined by polishing a specimen taken from a steel plate to the center in the plate thickness direction and measuring the diffraction X-ray intensity at the center in the plate thickness. MoKα rays were used for the incident X-rays, and the diffracted X-ray intensity ratios of the {111}, {200}, {220}, and {311} planes of the retained austenite phase in the specimen were determined, and the average of these values was calculated. The volume ratio of retained austenite was used.
[0046]
As for the mechanical properties, the yield strength (yield point) YP, the tensile strength TS, and the elongation El were measured using a JIS No. 5 tensile test piece sampled from a steel sheet in a direction perpendicular to the rolling direction.
Table 3 shows the results.
[0047]
[Table 1]
Figure 0003587126
[0048]
[Table 2]
Figure 0003587126
[0049]
[Table 3]
Figure 0003587126
[0050]
From Table 3, it can be seen that the examples of the present invention show that the tensile strength TS is 590 MPa or more, the elongation El is 30% or more, and the strength-elongation balance (TS × El) is 21000 MPa% or more. It is a tensile hot-dip galvanized steel sheet.
On the other hand, in the comparative examples out of the range of the present invention, the ductility is not sufficient, and the strength-elongation balance is lowered.
[0051]
steel In plate No. 5, the holding time in the primary heat treatment was short, the amount of lath martensite obtained after cooling was small, the amount of tempered martensite after plating was reduced, and the strength-elongation balance was reduced. . Further, in steel sheet No. 6, since the holding temperature of the secondary heat treatment was too high, the amount of tempered martensite after the plating treatment was small, and the strength-elongation balance was lowered. Further, in steel sheet No. 7, since the holding temperature of the secondary heat treatment was too low, no retained austenite was generated after the plating treatment, and the strength-elongation balance was lowered. Further, in steel sheet No. 8, since the holding time in the secondary heat treatment was too short, the amount of retained austenite was reduced after the plating treatment, and the strength-elongation balance was lowered. On the other hand, in steel sheet No. 9, the holding time in the secondary heat treatment was too long, so that the amount of tempered martensite after the plating treatment was reduced, and the strength-elongation balance was lowered. Steel sheet No. 10 has a low cooling rate after the secondary heat treatment, and steel sheet No. 11 has a low cooling rate up to 300 ° C after the alloying treatment, the amount of retained austenite after the plating treatment is small, and the strength-elongation Balance is falling. In steel sheet No. 13, the cooling rate after the primary heat treatment was low, the amount of lath martensite obtained after cooling was small, the amount of tempered martensite after plating was small, and the strength-elongation balance was lowered.
[0052]
Steel sheet No. In Nos. 18 to 20, the composition of the steel sheet was out of the range of the present invention, the amount of tempered martensite or retained austenite was reduced, and the strength-elongation balance was lowered.
(Example 2)
Steel B having the composition shown in Table 1 was melted in a converter and cast into a slab by a continuous casting method. The obtained slab was subjected to a hot rolling step of hot rolling to a sheet thickness of 2.3 mm, and immediately after the hot rolling, a quenching process under the conditions shown in Table 4 and a hot rolled steel sheet microstructure adjusting step of winding into a coil. did. This hot rolled steel sheet structure adjusting step was used as an alternative to the primary step in the production method of the present invention. After the hot-rolled steel sheet structure adjusting step, the microstructure of the steel sheet was examined, and the amount of lath martensite was measured.
[0053]
Next, the hot-rolled steel sheet was subjected to a secondary step of heating and holding and then cooling under a secondary step condition shown in Table 4 in a continuous hot-dip galvanizing line, and subsequently subjected to a hot-dip galvanizing treatment and further hot-dip. A tertiary step of alloying the galvanized film and then cooling was performed.
Hot-dip galvanizing was performed in the same manner as in Example 1. The microstructure and mechanical properties of the obtained steel sheet were examined in the same manner as in Example 1, and the results are shown in Table 5.
[0054]
[Table 4]
Figure 0003587126
[0055]
[Table 5]
Figure 0003587126
[0056]
From Table 5, the hot-dip galvanized steel sheet of the present invention example has a tensile strength TS of 590 MPa or more, a strength-elongation balance (TS × El) of 23000 MPa% or more, and excellent ductility. It is a steel plate.
[0057]
【The invention's effect】
According to the present invention, such a high-strength galvanized steel sheet has extremely excellent ductility, and a high-strength galvanized steel sheet that is actually suitable as a molded article material represented by an automobile part is inexpensively and stably. It can be manufactured and has a remarkable industrial effect.

Claims (6)

鋼板表層に溶融亜鉛めっき層または合金化溶融亜鉛めっき層を有する溶融亜鉛めっき鋼板であって、
前記鋼板が、質量%で、
C:0.05〜0.20%、 Si:0.3 〜1.8 %、
Mn:1.0 〜3.0 %
を含み、残部Feおよび不可避的不純物からなる組成と、焼戻マルテンサイト、残留オーステナイト、フェライトおよび低温変態相からなる複合組織を有し、かつ前記焼戻マルテンサイトを体積率で20%以上、前記残留オーステナイトを体積率で2%以上含むことを特徴とする延性に優れる高張力溶融亜鉛めっき鋼板。
A hot-dip galvanized steel sheet having a hot-dip galvanized layer or an alloyed hot-dip galvanized layer on a steel sheet surface layer,
The steel sheet is, in mass%,
C: 0.05 to 0.20%, Si: 0.3 to 1.8%,
Mn: 1.0 to 3.0%
And a composite structure consisting of tempered martensite, retained austenite, ferrite and a low-temperature transformation phase, and comprising 20% or more by volume of the tempered martensite, A high-tensile hot-dip galvanized steel sheet having excellent ductility, characterized by containing at least 2% by volume of retained austenite.
前記組成に加え、さらに、下記(a群)〜(d群)のうちから選ばれた1群または2群以上を含有することを特徴とする請求項1に記載の延性に優れる高張力溶融亜鉛めっき鋼板。

(a群):Cr、Moのうちの1種または2種を合計で、0.05〜1.0 質量%、
(b群):B:0.003 質量%以下、
(c群):Ti、Nb、Vのうちから選ばれた1種または2種以上を合計で、0.01〜0.1 質量%、
(d群):Ca、REM のうちから選ばれた1種または2種を合計で、0.01質量%以下
The high-tensile molten zinc excellent in ductility according to claim 1, further comprising one or more groups selected from the following (groups) to (d) in addition to the composition. Plated steel sheet.
Note (group a): one or two of Cr and Mo in total of 0.05 to 1.0% by mass;
(Group b): B: 0.003% by mass or less,
(Group c): one or more selected from Ti, Nb and V in total of 0.01 to 0.1% by mass;
(D group): 0.01% by mass or less in total of one or two selected from Ca and REM
質量%で、
C:0.05〜0.20%、 Si:0.3 〜1.8 %、
Mn:1.0 〜3.0 %
を含み、残部Feおよび不可避的不純物からなる組成を有する鋼板に、(Ac変態点−50℃)以上の温度で、5sec 以上保持する一次熱処理を施した後、10℃/sec 以上の冷却速度でM点以下の温度まで冷却する一次工程と、ついで、(Ac変態点〜Ac変態点)の間の温度域で5〜120sec間保持する二次熱処理を施した後、5℃/sec 以上の冷却速度で500 ℃以下の温度まで冷却する二次工程と、ついで溶融亜鉛めっき処理を施し前記鋼板表面に溶融亜鉛めっき皮膜を形成したのち、5℃/sec 以上の冷却速度で300 ℃まで冷却する三次工程とを順次施すことを特徴とする延性に優れる高張力溶融亜鉛めっき鋼板の製造方法。
In mass%,
C: 0.05 to 0.20%, Si: 0.3 to 1.8%,
Mn: 1.0 to 3.0%
, A primary heat treatment of maintaining the temperature of (Ac 3 transformation point -50 ° C.) or more for 5 seconds or more, and then performing a cooling rate of 10 ° C./sec or more on the steel sheet having a composition including the balance of Fe and unavoidable impurities in a primary step of cooling to a temperature below M S point, then, it was subjected to secondary heat treatment of holding between 5~120sec in a temperature range between (Ac 1 transformation point to Ac 3 transformation point), 5 ° C. / a second step of cooling to a temperature of 500 ° C. or less at a cooling rate of not less than 500 sec, and then performing a hot-dip galvanizing process to form a hot-dip galvanized film on the surface of the steel sheet; And a tertiary step of cooling to a high tensile strength galvanized steel sheet having excellent ductility.
前記三次工程が、溶融亜鉛めっき処理を施し前記鋼板表面に溶融亜鉛めっき皮膜を形成したのち、450 ℃〜550 ℃の温度域まで再加熱して溶融亜鉛めっき皮膜の合金化処理を施し、該合金化処理後に5℃/sec 以上の冷却速度で300 ℃まで冷却する工程であることを特徴とする請求項3に記載の延性に優れる高張力溶融亜鉛めっき鋼板の製造方法。The tertiary step is to perform a hot-dip galvanizing process to form a hot-dip galvanized film on the surface of the steel sheet, and then reheat to a temperature range of 450 ° C. to 550 ° C. to perform an alloying process on the hot-dip galvanized film. The method for producing a high-tensile hot-dip galvanized steel sheet having excellent ductility according to claim 3, wherein the step is a step of cooling to 300 ° C at a cooling rate of 5 ° C / sec or more after the oxidizing treatment. 前記組成に加え、さらに、下記(a群)〜(d群)のうちから選ばれた1群または2群以上を含有することを特徴とする請求項3または4に記載の延性に優れる高張力溶融亜鉛めっき鋼板の製造方法。

(a群):Cr、Moのうちの1種または2種を合計で、0.05〜1.0 質量%、
(b群):B:0.003 質量%以下、
(c群):Ti、Nb、Vのうちから選ばれた1種または2種以上を合計で、0.01〜0.1 質量%、
(d群):Ca、REM のうちから選ばれた1種または2種を合計で、0.01質量%以下
The high tensile strength excellent in ductility according to claim 3 or 4, further comprising one or more groups selected from the following (groups) to (d) in addition to the composition. Manufacturing method of hot-dip galvanized steel sheet.
Note (group a): one or two of Cr and Mo in total of 0.05 to 1.0% by mass;
(Group b): B: 0.003% by mass or less,
(Group c): one or more selected from Ti, Nb and V in total of 0.01 to 0.1% by mass;
(D group): 0.01% by mass or less in total of one or two selected from Ca and REM
前記鋼板を、最終熱間圧延が(Ar変態点−50℃)以上の温度で行われた熱延鋼板とし、前記一次工程に代えて、最終熱間圧延後の冷却をM点以下の温度まで10℃/sec 以上の冷却速度で急冷する熱延鋼板組織調整工程とすることを特徴とする請求項3ないし5のいずれかに記載の延性に優れる高張力溶融亜鉛めっき鋼板の製造方法。It said steel sheet, the final hot rolling and made a hot rolled steel sheet (Ar 3 transformation point -50 ° C.) or higher, the place of the primary process, the final hot cooling after rolling following M S point The method for producing a hot-dip galvanized steel sheet having excellent ductility according to any one of claims 3 to 5, wherein the structure is a hot-rolled steel sheet structure adjusting step of rapidly cooling to a temperature at a cooling rate of 10 ° C / sec or more.
JP2000119294A 1999-04-21 2000-04-20 High tensile hot-dip galvanized steel sheet excellent in ductility and method for producing the same Expired - Fee Related JP3587126B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000119294A JP3587126B2 (en) 1999-04-21 2000-04-20 High tensile hot-dip galvanized steel sheet excellent in ductility and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11328899 1999-04-21
JP11-113288 1999-04-21
JP2000119294A JP3587126B2 (en) 1999-04-21 2000-04-20 High tensile hot-dip galvanized steel sheet excellent in ductility and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001003150A JP2001003150A (en) 2001-01-09
JP3587126B2 true JP3587126B2 (en) 2004-11-10

Family

ID=26452280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000119294A Expired - Fee Related JP3587126B2 (en) 1999-04-21 2000-04-20 High tensile hot-dip galvanized steel sheet excellent in ductility and method for producing the same

Country Status (1)

Country Link
JP (1) JP3587126B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1365037B1 (en) * 2001-01-31 2008-04-02 Kabushiki Kaisha Kobe Seiko Sho High strength steel sheet having excellent formability and method for production thereof
US7090731B2 (en) 2001-01-31 2006-08-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength steel sheet having excellent formability and method for production thereof
JP2002309358A (en) 2001-04-16 2002-10-23 Kobe Steel Ltd Galvannealed steel sheet with excellent workability
JP4608822B2 (en) * 2001-07-03 2011-01-12 Jfeスチール株式会社 Highly ductile hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
AU2003211764A1 (en) * 2002-03-18 2003-09-29 Kawasaki Steel Corporation Process for producing high tensile hot-dip zinc-coated steel sheet of excellent ductility and antifatigue properties
EP1707645B1 (en) 2004-01-14 2016-04-06 Nippon Steel & Sumitomo Metal Corporation Hot dip zinc plated high strength steel sheet excellent in plating adhesiveness and hole expanding characteristics
JP4501716B2 (en) * 2004-02-19 2010-07-14 Jfeスチール株式会社 High-strength steel sheet with excellent workability and method for producing the same
JP4510488B2 (en) * 2004-03-11 2010-07-21 新日本製鐵株式会社 Hot-dip galvanized composite high-strength steel sheet excellent in formability and hole expansibility and method for producing the same
JP4445365B2 (en) 2004-10-06 2010-04-07 新日本製鐵株式会社 Manufacturing method of high-strength thin steel sheet with excellent elongation and hole expandability
JP4507813B2 (en) * 2004-10-12 2010-07-21 住友金属工業株式会社 Method for producing galvannealed steel sheet
DE102006001198A1 (en) * 2006-01-10 2007-07-12 Sms Demag Ag Method and device for setting specific property combinations in multiphase steels
JP5493986B2 (en) * 2009-04-27 2014-05-14 Jfeスチール株式会社 High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them
JP5509909B2 (en) * 2010-02-22 2014-06-04 Jfeスチール株式会社 Manufacturing method of high strength hot-rolled steel sheet
CA2805834C (en) * 2010-08-12 2016-06-07 Jfe Steel Corporation High-strength cold rolled sheet having excellent formability and crashworthiness and method for manufacturing the same
JP5821260B2 (en) * 2011-04-26 2015-11-24 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in formability and shape freezing property, and method for producing the same
JP6234845B2 (en) * 2014-03-06 2017-11-22 株式会社神戸製鋼所 High strength galvannealed steel sheet with excellent bake hardenability and bendability

Also Published As

Publication number Publication date
JP2001003150A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP3587116B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR100638543B1 (en) High tensile hot-dip zinc-coated steel plate excellent in ductility and method for production thereof
JP5493986B2 (en) High-strength steel sheet and high-strength hot-dip galvanized steel sheet excellent in workability and methods for producing them
KR101528080B1 (en) High-strength hot-dip-galvanized steel sheet having excellent moldability, and method for production thereof
KR101399741B1 (en) High-strength hot-dip zinc plated steel sheet excellent in workability and process for manufacturing the same
JP3840864B2 (en) High-tensile hot-dip galvanized steel sheet and manufacturing method thereof
KR100608555B1 (en) Process for producing high tensile hot-dip zinc-coated steel sheet of excellent ductility and antifatigue properties
JP3587126B2 (en) High tensile hot-dip galvanized steel sheet excellent in ductility and method for producing the same
JP4608822B2 (en) Highly ductile hot-dip galvanized steel sheet excellent in press formability and strain age hardening characteristics and method for producing the same
JP5256690B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and impact resistance and method for producing the same
JP4696870B2 (en) High strength steel plate and manufacturing method thereof
JP3820868B2 (en) Method for producing high-tensile hot-dip galvanized steel sheet with excellent ductility
JP2004256836A (en) High tensile strength hot-dip galvanized steel sheet having excellent strength-elongation balance and fatigue characteristic, and its manufacturing method
JP5256689B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof
CN113316656A (en) High-strength hot-dip galvanized steel sheet and method for producing same
JP3539546B2 (en) High-strength hot-dip galvanized steel sheet excellent in workability and method for producing the same
JP3587115B2 (en) Method for producing high-strength hot-dip galvanized steel sheet with excellent formability
JP3624772B2 (en) Low yield ratio high-tensile hot-dip galvanized steel sheet excellent in ductility and manufacturing method thereof
JP2023503359A (en) Method for producing cold-formable high-strength steel strip and steel strip
JP3972551B2 (en) High tensile hot dip galvanized steel sheet and method for producing the same
CN115210398B (en) Steel sheet, member, and method for producing same
JP4826694B2 (en) Method for improving fatigue resistance of thin steel sheet
JP3587114B2 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
JP4936300B2 (en) High-strength hot-dip galvanized steel sheet excellent in press workability and manufacturing method thereof
JP2004323958A (en) High tensile strength hot dip galvanized steel sheet having excellent secondary working brittleness resistance, and its production method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040802

R150 Certificate of patent or registration of utility model

Ref document number: 3587126

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070820

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080820

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090820

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100820

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110820

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120820

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees