JP3586581B2 - Plate heat exchanger - Google Patents

Plate heat exchanger Download PDF

Info

Publication number
JP3586581B2
JP3586581B2 JP08945199A JP8945199A JP3586581B2 JP 3586581 B2 JP3586581 B2 JP 3586581B2 JP 08945199 A JP08945199 A JP 08945199A JP 8945199 A JP8945199 A JP 8945199A JP 3586581 B2 JP3586581 B2 JP 3586581B2
Authority
JP
Japan
Prior art keywords
heat exchange
plate
weir
high flow
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08945199A
Other languages
Japanese (ja)
Other versions
JP2000283683A (en
Inventor
健司 楠
淳一 中村
一則 森永
伸太郎 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Sasakura Engineering Co Ltd
Original Assignee
Hisaka Works Ltd
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd, Sasakura Engineering Co Ltd filed Critical Hisaka Works Ltd
Priority to JP08945199A priority Critical patent/JP3586581B2/en
Publication of JP2000283683A publication Critical patent/JP2000283683A/en
Application granted granted Critical
Publication of JP3586581B2 publication Critical patent/JP3586581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、複数枚の熱交換用伝熱プレートを積層してプレート間に2種類の熱交換媒体が流動する熱交換流路を交互に形成したプレート式熱交換器に関する。
【0002】
【従来の技術】
プレート式熱交換器は図12に示すように4隅に通路孔1〜4を有する縦長矩形の伝熱プレート10を複数枚積層して構成される。図12は1枚の伝熱プレート10の正面図で、同図プレート10の上部の左側通路孔1が冷却水等の1種類の熱交換媒体の入口であり、下部の左側通路孔3が同じ熱交換媒体の出口であって、この上下の通路孔1,3の間に在るプレート10の略中央部が熱交換用伝熱部5である。1枚のプレート10の伝熱部5は、隣接する他の1枚のプレート10の伝熱部5と対向して、隣接する2枚の積層プレート10,10の伝熱部5,5の間に図10の横断面図に示すように1種類の熱交換媒体が流動する熱交換流路mが形成される。熱交換流路mの周縁は、2枚のプレート間に介在させたガスケット等によるシール部6でシールされる。
【0003】
熱交換流路mには、入口側通路孔1から出口側通路孔3へと1種類の熱交換媒体が流れる。この熱交換媒体は、図12の鎖線矢印で示すように伝熱部5の主として中央部を縦に台形流パターンで流下する。伝熱プレート10の他の通路孔2,4は他の1種類の熱交換媒体の入口と出口であって、図12のプレート10の裏面側に他の1種類の熱交換媒体が図12の下部通路孔4から上部通路孔2へと流動する熱交換流路が形成される。そして1枚のプレート10の伝熱部5の両面側で2種類の熱交換媒体が流動する間に、伝熱部5を通して熱交換が行われる。
【0004】
また、プレート10の伝熱部5における伝熱効率を上げ、隣接する2枚のプレート間隙を一定に確保するため、伝熱部5を所望の波パターンの凹凸波板形状にしている。伝熱部5の両面を波面にすることで熱交換媒体との接触面積が増大し、熱交換媒体が流れる流路長が増大し、更に、流動する熱交換媒体が乱流化して、伝熱部5の伝熱性能が良くなる。
【0005】
図9のプレート10の伝熱部5には、上下多段にV形の凹凸波7がヘリンボーンパターンで形成される。隣接する2枚のプレート10,10の凹凸波7、7の一方が図11の実線で示す逆V形パターンであると、他方は図11の破線で示すV形パターンであり、この2パターンの凹凸波7,7が対向して対向面側の凸部同士が交差して点Q、Qで接触する。この点接触で隣接する2枚のプレート間隙が一定に規制され、プレート間の耐圧が確保される。
【0006】
また、別のプレート式熱交換器を図13に示す。この熱交換器は、図12と同様なプレート10の対角線方向の一対の通路孔1、4を1種類の熱交換媒体の入口と出口に使用し、他の一対の通路孔2、3を他の1種類の熱交換媒体の出口と入口に使用したものである。図13のプレート10においては、上部左側の通路孔1を1種類の熱交換媒体の入口に、下部右側の通路孔4が同じ熱交換媒体の出口に使用され、この場合の伝熱部5には図13鎖線矢印で示すように、伝熱部5の対角線方向の斜向流パターンで熱交換媒体が流下する。
【0007】
【発明が解決しようとする課題】
上記の各種プレート式熱交換器における伝熱プレートの伝熱性能改善策として、例えば図10に示す複数の各伝熱プレート10の成形深さhを小さくする方策や、図9に示すように各伝熱プレート10の伝熱部5における凹凸波7の伝面波角度θを小さくする方策が採用されている。しかし、これら方策が採用されたプレート式熱交換器においては、製造コストが高くなる等の次なる問題があった。
【0008】
すなわち、図10の伝熱プレート10の成形深さhを小さくすることで熱交換流路mが狭くなり、狭くなる分に応じて伝熱性能は上がるが、隣接する2枚のプレート10の間のシール部6がガスケットの場合、プレート10の成形深さhが小さくなるほど使用可能なガスケット厚みが小さくなる。この結果、プレート10の押圧によるガスケットの圧縮許容代が小さくなって、シール部6のシール性が不安定になる。また、伝熱プレート10は金属板を金型でプレス成形して製造されるが、成形深さhを小さく設計するほど、プレス成形の寸法バラツキは、熱交換器におけるプレート自体の伝熱性能に大きく影響を及ぼすことから、プレス成形深さのバラツキを抑制するために高精度の金型やプレス設備が必要となって、熱交換器の製造コストが高くなる。
【0009】
また、図9の伝面波角度θを小さくするほど、伝熱部5に熱交換媒体が伝熱効率良く接触する等して伝熱性能が高くなるが、図11で示す隣接するプレート間の耐圧を確保する接触点Q、Qの間隔である点ピッチPが粗になり、プレート間の耐圧性能が低下する問題がある。
【0010】
また、以上の伝熱性能改善策では一定以上の効果が得られないことから、現状ではプレート枚数を増大させて伝熱性能不足をカバーするようにしている。しかし、プレート枚数を増やすほど熱交換器が大型重量化し、製造コストが高くなる問題がある。
【0011】
本発明の目的は、伝熱プレート枚数を増大させることなく、製造コスト上有利に伝熱性能を改善したプレート式熱交換器を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成する請求項1の発明は、4隅に通路孔を有する伝熱プレートを複数枚積層して成り、2種類の熱交換媒体が所定の入口側通路孔から出口側通路孔へと流動する熱交換流路を、隣接する伝熱プレートの凹凸波板形状の伝熱部の間に、交互に形成したプレート式熱交換器において、上記熱交換流路の熱交換媒体が流入する入口に、部分的に流路断面積を他の熱交換流路の平均断面積の半分以下に小さくして流れる熱交換媒体の流速をノズル効果で積極的に増大させる高流速堰を熱交換流路の入口を横切る方向に形成したことを特徴とする。
【0013】
ここで、熱交換流路に形成される高流速堰の断面形状は様々なものが可能であり、1つの熱交換流路に高流速堰が単数或いは複数設置される。更に、高流速堰は1枚の伝熱プレートの片面側の熱交換流路だけに限らず、必要に応じて1枚の伝熱プレートの両面側の隣接する各熱交換流路にも形成可能である。このような熱交換流路における高流速堰は、熱交換流路を流れる熱交換媒体をノズル効果により高流速化して、プレート全体の伝熱性能を高める。
【0014】
本発明の請求項2の発明は、上記高流速堰を、熱交換流路を流れる熱交換媒体の流れを横切る幅方向全域に連続的に形成したことを特徴とする。この場合、熱交換流路を流れる熱交換媒体の全てが高流速堰を通過し、高流速化される。
【0015】
本発明の請求項3の発明は、上記高流速堰を、熱交換流路を流れる熱交換媒体の流れを横切る幅方向に複数を離隔させて形成したことを特徴とする。ここでの高流速堰は、請求項2の高流速堰を複数に分断させたものに相当する。
【0017】
本発明の請求項4と5の発明は、上記高流速堰の断面形状を具体的に特定したものであって、請求項の発明は高流速堰を隣接する2枚の各プレートを部分的に接近するように形成したことを特徴とする。また請求項の発明は、高流速堰を隣接する2枚のプレートの一方を他方に接近するように形成したことを特徴とする。ここで、前者請求項の高流速堰は、隣接する2枚のプレートを部分的にプレス成形した凸部同士を接近させて形成され、後者請求項の高流速堰は、隣接する2枚のプレートの一方を部分的にプレス成形した凸部を他方の既存のプレートに接近させて形成される。
【0018】
本発明の請求項の発明は、上記高流速堰を、隣接する2枚のプレートの間に介在させた堰部材で形成したことを特徴とする。ここでの堰部材はプレートに固定できるゴム、金属、プラスチック等であり、その材質は熱交換媒体の種類で選択される。また、高流速堰をプレートと別体の堰部材で形成することで、既存のプレートが使用できる。
【0019】
【発明の実施の形態】
以下、本発明の各種実施形態を図1乃至図8を参照して説明する。尚、図9乃至図13を含む全図を通じて同一、又は、相当部分には同一符号を付して説明の重複を避ける。また、図1乃至図8の各実施形態は、図9のヘリンボーン式プレート10の熱交換器に適用したものである。
【0020】
図1の正面図に示されるプレート10は、その伝熱部5の上部に流路を横断する方向で横一文字状の高流速堰11aを有する。図2に示すように、積層一体化された隣接する2枚の伝熱プレート10、10の間に形成された熱交換流路mの上部に高流速堰11aが、熱交換流路mを流下する熱交換媒体の流れ横切る幅方向全域に連続的に形成される。図2の高流速堰11aは、隣接するプレート10,10の伝熱部5,5の上部を横一直線状にプレス成形した凸部12,12の頂面同士を所定の間隔で接近させてその間に狭隘通路ができるように形成される。
【0021】
プレート10の入口側通路孔1から熱交換流路mに流入する熱交換媒体は、熱交換流路mを流れる初期段階において高流速堰11aを通過し、この堰通過時に高流速堰11aによるノズル効果で高流速化される。また、このように熱交換媒体の流速が高速化されるように高流速堰11aにおける通路断面積が他の熱交換通路mの平均断面積の半分以下に設定される。高流速堰11aが熱交換流路mの幅方向全域に形成されているので、入口側通路孔1から流下する熱交換媒体の全てが高流速堰11aを通過し高流速化されて、図1の鎖線矢印で示すように伝熱部5を台形流パターンで出口側通路孔3へと流れる。この媒体流動時の高流速堰11aでの高流速化で伝熱部5、つまりはプレート10の伝熱性能が高められる。
【0022】
図1のプレート10の高流速堰11aによる伝熱性能のアップ率は、熱交換流路mを流れる熱交換媒体の種類(冷却水、蒸気、薬液など)で相違し、また、熱交換媒体の種類に適応するように高流速堰11aの媒体流れ方向の長さ、堰流路断面積が決められる。更に、熱交換流路mに流れる熱交換媒体の種類に適応するように高流速堰の断面形状や配置パターンが、また、1つの熱交換流路における堰数等が例えば図3乃至図8に示すように設定される。
【0023】
図3乃至図5は、図1のプレート10に形成された横一文字状の高流速堰11aの断面形状変更例を示す。
【0024】
図3の高流速堰11bは、隣接する2枚のプレート10,10の一方だけに凸部13をプレス成形して、この凸部13の頂面を他のプレート10の平坦面に接近させることで形成される。このように高流速堰11bを形成すると、隣接する2枚のプレート10,10の内の、凸部13の無い一方に図10の既存プレートが使用できる。
【0025】
図4の高流速堰11cは、隣接する2枚の各プレート10,10の対向面に一対の角棒状の堰部材14,14を固定して形成される。一対の堰部材14,14を所定の間隔で離隔させて、この両者の間に高流速堰11cが形成される。堰部材14,14はゴム、金属、プラスチック等で形成されて、プレート10に接着、溶接等で固定される。一対の堰部材14,14の断面形状は矩形に限らず、台形断面、三角断面、半円形断面等が可能である。図4の高流速堰11cの構造の場合、隣接するプレート10,10の全てに図10の既存プレートが使用できる。また、図4の鎖線に示すように、1枚の既存のプレート10の両面に固定部材14,14’を固定して、1枚のプレート10の両面で隣接する各熱交換流路mの各々に高流速堰11cを形成することも可能である。
【0026】
図5の高流速堰11dは、隣接する2枚のプレート10,10の対向面の一方にだけ角棒状の堰部材15を固定して形成される。この場合、堰部材15とこれに対向する他方のプレート10の平坦面との間に高流速堰11Dが形成される。堰部材15の材質、断面形状は図4の場合と同様に様々であり、また、図5の高流速堰11dの構造においても既存プレートの使用が可能であり、隣接する両熱交換流路への高流速堰11dの設置が容易に可能となる。
【0027】
図6乃至図8のプレート平面図に示す各実施形態は、図1のプレート10の高流速堰11aの全体形状、堰数の変更例を示す。
【0028】
図7の高流速堰11eは、プレート10の熱交換流路mを流れる熱交換媒体の流れを横切る幅方向に複数を離隔させて形成したもので、プレート10の伝熱部5の媒体入口側に形成される。この複数の各高流速堰11eの断面形状は、図2乃至図5のいずれであってもよい。また、プレート10の入口側通路孔1から伝熱部5を熱交換媒体が、図6の鎖線矢印で示すように台形流パターンで流下することから、図7の鎖線矢印の箇所を少なくとも1つの高流速堰11eが横切るように、鎖線矢印の流下方向に沿って複数の高流速堰11eを設定することが、プレート10の伝熱性能を安定して高める上で望ましい。図7の断続パターンの高流速堰11eにおいては、熱交換媒体が高流速堰11eを通過するときに高流速化されると共に、高流速堰11eの端の堰間を回り込んで通過するときにも高流速化されて、プレート10の伝熱性能を向上させる。
【0029】
図8の高流速堰11fは、熱交換流路mを流れる熱交換媒体の流れ方向に対して傾斜した角度を持たせて形成される。この高流速堰11fは、例えばプレート10の伝熱部5の上部にV形パターンで単数本が形成され、そのV形中央部が伝熱部5の中央に位置して、このV形中央部に伝熱部5の中央部を流下する熱交換媒体が斜め方向から低抵抗で流入してスムーズに高流速化される。高流速堰11fの断面形状も、図2乃至図5のいずれかであればよい。また、V形パターンの高流速堰11fは、プレート10の伝熱部5に形成された凹凸波7のヘリンボーンパターンに合わせて形成される。
【0030】
図6の高流速堰11gは、熱交換流路mを流れる熱交換媒体の流れを横切る方向で、熱交換媒体の流れの離隔した上下2箇所に一対が形成される。この一対の高流速堰11g、11gは、プレート10の伝熱部5の上部と中央部に1本ずつが形成される。上下の各高流速堰11g、11gの断面形状は図2乃至図5のいずれかであればよい。プレート10の出口側通路孔1から熱交換流路mを流下する熱交換媒体は、上段の高流速堰11gで高流速化され、更に、流下して下段の高流速堰11gでも高流速化されて、プレート10の伝熱性能が2箇所で高められる。
【0031】
本発明は以上の各実施形態に限らず、例えば図1や図7,図8の高流速堰をプレート間の熱交換流路に2段以上の多段階パターンで形成してもよい。また、以上の各実施形態は図9のヘリンボーン式プレートの熱交換器に適用したが、本発明は他の型式のプレート式熱交換器にも適用可能である。
【0032】
【発明の効果】
本発明によれば、隣接するプレート間の熱交換流路にこの流路を流れる熱交換媒体の流速を部分的に高めてプレート自体の伝熱性能を高める高流速堰を設けたので、プレートの成形深さやプレート伝熱部の伝面波角度を小さく設計することなく伝熱性能の向上が可能となる。また、プレートの成形深さを小さく設計する必要性が無くなることで、プレート間のガスケットの圧縮代を大きくしてシール性を安定させることや、プレートをプレス成形する金型の高精度化が回避できて、プレート式熱交換器の製造コストの低減が可能となる。また、プレート間の耐圧性能を下げることなくプレートの伝面波角度を設計することが可能となり、更には、プレート枚数を増大させることなく高伝熱性能のプレート式熱交換器による小型軽量化と製造コストの低減が可能となる。
【0033】
また、プレート間の熱交換流路にプレートの部分的な形状変更で高流速堰を形成する場合は、既存のプレートの一部形状をプレス成形で変更させることで既存プレートが使用でき、或いは、少なくとも半数のプレートに既存プレートが形状変更することなく使用できて、設備投資的に有利な熱交換器が提供できる。
【0034】
また、プレート間の熱交換流路にゴム等の堰部材を固定配置して高流速堰を形成することで、全てのプレートに既存プレートが使用できて、設備投資的に有利な熱交換器が提供できる。また、プレートへの堰部材の取付位置、数の変更が容易にでき、様々な種類の熱交換媒体に対応させた高汎用性のプレート式熱交換器が提供できる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示すプレート式熱交換器のプレート正面図。
【図2】図1A−A線に沿う第1の実施形態での拡大断面図。
【図3】図1A−A線に沿う第2の実施形態での拡大断面図。
【図4】図1A−A線に沿う第3の実施形態での拡大断面図。
【図5】図1A−A線に沿う第4の実施形態での拡大断面図。
【図6】本発明の第5の実施形態を示すプレート正面図。
【図7】本発明の第6の実施形態を示すプレート正面図。
【図8】本発明の第7の実施形態を示すプレート正面図。
【図9】従来例1のプレート式熱交換器のプレート正面図。
【図10】図9B−B線に沿う拡大断面図。
【図11】
図10のプレートの凹凸波パターンを説明するための正面図。
【図12】
従来例2のプレート式熱交換器のプレート正面図。
【図13】
従来例3のプレート式熱交換器のプレート正面図。
【符号の説明】
1〜4 通路孔
5 伝熱部
6 シール部
m 熱交換流路
11a〜11g 高流速堰
12、13 凸部
14、15 堰部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a plate heat exchanger in which a plurality of heat exchange heat transfer plates are stacked and heat exchange channels through which two types of heat exchange media flow are alternately formed between the plates.
[0002]
[Prior art]
As shown in FIG. 12, the plate heat exchanger is configured by stacking a plurality of vertically long heat transfer plates 10 having passage holes 1 to 4 at four corners. FIG. 12 is a front view of one heat transfer plate 10. The upper left passage hole 1 of the plate 10 is an inlet for one kind of heat exchange medium such as cooling water, and the lower left passage hole 3 is the same. A heat exchange medium outlet, that is, a substantially central portion of the plate 10 between the upper and lower passage holes 1 and 3 is a heat exchange heat transfer portion 5. The heat transfer portion 5 of one plate 10 is opposed to the heat transfer portion 5 of another adjacent plate 10 and is located between the heat transfer portions 5 of the two adjacent laminated plates 10. As shown in FIG. 10, a heat exchange channel m through which one type of heat exchange medium flows is formed. The periphery of the heat exchange channel m is sealed by a seal portion 6 such as a gasket interposed between the two plates.
[0003]
One type of heat exchange medium flows from the inlet side passage hole 1 to the outlet side passage hole 3 in the heat exchange channel m. This heat exchange medium flows down mainly in the central portion of the heat transfer section 5 in a trapezoidal flow pattern as indicated by a chain line arrow in FIG. The other passage holes 2 and 4 of the heat transfer plate 10 are an inlet and an outlet of another type of heat exchange medium, and another type of heat exchange medium is provided on the back side of the plate 10 of FIG. A heat exchange channel that flows from the lower passage hole 4 to the upper passage hole 2 is formed. Then, while the two types of heat exchange media flow on both sides of the heat transfer section 5 of one plate 10, heat exchange is performed through the heat transfer section 5.
[0004]
Further, in order to increase the heat transfer efficiency in the heat transfer section 5 of the plate 10 and to secure a constant gap between two adjacent plates, the heat transfer section 5 is formed into a corrugated corrugated shape having a desired wave pattern. By making both surfaces of the heat transfer section 5 corrugated, the contact area with the heat exchange medium increases, the flow path length through which the heat exchange medium flows increases, and the flowing heat exchange medium becomes turbulent, and The heat transfer performance of the part 5 is improved.
[0005]
In the heat transfer section 5 of the plate 10 of FIG. 9, V-shaped uneven waves 7 are formed in a herringbone pattern in multiple stages at the top and bottom. If one of the concavo-convex waves 7, 7 of two adjacent plates 10, 10 is an inverted V-shaped pattern shown by a solid line in FIG. 11, the other is a V-shaped pattern shown by a broken line in FIG. The concavo-convex waves 7 and 7 face each other, and the protruding portions on the opposing surface side cross each other and come into contact at points Q and Q. By this point contact, the gap between two adjacent plates is regulated to be constant, and the pressure resistance between the plates is ensured.
[0006]
FIG. 13 shows another plate heat exchanger. In this heat exchanger, a pair of diagonal passage holes 1 and 4 of a plate 10 similar to FIG. 12 are used as an inlet and an outlet of one type of heat exchange medium, and the other pair of passage holes 2 and 3 are used as other passage holes. Are used for the outlet and inlet of one kind of heat exchange medium. In the plate 10 of FIG. 13, the upper left passage hole 1 is used as an inlet of one type of heat exchange medium, and the lower right passage hole 4 is used as an outlet of the same heat exchange medium. 13, the heat exchange medium flows down in a diagonal oblique flow pattern of the heat transfer section 5 as indicated by a chain line arrow in FIG.
[0007]
[Problems to be solved by the invention]
As a measure for improving the heat transfer performance of the heat transfer plates in the above-described various plate heat exchangers, for example, a measure for reducing the forming depth h of each of the plurality of heat transfer plates 10 shown in FIG. A measure is adopted to reduce the surface wave angle θ of the uneven wave 7 in the heat transfer portion 5 of the heat transfer plate 10. However, the plate type heat exchanger adopting these measures has the following problems such as an increase in manufacturing cost.
[0008]
That is, the heat exchange channel m is narrowed by reducing the molding depth h of the heat transfer plate 10 in FIG. When the sealing portion 6 is a gasket, the usable gasket thickness decreases as the molding depth h of the plate 10 decreases. As a result, the allowance for compression of the gasket due to the pressing of the plate 10 becomes small, and the sealing performance of the seal portion 6 becomes unstable. Further, the heat transfer plate 10 is manufactured by press-forming a metal plate with a mold. However, as the forming depth h is designed to be smaller, the dimensional variation of the press forming is more affected by the heat transfer performance of the plate itself in the heat exchanger. Since it has a great influence, a high-precision mold and press equipment are required to suppress the variation in the depth of press molding, and the production cost of the heat exchanger increases.
[0009]
Further, as the transmission wave angle θ in FIG. 9 is reduced, the heat transfer medium 5 comes into contact with the heat transfer medium with good heat transfer efficiency, and the heat transfer performance is improved. However, the withstand voltage between the adjacent plates shown in FIG. There is a problem that the point pitch P, which is the interval between the contact points Q and Q that secures the above, becomes coarse, and the pressure resistance between the plates is reduced.
[0010]
In addition, since the above-described heat transfer performance improvement measures cannot provide a certain effect or more, at present, the number of plates is increased to cover insufficient heat transfer performance. However, there is a problem that as the number of plates is increased, the heat exchanger becomes larger in weight and the manufacturing cost is increased.
[0011]
An object of the present invention is to provide a plate heat exchanger that has improved heat transfer performance in terms of manufacturing cost without increasing the number of heat transfer plates.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 comprises stacking a plurality of heat transfer plates having passage holes at four corners, and two kinds of heat exchange media are transferred from a predetermined inlet passage hole to an outlet passage hole. An inlet through which the heat exchange medium of the heat exchange channel flows in a plate heat exchanger in which a flowing heat exchange channel is alternately formed between the uneven heat transfer portions of the adjacent heat transfer plates. to partially flow path sectional area of the heat exchange passage of high flow rates weir half to positively increase the flow speed of the heat exchange medium flowing reduced below the nozzle effect of the average cross-sectional area of the other heat exchange passage Characterized in that it is formed in a direction crossing the entrance .
[0013]
Here, the cross-sectional shape of the high flow velocity weir formed in the heat exchange flow path can be various, and one or more high flow velocity weirs are installed in one heat exchange flow path. Furthermore, the high flow velocity weir can be formed not only in the heat exchange flow path on one side of one heat transfer plate but also in each adjacent heat exchange flow path on both sides of one heat transfer plate as needed. It is. Such a high flow velocity weir in the heat exchange flow passage increases the flow velocity of the heat exchange medium flowing through the heat exchange flow passage by the nozzle effect, thereby improving the heat transfer performance of the entire plate.
[0014]
The invention of claim 2 of the present invention is characterized in that the high flow velocity weir is formed continuously in the entire width direction across the flow of the heat exchange medium flowing through the heat exchange flow path. In this case, all of the heat exchange medium flowing through the heat exchange flow path passes through the high flow velocity weir, and the flow velocity is increased.
[0015]
The invention according to claim 3 of the present invention is characterized in that the high flow velocity weir is formed by separating a plurality of weirs in a width direction crossing the flow of the heat exchange medium flowing through the heat exchange flow path. The high flow weir here corresponds to the high flow weir of claim 2 divided into a plurality.
[0017]
The invention of claim 4 and 5 of the present invention, which has been specifically identified the cross-sectional shape of the high velocity dam, part two respective plates of the invention adjacent a high flow weir of claim 4 Characterized by being formed so as to approach. The invention according to claim 5 is characterized in that the high flow velocity weir is formed such that one of two adjacent plates approaches the other. Here, the high flow weir of the former claim 4 is formed by approaching convex portions formed by partially press-forming two adjacent plates, and the high flow weir of the latter claim 5 is formed by two adjacent plates. One of the two plates is formed by partially pressing a convex portion close to the other existing plate.
[0018]
The invention according to claim 6 of the present invention is characterized in that the high flow velocity weir is formed by a weir member interposed between two adjacent plates. The dam member here is rubber, metal, plastic, or the like that can be fixed to the plate, and the material is selected according to the type of the heat exchange medium. Further, by forming the high flow velocity weir with a weir member separate from the plate, an existing plate can be used.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, various embodiments of the present invention will be described with reference to FIGS. It should be noted that the same or corresponding parts are denoted by the same reference symbols throughout all the drawings including FIGS. Each of the embodiments shown in FIGS. 1 to 8 is applied to the heat exchanger of the herringbone type plate 10 shown in FIG.
[0020]
The plate 10 shown in the front view of FIG. 1 has a high-speed weir 11a in a horizontal direction in a direction crossing the flow path above the heat transfer section 5 thereof. As shown in FIG. 2, a high flow weir 11 a flows down the heat exchange channel m above the heat exchange channel m formed between two adjacent heat transfer plates 10, 10 which are stacked and integrated. Is continuously formed in the entire width direction across the flow of the heat exchange medium. The high flow weir 11a shown in FIG. 2 is configured such that the top surfaces of the convex portions 12, 12 formed by pressing the upper portions of the heat transfer portions 5, 5 of the adjacent plates 10, 10 into a horizontal straight line are brought close to each other at a predetermined interval, and the gap therebetween. It is formed so that a narrow passage is formed.
[0021]
The heat exchange medium flowing into the heat exchange flow channel m from the inlet side passage hole 1 of the plate 10 passes through the high flow velocity weir 11a at the initial stage of flowing through the heat exchange flow path m. The flow rate is increased by the effect. In addition, the cross-sectional area of the passage in the high flow velocity weir 11a is set to be equal to or less than half of the average cross-sectional area of the other heat exchange paths m so that the flow velocity of the heat exchange medium is increased. Since the high flow velocity weir 11a is formed in the entire width direction of the heat exchange channel m, all of the heat exchange medium flowing down from the inlet side passage hole 1 passes through the high flow velocity weir 11a and has a high flow velocity. Flows through the heat transfer section 5 to the outlet side passage hole 3 in a trapezoidal flow pattern as indicated by the chain line arrow. The heat transfer performance of the heat transfer section 5, that is, the plate 10, is enhanced by increasing the flow velocity of the high flow weir 11a during the flow of the medium.
[0022]
The rate of increase in heat transfer performance by the high flow velocity weir 11a of the plate 10 in FIG. 1 differs depending on the type of heat exchange medium (cooling water, steam, chemical, etc.) flowing through the heat exchange channel m. The length of the high flow velocity weir 11a in the medium flow direction and the cross-sectional area of the weir flow path are determined so as to be adapted to the type. Further, the cross-sectional shape and the arrangement pattern of the high flow velocity weir to be adapted to the type of the heat exchange medium flowing in the heat exchange flow path m, and the number of weirs in one heat exchange flow path are shown in FIGS. It is set as shown.
[0023]
FIGS. 3 to 5 show examples of changing the cross-sectional shape of the horizontal one-letter high flow weir 11a formed on the plate 10 of FIG.
[0024]
In the high flow weir 11b of FIG. 3, the convex portion 13 is press-formed only on one of the two adjacent plates 10 and 10 so that the top surface of the convex portion 13 approaches the flat surface of the other plate 10. Is formed. When the high flow velocity weir 11b is formed in this way, the existing plate shown in FIG. 10 can be used for one of the two adjacent plates 10, 10 without the convex portion 13.
[0025]
The high flow velocity weir 11c in FIG. 4 is formed by fixing a pair of square rod-shaped weir members 14, 14 to the opposing surfaces of two adjacent plates 10, 10. A pair of weir members 14, 14 are separated at a predetermined interval, and a high flow velocity weir 11c is formed between the two. The weir members 14, 14 are formed of rubber, metal, plastic, or the like, and are fixed to the plate 10 by bonding, welding, or the like. The cross-sectional shape of the pair of weir members 14 is not limited to a rectangle, but may be a trapezoidal cross section, a triangular cross section, a semicircular cross section, or the like. In the case of the structure of the high flow velocity weir 11c of FIG. 4, the existing plate of FIG. 10 can be used for all of the adjacent plates 10, 10. As shown by a chain line in FIG. 4, fixing members 14 and 14 ′ are fixed to both surfaces of one existing plate 10, and each of the heat exchange channels m adjacent on both surfaces of one plate 10 is formed. It is also possible to form the high flow velocity weir 11c.
[0026]
The high flow velocity weir 11d in FIG. 5 is formed by fixing a square rod-shaped weir member 15 to only one of the opposing surfaces of two adjacent plates 10, 10. In this case, a high flow velocity weir 11D is formed between the weir member 15 and the flat surface of the other plate 10 opposed thereto. The material and cross-sectional shape of the weir member 15 are various as in the case of FIG. 4, and the existing plate can be used in the structure of the high flow velocity weir 11d of FIG. Can easily be installed.
[0027]
Each embodiment shown in the plate plan views of FIGS. 6 to 8 shows an example in which the overall shape and the number of weirs of the high flow weir 11a of the plate 10 of FIG. 1 are changed.
[0028]
The high flow velocity weirs 11e in FIG. 7 are formed by separating a plurality of the high flow velocity weirs in the width direction crossing the flow of the heat exchange medium flowing through the heat exchange flow path m of the plate 10, and the medium inlet side of the heat transfer unit 5 of the plate 10. Formed. The cross-sectional shape of each of the plurality of high flow velocity weirs 11e may be any of FIG. 2 to FIG. Further, since the heat exchange medium flows down from the inlet side passage hole 1 of the plate 10 through the heat transfer section 5 in a trapezoidal flow pattern as shown by a chain line arrow in FIG. 6, at least one portion indicated by a chain line arrow in FIG. It is desirable to set a plurality of high flow velocity weirs 11e along the flow direction of the dashed arrow so that the high flow velocity weir 11e crosses in order to stably enhance the heat transfer performance of the plate 10. In the high flow velocity weir 11e of the intermittent pattern in FIG. 7, the heat exchange medium is increased in flow velocity when passing through the high flow velocity weir 11e, and when the heat exchange medium wraps around between the weirs at the ends of the high flow velocity weir 11e. The flow rate is also increased, and the heat transfer performance of the plate 10 is improved.
[0029]
The high flow velocity weir 11f in FIG. 8 is formed so as to have an inclined angle with respect to the flow direction of the heat exchange medium flowing through the heat exchange channel m. The high flow weir 11f is formed as a single V-shaped pattern at the upper part of the heat transfer part 5 of the plate 10, for example, and the V-shaped central part is located at the center of the heat transfer part 5, and the V-shaped central part is formed. The heat exchange medium flowing down the central portion of the heat transfer section 5 flows from the oblique direction with low resistance, and the flow velocity is smoothly increased. The cross-sectional shape of the high flow velocity weir 11f may be any of FIGS. Further, the V-shaped pattern high flow weir 11f is formed in accordance with the herringbone pattern of the uneven wave 7 formed in the heat transfer section 5 of the plate 10.
[0030]
A pair of high flow weirs 11g in FIG. 6 is formed at two upper and lower locations where the flow of the heat exchange medium is separated in a direction crossing the flow of the heat exchange medium flowing through the heat exchange channel m. One pair of the high flow velocity weirs 11g, 11g is formed at the upper part and the central part of the heat transfer part 5 of the plate 10. The cross-sectional shape of each of the upper and lower high flow velocity weirs 11g may be any of FIGS. The heat exchange medium flowing down the heat exchange flow path m from the outlet side passage hole 1 of the plate 10 is increased in flow velocity by the upper high flow velocity weir 11g, and is further decreased by the lower high flow velocity weir 11g. Thus, the heat transfer performance of the plate 10 is enhanced at two places.
[0031]
The present invention is not limited to the above embodiments. For example, the high flow rate weirs shown in FIGS. 1, 7, and 8 may be formed in a heat exchange flow path between plates in a multi-stage pattern of two or more stages. Further, each of the above embodiments is applied to the herringbone type plate heat exchanger of FIG. 9, but the present invention is also applicable to other types of plate type heat exchangers.
[0032]
【The invention's effect】
According to the present invention, the heat exchange flow path between adjacent plates is provided with a high flow rate weir that partially increases the flow rate of the heat exchange medium flowing through this flow path to increase the heat transfer performance of the plate itself. It is possible to improve the heat transfer performance without designing the forming depth or the wave angle of the heat transfer surface of the plate heat transfer portion to be small. In addition, by eliminating the need to design a small plate forming depth, it is possible to increase the compression allowance of the gasket between the plates to stabilize the sealing performance, and to avoid the need for high-precision molds for press forming plates. As a result, the production cost of the plate heat exchanger can be reduced. In addition, it is possible to design the surface wave angle of the plates without lowering the pressure resistance performance between the plates, and furthermore, it is possible to reduce the size and weight by using a plate heat exchanger with high heat transfer performance without increasing the number of plates. Manufacturing costs can be reduced.
[0033]
In the case of forming a high flow velocity weir by partially changing the shape of the plate in the heat exchange flow path between the plates, the existing plate can be used by changing a part of the shape of the existing plate by press molding, or Existing plates can be used for at least half of the plates without shape change, and a heat exchanger advantageous in terms of capital investment can be provided.
[0034]
In addition, by forming a high-velocity weir by fixedly disposing a weir member such as rubber in the heat exchange channel between the plates, existing plates can be used for all plates, and a heat exchanger that is advantageous in terms of equipment investment can be obtained. Can be provided. In addition, it is possible to easily change the mounting position and the number of the weir members on the plate, and it is possible to provide a highly versatile plate heat exchanger corresponding to various types of heat exchange media.
[Brief description of the drawings]
FIG. 1 is a front view of a plate of a plate heat exchanger according to a first embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view of the first embodiment along the line AA in FIG. 1;
FIG. 3 is an enlarged cross-sectional view of the second embodiment along the line AA in FIG.
FIG. 4 is an enlarged cross-sectional view of the third embodiment along the line AA of FIG. 1;
FIG. 5 is an enlarged cross-sectional view of the fourth embodiment along the line AA in FIG. 1;
FIG. 6 is a front view of a plate according to a fifth embodiment of the present invention.
FIG. 7 is a plate front view showing a sixth embodiment of the present invention.
FIG. 8 is a front view of a plate according to a seventh embodiment of the present invention.
FIG. 9 is a front view of a plate of the plate heat exchanger of Conventional Example 1.
FIG. 10 is an enlarged cross-sectional view taken along the line BB of FIG. 9;
FIG. 11
The front view for demonstrating the uneven wave pattern of the plate of FIG.
FIG.
The plate front view of the plate type heat exchanger of the conventional example 2.
FIG. 13
The plate front view of the plate type heat exchanger of the prior art example 3.
[Explanation of symbols]
1-4 Passage hole 5 Heat transfer part 6 Seal part m Heat exchange flow paths 11a-11g High flow velocity weirs 12, 13 Convex parts 14, 15 Weir member

Claims (6)

4隅に通路孔を有する伝熱プレートを複数枚積層して成り、2種類の熱交換媒体が所定の入口側通路孔から出口側通路孔へと流動する熱交換流路を、隣接する伝熱プレートの凹凸波板形状の伝熱部の間に、交互に形成したプレート式熱交換器において、
上記熱交換流路の熱交換媒体が流入する入口に、部分的に流路断面積を他の熱交換流路の平均断面積の半分以下に小さくして流れる熱交換媒体の流速をノズル効果で積極的に増大させる高流速堰を熱交換流路の入口を横切る方向に形成したことを特徴とするプレート式熱交換器。
A heat exchange flow path in which a plurality of heat transfer plates having passage holes at four corners are laminated, and two kinds of heat exchange media flow from a predetermined inlet side passage hole to an outlet side passage hole, is connected to an adjacent heat transfer passage. In the plate heat exchanger formed alternately between the corrugated plate-shaped heat transfer sections of the plate,
At the inlet where the heat exchange medium of the heat exchange flow path flows, the flow rate of the heat exchange medium flowing by reducing the flow path cross-sectional area partially to half or less of the average cross-sectional area of the other heat exchange flow paths by a nozzle effect. A plate type heat exchanger, wherein a high flow rate weir for positively increasing is formed in a direction crossing an inlet of a heat exchange flow path .
上記高流速堰を、熱交換流路の入口の幅方向全域に連続的に形成したことを特徴とする請求項1記載のプレート式熱交換器。2. The plate heat exchanger according to claim 1, wherein the high flow velocity weir is formed continuously in the entire width direction of the inlet of the heat exchange channel. 上記高流速堰を、熱交換流路の入口の幅方向に複数を、熱交換媒体が堰間を回り込んで通過するときにも高流速化するように離隔させて形成したことを特徴とする請求項1記載のプレート式熱交換器。A plurality of the high flow velocity weirs are formed in the width direction of the inlet of the heat exchange flow path , and are formed so as to have a high flow velocity even when the heat exchange medium wraps around the weir and passes therethrough. The plate heat exchanger according to claim 1. 上記高流速堰を、隣接する2枚の各プレートを、部分的にプレス成形した凸部同士が接近するように形成したことを特徴とする請求項1〜3のいずれか1記載のプレート式熱交換器。The plate-type heat source according to any one of claims 1 to 3, wherein the high flow velocity weir is formed such that convex portions formed by pressing two adjacent plates partially approach each other. Exchanger. 上記高流速堰を、隣接する2枚のプレートの一方を、部分的にプレス成形した凸部を他方に接近させて形成したことを特徴とする請求項1〜3のいずれか1記載のプレート式熱交換器。The plate type according to any one of claims 1 to 3, wherein the high flow velocity weir is formed by making one of two adjacent plates a partially press-molded convex portion approach to the other. Heat exchanger. 上記高流速堰を、隣接する2枚のプレートの間に介在させた堰部材で形成したことを特徴とする請求項1〜3のいずれか1記載のプレート式熱交換器。The plate heat exchanger according to any one of claims 1 to 3, wherein the high flow velocity weir is formed by a weir member interposed between two adjacent plates.
JP08945199A 1999-03-30 1999-03-30 Plate heat exchanger Expired - Fee Related JP3586581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08945199A JP3586581B2 (en) 1999-03-30 1999-03-30 Plate heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08945199A JP3586581B2 (en) 1999-03-30 1999-03-30 Plate heat exchanger

Publications (2)

Publication Number Publication Date
JP2000283683A JP2000283683A (en) 2000-10-13
JP3586581B2 true JP3586581B2 (en) 2004-11-10

Family

ID=13971065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08945199A Expired - Fee Related JP3586581B2 (en) 1999-03-30 1999-03-30 Plate heat exchanger

Country Status (1)

Country Link
JP (1) JP3586581B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108463683A (en) * 2016-01-13 2018-08-28 株式会社日阪制作所 Heat-exchangers of the plate type

Also Published As

Publication number Publication date
JP2000283683A (en) 2000-10-13

Similar Documents

Publication Publication Date Title
US4781248A (en) Plate heat exchanger
EP2232185B1 (en) Heat exchanger
RU2413152C2 (en) Heat exchanger from hollow flat sections
JP4584524B2 (en) Plate filler for use in heat transfer plates and plate heat exchangers
EP0047073B1 (en) Plate heat exchanger
US6237679B1 (en) Plate heat exchangers
JP4818044B2 (en) Manufacturing method of heat exchanger
KR20070001819A (en) Heat exchange unit
JP6562918B2 (en) Heat exchange plate with various pitches
JP4666463B2 (en) Heat exchange plate
JP3212350B2 (en) Plate heat exchanger
JP3543992B2 (en) Plate heat exchanger
JPH04227480A (en) Plate heat exchanger
CN115325864A (en) Plate with asymmetric corrugation for plate heat exchanger
JP4462653B2 (en) Plate heat exchanger
JP3650657B2 (en) Plate heat exchanger
KR20010015811A (en) Heat exchanger
JP3586581B2 (en) Plate heat exchanger
US20070151717A1 (en) Heat exchange plate
JP2001280887A (en) Plate type heat exchanger
JP2952261B2 (en) Plate heat exchanger
JPH07260385A (en) Plate type heat exchanger
JP3682324B2 (en) Plate heat exchanger
CN112146484B (en) Plate heat exchanger
CN212378568U (en) Plate heat exchanger

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040421

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040809

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees