JP3586451B2 - Device for dechlorination of collected fly ash and its dechlorination method - Google Patents

Device for dechlorination of collected fly ash and its dechlorination method Download PDF

Info

Publication number
JP3586451B2
JP3586451B2 JP2002049164A JP2002049164A JP3586451B2 JP 3586451 B2 JP3586451 B2 JP 3586451B2 JP 2002049164 A JP2002049164 A JP 2002049164A JP 2002049164 A JP2002049164 A JP 2002049164A JP 3586451 B2 JP3586451 B2 JP 3586451B2
Authority
JP
Japan
Prior art keywords
fly ash
collected
ash
exhaust gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002049164A
Other languages
Japanese (ja)
Other versions
JP2003245629A (en
Inventor
雄二 栗原
和行 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plantec Inc
Original Assignee
Plantec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plantec Inc filed Critical Plantec Inc
Priority to JP2002049164A priority Critical patent/JP3586451B2/en
Publication of JP2003245629A publication Critical patent/JP2003245629A/en
Application granted granted Critical
Publication of JP3586451B2 publication Critical patent/JP3586451B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/30Technologies for a more efficient combustion or heat usage

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Chimneys And Flues (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一般廃棄物や産業廃棄物を焼却するごみ焼却施設の排ガス処理設備で捕集された捕集飛灰中のダイオキシン類を除去する捕集飛灰の脱塩素化装置及びその脱塩素化方法に関する。
【0002】
【従来の技術】
捕集飛灰中のダイオキシン類を低減化する技術として、現在最も多く使用されているものは、図4にその概要を示すパドル式電気熱分解装置である。
【0003】
図4において、図示しない集じん装置によって捕集された、粉じんと塩化物と未反応薬剤類及びダイオキシン類を吸着した活性炭などを含む捕集飛灰FAは、内外の温度差と圧力差をシールする機能を有する定量供給機Rを介して、電熱器EHで外周を囲繞され、温度制御器TICにより350〜400℃程度に内部温度を制御された不銹鋼やセラミック製の灰加熱ドラムHDに送入され、該灰加熱ドラムHD内部に設置された独特なパドル形状を有する加熱コンベアHPによって、攪拌されながら約1時間をかけて灰冷却ドラムCD側に排気される。
【0004】
この間、灰加熱ドラムHD内は、フランジFから送入される空気または窒素ガスあるいはその混合気体NGによって、低酸素濃度に保たれているため、電熱器EHの加熱によって捕集飛灰FA中のダイオキシン類の脱塩素化が加速され、塩素ガスを含む排気はフランジFから図示しない再燃室に排出される。
【0005】
上述の加熱処理により塩素分を遊離された脱塩飛灰FBは、外周を冷却ジャケットCJで囲繞された灰冷却ドラムCDに送られ、温度制御器TCAによって制御された冷却コンベアCPによって移送速度を調整されながら、上述の定量供給器Rと同様な機能を有する排出機Rから処理灰TAとして外部に排出される。
【0006】
このように灰冷却ドラムCDで脱塩飛灰FBを短時間で急冷却することにより、300℃前後で最大となるダイオキシン類の再合成現象が防止される。
【0007】
【発明が解決しようとする課題】
しかし、上述したパドル式電気熱分解装置の場合は、複数箇所に分割設置されることが多い電熱器による外側だけからの加熱方式であるために、飛灰の温度が不均一になりがちであるが、飛灰の温度が350℃以下になるとダイオキシン類の除去率が低下するために、飛灰の平均温度を高めに維持する必要があり、例えば200kg/hの飛灰処理に対して70〜80kw程度の加熱電力を消費して、運転経費が高騰する。
【0008】
また、捕集飛灰FAの処理は昼間のみの作業として、夜間は操業休止することが多いために、操業休止中に電気熱分解装置が冷却して、捕集飛灰FAから遊離した塩素分が凝縮した塩酸により、灰加熱ドラムHD内、特に加熱コンベアHPが激しく腐食するという問題があった。
【0009】
【課題を解決するための手段】
請求項1に係る発明の捕集飛灰の脱塩素化装置は、一般廃棄物や産業廃棄物を焼却するごみ焼却施設に設置され、バグフィルタによって捕集された飛灰中のダイオキシン類を、低酸素条件下で加熱して無害化する捕集飛灰の脱塩素化装置であって、ガス冷却設備と後続の空気予熱器とを連結する排ガス煙道上に配設され、該排ガス煙道外周を囲繞する飛灰移送機構内に布設された移送手段と、該飛灰移送機構外部に形成された飛灰送入口、脱塩灰排出口、不活性ガス注入口及び排ガス排出口とから成る飛灰加熱装置と、該飛灰加熱装置に連結された脱塩灰冷却機と排ガス処理手段とで主体が構成されるとともに、上記移送手段は、駆動機構を備え、上記飛灰移送機構内において円環状に複数条、または螺旋状に布設されたものである。
【0010】
請求項2に係る発明の捕集飛灰の脱塩素化方法は、請求項1の捕集飛灰の脱塩素化装置を用いた捕集飛灰の脱塩素化方法であって、バグフィルタから飛灰送入口を経て飛灰移送機構に供給された捕集飛灰を、移送手段により移送するとともに、不活性ガス送入による低酸素条件下で、排ガス煙道内を流れるガス冷却設備で減温された排ガスと熱交換して加熱・保持することにより、捕集飛灰中のダイオキシン類を脱塩素化分解したあと、脱塩灰冷却機で急冷却して飛灰処理装置に排出する一方、捕集飛灰加熱により発生した排ガスを、排ガス処理手段で冷却処理したあと、バグフィルタ前に送還することを特徴とする。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照しながら説明する。
【0012】
図1は本発明に係る捕集飛灰の脱塩素化装置を備えたごみ焼却施設の全体構成を示す概略フロー図であり、図2は飛灰加熱装置の構造の一例を示す一部破断の側面図で、図3は同装置構造の一例を示す断面図である。なお、図4で説明した物質や部材と同一な物質や部材には同一の符号を付し、詳細な説明は省略する。
【0013】
図1において、焼却炉から排出され再燃室内で再燃焼を終えた850〜950℃の高温の燃焼ガスは、水噴射式あるいは廃熱ボイラによるガス冷却設備において冷却されて約400℃の中温ガスMGとなり、排ガス煙道GDを囲繞する飛灰加熱装置1において後述の捕集飛灰FAとの熱交換により350℃程度に減温されたのち、後続の空気予熱器と減温装置でさらに200℃以下に減温された低温ガスLGとなってバグフィルタに入る。
【0014】
該低温ガスLGは、バグフィルタにおいて、図示しない薬剤供給装置から濾布上に噴射される消石灰と活性炭などの薬剤により、含有する粉じんや酸性有害ガス及びダイオキシン類を捕集・中和・吸着・除去処理されて清浄ガスCGとなり、図示しない誘引通風機に吸引されて大気中に放出される。
【0015】
ここで、バグフィルタにおいて上述の処理をした後に払落された捕集飛灰FAは、粉じんや、酸性有害ガスと消石灰とが化合した塩化物や未反応の薬剤のほか、ダイオキシン類を吸着した活性炭により構成されているので、上記飛灰加熱装置1内に送入して、低酸素条件下で中温ガスMGと熱交換することにより、捕集飛灰FA中に含まれるダイオキシン類の塩素分を熱分解して脱塩飛灰FBとしたあと、脱塩灰冷却機2に送入される冷却水CWで例えば60℃以下に急冷却してダイオキシン類の再合成を阻止した処理灰TAとして飛灰処理装置に送られる。
【0016】
一方、低酸素状態にするために送入された不活性ガスNGと上述の加熱により発生した塩素分を含む排ガスEGは、排ガス処理手段3で冷却水CWにより冷却されて水蒸気や揮発水銀などHGを除去されたのち、処理ガスTGとなってバグフィルタ前の低温ガスLG中に送入される。
【0017】
ここで飛灰加熱装置1は、図2及び図3に示す如く、排ガス煙道GDの外周を囲繞する飛灰移送機構11内を複数段に区分する複数の棚12と、該棚12上に布設された例えばショートリンクチェーンの如き屈折自在な複数条の移送手段13と、該移送手段13の下部に適宜間隔で取付けられた複数のスクレーパ13aと、上記複数条の移送手段13を共通駆動するための減速電動機14a、駆動軸14b及び各段の駆動スプロケット14cからなる駆動機構14とで本体が構成されている。
【0018】
飛灰移送機構11の外部には、定量供給器Rを備えた飛灰送入口15と、排出器Rを備えた脱塩灰排出口16と、不活性ガス注入口17と、排ガス排出口18とがそれぞれ配設されている。
【0019】
棚12は、所定の幅を有する円環状に形成されており、最上段の棚12内に臨んで前記飛灰送入口15が配設されるとともに、最下段の棚12に前記脱塩灰排出口16が配設されている。
【0020】
移送手段13は、各棚12上に円環状にそれぞれ配設されるとともに、これら各移送手段13に前記駆動スプロケット14cがそれぞれ噛合され、減速電動機14aにより駆動軸14bを通じて各駆動スプロケット14cを回転駆動させることで、図3の矢符Pで示す方向(図3において反時計回りの方向)に循環移動するようになっている。また、各棚12には上記各移送手段13を緊迫するためのスプロケット押え14dとテークアップスプロケット14eとが備えられている。
【0021】
一方、排ガス煙道GD外面に接し移送手段13が摺動する棚12の内周面には磨耗材12aが各棚12ごとに円環状に貼付されている。
【0022】
従って、移送手段13が磨耗材12aを摺接しながら上述のように循環移動することで、この移送手段13に設けられたスクレーパ13aも同様に棚12上を摺接しながら移動し、これにより各棚12上で捕集飛灰FAを移送させることができる。
【0023】
また、各棚12には、前記飛灰送入口15から供給された捕集飛灰FAを下段の棚12に順次落下させるための飛灰落下口12bが設けられている。具体的には、最上段の棚12には、前記飛灰送入口15に対して移手段13の移動方向と反対側にずらせて飛灰落下口12bが設けられ、飛灰送入口15から供給された捕集飛灰FAが棚12上で略一周した後にこの飛灰落下口12bから下段の棚12に落下させるようにしている。また、最上段以降の各棚12に設けられた飛灰落下口12bも、捕集飛灰FAが各棚12上で略一周した後に下段の棚12に落下するように、移手段13の移動方向と反対側に順次ずらせて設けられている。
【0024】
さらに、該飛灰加熱装置1を含む高温部の外面は、図示しない保温材などで保温工事が施されている。
【0025】
次に、このように構成された捕集飛灰の脱塩素化装置による捕集飛灰中のダイオキシン類の除去について、本発明の脱塩素化方法とともに説明する。
【0026】
バグフィルタで捕集された捕集飛灰FAは、定量供給器Rにより飛灰送入口15から最上段の棚12上に一定量ずつ供給されて、各棚12上を低速移動する移送手段13により移送(図示は反時計方向)され、飛灰落下口12bを通じて各棚12を頂次移送されて脱塩灰排出口16から排出器Rに排出される。
【0027】
この間、上述の捕集飛灰FAは、排ガス煙道GD中を流れる約400℃に制御された中温ガスMGと約1時間かけて熱交換することにより350℃程度に加熱され、不活性ガス注入口17から流量を制御して注入される不活性ガスNGによる低酸素条件下で、活性炭を燃焼させることなく含有するダイオキシン類の塩素分を熱分解した脱塩飛灰FBにすることができる。
【0028】
上述の熱分解処理により脱塩素化された脱塩飛灰FBは、脱塩灰排出口16から排出器Rを経て脱塩灰冷却機2に送られ、冷却水CWにより例えば60℃以下に急冷されることによりダイオキシン類の再合成を防止し、処理灰TAは飛灰処理装置に排出されて重金属除去などの無害化処理が行われる。
【0029】
一方、上述の熱分解処理によって発生した排ガスEGは、不活性ガスNG以外に分離された塩素分と揮発水銀などHGを含んでいるため、排ガス処理手段3に送入して冷却水CWにより冷却して、水蒸気や揮発水銀などHGを分離して飛灰処理装置に排出するとともに、残余の処理ガスTGはバグフィルタ前の低温ガスLG中に送入されて通常の排ガス処理が行われる。
【0030】
なお、移送手段13は各棚12ごとに分割して駆動機構14による共通駆動方式として説明したが、飛灰移送機構11内で棚12を螺旋状に配設し、この棚上に同じく移送手段を螺旋状に配設することで、単一の移送方式としてもよい。
【0031】
また、移送手段13にスクレーパ13aを取付けたが、小規模の施設ではスクレーパ13aを省略して、移送手段13自体の持つ移送機能により捕集飛灰FAを移送するようにしてもよい。
【0032】
【発明の効果】
以上述べたように、本発明の捕集飛灰の脱塩素化装置及びその脱塩素化方法によれば、捕集飛灰の加熱源として排ガス煙道内を流れる温度制御された中温ガスを利用しているために、電熱器による加熱と比べて運転経費が少なくて済むだけでなく、焼却施設運転中は常に脱塩素化装置の運転を継続して熱交換を行うことになるため、操業休止中の腐食現象を低減でき、さらに、腐食性ガスに曝される移送手段は捕集飛灰を移送するだけの簡単な構成の安価なものが採用できるため、補修経費を節減できる。
【図面の簡単な説明】
【図1】本発明に係る捕集飛灰の脱塩素化装置を備えたごみ焼却施設の全体構成を示す概略フロー図である。
【図2】飛灰加熱装置の構造の一例を示す一部破断の側面図である。
【図3】同装置構造の一例を示す断面図である。
【図4】捕集飛灰中のダイオキシン類を低減化するために従来使用されているパドル式電気熱分解装置の概要を示す図である。
【符号の説明】
1 飛灰加熱装置
11 飛灰移送機構
13 移送手段
15 飛灰送入口
16 脱塩灰排出口
17 不活性ガス注入口
18 排ガス排出口
2 脱塩灰冷却機
3 排ガス処理手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a device for dechlorinating collected fly ash for removing dioxins in collected fly ash collected in an exhaust gas treatment facility of a refuse incineration facility for incinerating general waste and industrial waste, and its dechlorination About the method of conversion.
[0002]
[Prior art]
The most widely used technique for reducing dioxins in the collected fly ash is a paddle-type electropyrolysis apparatus whose outline is shown in FIG.
[0003]
In FIG. 4, the collected fly ash FA containing dust, chloride, unreacted chemicals and activated carbon adsorbing dioxins, etc., collected by a dust collector (not shown) seals the temperature difference and pressure difference between inside and outside. through the metering feeder R 1 having a function of, it is surrounded with an outer peripheral electric heater EH, feeding the internal temperature controlled stainless steel and ceramic ash heating drum HD to about 350 to 400 ° C. by the temperature controller TIC The air is exhausted toward the ash cooling drum CD over about one hour while being stirred by the heating conveyor HP having a unique paddle shape installed inside the ash heating drum HD.
[0004]
During this time, the ash heating drum HD is air or nitrogen gas or a mixture gas NG is fed from the flange F 1, hypoxic because they are kept at concentrations in collecting the fly ash FA by heating the electric heater EH dechlorination is accelerated dioxins, exhaust gas containing chlorine gas is discharged to relapse chamber (not shown) from the flange F 2.
[0005]
The desalted fly ash FB from which the chlorine content has been released by the above-described heat treatment is sent to an ash cooling drum CD whose outer periphery is surrounded by a cooling jacket CJ, and the transfer speed is reduced by a cooling conveyor CP controlled by a temperature controller TCA. while being adjusted, it is discharged to the outside as the processing ash TA from discharger R 2 having the same function as quantity feeder R 1 described above.
[0006]
By rapidly cooling the desalted fly ash FB by the ash cooling drum CD in a short time, the resynthesis phenomenon of dioxins which becomes maximum at around 300 ° C. is prevented.
[0007]
[Problems to be solved by the invention]
However, in the case of the above-mentioned paddle-type electropyrolysis apparatus, the temperature of the fly ash tends to be non-uniform because of the heating method from the outside only by an electric heater which is often divided and installed at a plurality of locations. However, when the temperature of the fly ash becomes 350 ° C. or lower, the removal rate of dioxins decreases. Therefore, it is necessary to keep the average temperature of the fly ash high. About 80 kW of heating power is consumed, and the operating cost rises.
[0008]
Also, since the processing of the collected fly ash FA is a work only during the daytime and the operation is often suspended at night, the electrothermal decomposition apparatus cools down during the suspended operation, and the chlorine content released from the collected fly ash FA is reduced. There is a problem that the condensed hydrochloric acid causes severe corrosion of the inside of the ash heating drum HD, particularly the heating conveyor HP.
[0009]
[Means for Solving the Problems]
The apparatus for dechlorinating collected fly ash of the invention according to claim 1 is installed in a refuse incineration facility for incinerating general waste and industrial waste, and dioxins in fly ash collected by a bag filter are removed. A device for dechlorinating collected fly ash that is rendered harmless by heating under low oxygen conditions, which is disposed on an exhaust gas flue that connects a gas cooling facility and a subsequent air preheater, And a fly ash feeder, a desalted ash outlet, an inert gas inlet, and an exhaust gas outlet formed outside the fly ash transfer mechanism. and ash heating device, Rutotomoni consists is mainly in the desalination ash cooler and exhaust gas treatment means connected to the flight ash heating device, said transport means comprises a driving mechanism, a circle within the fly ash transport mechanism It is laid in a plurality of rings or spirally.
[0010]
The method for dechlorinating collected fly ash of the invention according to claim 2 is a method for dechlorinating collected fly ash using the apparatus for dechlorinating collected fly ash according to claim 1 , wherein the method comprises the steps of: the collected fly ash is supplied to the fly ash transport mechanism through the Hihaioku inlet, by Ri while transported to the transfer means, under hypoxic conditions with an inert gas fed in the gas cooling equipment through the exhaust gas flue by heating and holding the exhaust gas heat exchanger which is reduced temperature, after which the dioxins in collecting fly ash to decompose dechlorinated and discharged to the fly ash treatment system by quenching with desalination ash cooler On the other hand, the exhaust gas generated by the heating of the collected fly ash is cooled by the exhaust gas treatment means and then returned to the front of the bag filter.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0012]
FIG. 1 is a schematic flow chart showing the entire configuration of a refuse incineration facility provided with a device for dechlorinating collected fly ash according to the present invention, and FIG. 2 is a partially broken view showing an example of the structure of a fly ash heating device. FIG. 3 is a side view, and FIG. 3 is a sectional view showing an example of the device structure. The same reference numerals are given to the same substances and members as those described with reference to FIG. 4, and detailed description will be omitted.
[0013]
In FIG. 1, a high-temperature combustion gas of 850 to 950 ° C. discharged from an incinerator and reburned in a reburning chamber is cooled in a gas cooling system by a water injection type or a waste heat boiler to obtain a medium temperature gas MG of about 400 ° C. In the fly ash heating device 1 surrounding the flue gas flue GD, the temperature is reduced to about 350 ° C. by heat exchange with the collected fly ash FA, which will be described later. In the following, the low temperature gas LG which has been reduced in temperature enters the bag filter.
[0014]
The low-temperature gas LG collects, neutralizes, adsorbs, and collects dust, acidic harmful gas, and dioxins contained in the bag filter by a chemical such as slaked lime and activated carbon injected onto a filter cloth from a chemical supply device (not shown). After being removed, the gas becomes a clean gas CG, which is sucked by an induction ventilator (not shown) and released into the atmosphere.
[0015]
Here, the collected fly ash FA that was washed off after performing the above-described processing in the bag filter adsorbed dioxins, as well as dust and chloride and unreacted chemicals in which acidic harmful gas and slaked lime were combined. Since it is made of activated carbon, it is sent into the fly ash heating device 1 and heat-exchanged with the medium-temperature gas MG under low oxygen conditions, thereby obtaining chlorine content of dioxins contained in the collected fly ash FA. Is thermally decomposed into desalted fly ash FB, and then rapidly cooled to, for example, 60 ° C. or lower with cooling water CW sent to the desalinated ash cooler 2 as treated ash TA in which resynthesis of dioxins is prevented. It is sent to fly ash processing equipment.
[0016]
On the other hand, the exhaust gas EG containing the inert gas NG and the chlorine generated by the above-mentioned heating, which are sent to reduce the oxygen state, is cooled by the cooling water CW in the exhaust gas processing means 3 to generate HG such as water vapor or volatile mercury. After being removed, it is sent as a processing gas TG into the low-temperature gas LG before the bag filter.
[0017]
Here, as shown in FIGS. 2 and 3, the fly ash heating device 1 includes a plurality of shelves 12 that divide the fly ash transfer mechanism 11 surrounding the outer periphery of the exhaust gas flue GD into a plurality of stages, and a plurality of shelves 12 on the shelves 12. A plurality of deflectable transfer means 13 such as a short link chain laid, a plurality of scrapers 13a attached at appropriate intervals below the transfer means 13, and the plurality of transfer means 13 are commonly driven. And a drive mechanism 14 including a drive shaft 14b for each stage and a drive sprocket 14c at each stage.
[0018]
Outside the fly ash transport mechanism 11, a fly ash feed inlet 15 with a constant quantity feeder R 1, and desalting the ash outlet 16 provided with a discharge vessel R 2, and inert gas inlet 17, the exhaust gas discharge An outlet 18 is provided respectively.
[0019]
The shelf 12 is formed in an annular shape having a predetermined width. The fly ash inlet 15 is disposed facing the inside of the uppermost shelf 12, and the desalted ash drainage is provided on the lowermost shelf 12. An outlet 16 is provided.
[0020]
The transfer means 13 are arranged on the respective shelves 12 in an annular shape, and the drive sprockets 14c are meshed with the respective transfer means 13, and the drive sprockets 14c are rotationally driven by the reduction shaft motor 14a through the drive shaft 14b. By doing so, it circulates in the direction indicated by the arrow P in FIG. 3 (counterclockwise direction in FIG. 3). Further, each shelf 12 is provided with a sprocket presser 14d and a take-up sprocket 14e for tightening the transfer means 13 described above.
[0021]
On the other hand, on the inner peripheral surface of the shelf 12 on which the transfer means 13 slides in contact with the outer surface of the exhaust gas flue GD, an abrasion material 12a is attached in an annular shape for each shelf 12.
[0022]
Therefore, the transfer means 13 circulates as described above while sliding the wear material 12a, so that the scraper 13a provided on the transfer means 13 also moves while sliding on the shelf 12 and thereby each shelf 12, the collected fly ash FA can be transferred.
[0023]
Further, each shelf 12 is provided with a fly ash falling port 12b for sequentially dropping the collected fly ash FA supplied from the fly ash inlet 15 onto the lower shelf 12. Specifically, the top of the shelf 12, to be shifted to the side opposite to the moving direction of the fly ash feed transfer feed means 13 relative to the inlet 15 is fly ash chute 12b is provided, from Hihaioku inlet 15 After the supplied collected fly ash FA makes one round on the shelf 12, the fly ash FA falls from the fly ash drop opening 12b to the lower shelf 12. Also, fly ash drop opening 12b provided in each shelf 12 of the top later also as collecting fly ash FA falls in the lower part of the shelf 12 after approximately one round on each shelf 12, the transfer feed means 13 They are sequentially shifted in the opposite direction to the moving direction.
[0024]
Further, the outer surface of the high-temperature portion including the fly ash heating device 1 is subjected to heat-retaining work using a heat-retaining material (not shown).
[0025]
Next, the removal of dioxins in the collected fly ash by the thus configured collected fly ash dechlorination apparatus will be described together with the dechlorination method of the present invention.
[0026]
The collected fly ash FA collected by the bag filter is supplied from the fly ash inlet 15 by a constant amount to the uppermost shelf 12 by the quantitative feeder R 1 , and is transferred on each shelf 12 at low speed. transferred by 13 (shown counterclockwise direction) is, is discharged to the discharge unit R 2 of each shelf 12 is top next transported from the desalting ash outlet 16 through the fly ash chute 12b.
[0027]
During this time, the collected fly ash FA is heated to about 350 ° C. by exchanging heat for about 1 hour with a medium-temperature gas MG controlled to about 400 ° C. flowing in the flue gas GD, and injected with an inert gas. Under low-oxygen conditions due to the inert gas NG injected at a controlled flow rate from the inlet 17, the chlorine content of the dioxins contained therein can be converted into desalted fly ash FB by pyrolysis without burning active carbon.
[0028]
Datsushiohihai FB to the thermal decomposition process described above was dechlorination, through the ejector R 2 from desalination ash outlet 16 is sent to desalination ash cooler 2, the cooling water CW for example, 60 ° C. or less The rapid cooling prevents re-synthesis of dioxins, and the treated ash TA is discharged to a fly ash treatment device to perform detoxification treatment such as removal of heavy metals.
[0029]
On the other hand, the exhaust gas EG generated by the above-described thermal decomposition treatment contains chlorine and HG such as volatile mercury in addition to the inert gas NG, and thus is sent to the exhaust gas processing means 3 and cooled by the cooling water CW. Then, HG such as water vapor and volatile mercury is separated and discharged to the fly ash treatment device, and the remaining processing gas TG is fed into the low-temperature gas LG before the bag filter to perform normal exhaust gas treatment.
[0030]
The transfer means 13 has been described as a common drive system by the drive mechanism 14 by dividing each of the shelves 12, but the shelves 12 are spirally arranged in the fly ash transfer mechanism 11, and the transfer means 13 is similarly placed on the shelves. By spirally arranging them, a single transfer method may be used.
[0031]
Although the scraper 13a is attached to the transfer means 13, the scraper 13a may be omitted in a small-scale facility and the collected fly ash FA may be transferred by the transfer function of the transfer means 13 itself.
[0032]
【The invention's effect】
As described above, according to the apparatus for dechlorinating collected fly ash and the method for dechlorinating the collected fly ash of the present invention, a medium-temperature-controlled gas flowing through the exhaust gas flue is used as a heating source of the collected fly ash. As a result, operating costs are lower than heating with an electric heater, and the operation of the dechlorination unit is always continued during the operation of the incineration facility to perform heat exchange. Can be reduced, and the transfer means exposed to the corrosive gas can be inexpensive with a simple structure for transferring the collected fly ash, so that the repair cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a schematic flow chart showing the overall configuration of a refuse incineration facility provided with a device for dechlorinating collected fly ash according to the present invention.
FIG. 2 is a partially broken side view showing an example of the structure of the fly ash heating device.
FIG. 3 is a cross-sectional view showing an example of the device structure.
FIG. 4 is a diagram showing an outline of a paddle type electrothermal decomposition apparatus conventionally used for reducing dioxins in collected fly ash.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 fly ash heating device 11 fly ash transfer mechanism 13 transfer means 15 fly ash inlet 16 desalinated ash outlet 17 inert gas inlet 18 exhaust gas outlet 2 desalinated ash cooler 3 exhaust gas treatment means

Claims (2)

一般廃棄物や産業廃棄物を焼却するごみ焼却施設に設置され、バグフィルタによって捕集された飛灰中のダイオキシン類を、低酸素条件下で加熱して無害化する捕集飛灰の脱塩素化装置であって、
ガス冷却設備と後続の空気予熱器とを連結する排ガス煙道上に配設され、該排ガス煙道外周を囲繞する飛灰移送機構内に布設された移送手段と、該飛灰移送機構外部に形成された飛灰送入口、脱塩灰排出口、不活性ガス注入口及び排ガス排出口とから成る飛灰加熱装置と、該飛灰加熱装置に連結された脱塩灰冷却機と排ガス処理手段とで主体が構成されるとともに、
上記移送手段は、駆動機構を備え、上記飛灰移送機構内において円環状に複数条、または螺旋状に布設されたことを特徴とする捕集飛灰の脱塩素化装置。
Dechlorination of collected fly ash, which is installed in a garbage incineration facility that incinerates general and industrial waste and heats the dioxins in the fly ash collected by the bag filter under low oxygen conditions to render it harmless Device,
Transfer means disposed on the flue gas flue connecting the gas cooling equipment and the succeeding air preheater and laid in a fly ash transfer mechanism surrounding the flue gas flue outer periphery; and formed outside the fly ash transfer mechanism. Fly ash heating device comprising a fly ash inlet, a desalted ash outlet, an inert gas inlet and an exhaust gas outlet, and a desalted ash cooler and exhaust gas treatment means connected to the fly ash heating device. in principal it is configured Rutotomoni,
An apparatus for dechlorinating collected fly ash, wherein the transfer means comprises a drive mechanism, and is laid in a plurality of rings or spirally in the fly ash transfer mechanism .
請求項1の捕集飛灰の脱塩素化装置を用いた捕集飛灰の脱塩素化方法であって、
バグフィルタから飛灰送入口を経て飛灰移送機構に供給された捕集飛灰を、移送手段により移送するとともに、不活性ガス送入による低酸素条件下で、排ガス煙道内を流れるガス冷却設備で減温された排ガスと熱交換して加熱・保持することにより、捕集飛灰中のダイオキシン類を脱塩素化分解したあと、脱塩灰冷却機で急冷却して飛灰処理装置に排出する一方、捕集飛灰加熱により発生した排ガスを、排ガス処理手段で冷却処理したあと、バグフィルタ前に送還することを特徴とする捕集飛灰の脱塩素化方法。
A method for dechlorinating collected fly ash using the apparatus for dechlorinating collected fly ash according to claim 1,
The collected fly ash is supplied to the fly ash transport mechanism through a fly ash feed inlet from the bag filter, by Ri while transported to the transfer means, under hypoxic conditions with an inert gas fed, gas flowing through the exhaust gas flue By exchanging heat with the exhaust gas whose temperature has been reduced by the cooling equipment and heating and holding it, the dioxins in the collected fly ash are dechlorinated and decomposed, and then rapidly cooled by a desalinated ash cooler to remove the fly ash. A method for dechlorination of collected fly ash, wherein exhaust gas generated by heating the collected fly ash is cooled by an exhaust gas treatment means and returned to a bag filter.
JP2002049164A 2002-02-26 2002-02-26 Device for dechlorination of collected fly ash and its dechlorination method Expired - Fee Related JP3586451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002049164A JP3586451B2 (en) 2002-02-26 2002-02-26 Device for dechlorination of collected fly ash and its dechlorination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002049164A JP3586451B2 (en) 2002-02-26 2002-02-26 Device for dechlorination of collected fly ash and its dechlorination method

Publications (2)

Publication Number Publication Date
JP2003245629A JP2003245629A (en) 2003-09-02
JP3586451B2 true JP3586451B2 (en) 2004-11-10

Family

ID=28661745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002049164A Expired - Fee Related JP3586451B2 (en) 2002-02-26 2002-02-26 Device for dechlorination of collected fly ash and its dechlorination method

Country Status (1)

Country Link
JP (1) JP3586451B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113669731B (en) * 2021-08-20 2022-09-20 北科蕴宏环保科技(北京)有限公司 High-efficiency fly ash heat treatment method and device

Also Published As

Publication number Publication date
JP2003245629A (en) 2003-09-02

Similar Documents

Publication Publication Date Title
JP5288623B2 (en) Heat purification method for contaminated soil
JP2007296410A (en) Gasifying device, hardly decomposable organic compound treatment apparatus and hardly decomposable organic compound treatment method
US4261268A (en) Method and apparatus for treating waste material
US4118220A (en) Method for treating waste material
JP2008049207A (en) Heat treatment apparatus of contaminant
JP3586451B2 (en) Device for dechlorination of collected fly ash and its dechlorination method
WO1995033585A1 (en) Device and method for heat dechlorinating collected dust and ash
JP2005103437A (en) Processing method of organic material containing water and its facility
JP4908914B2 (en) Processing equipment such as aluminum chips
JP2003232508A (en) Thermal decomposition treatment method and facility therefor
JPH10235140A (en) Exhaust gas treatment equipment in waste refuse incineration facility and treatment method
US4176611A (en) Method and apparatus for treating waste material
JP2001286727A (en) Method and equipment for treating exhaust gas
JP2004263193A (en) Thermal treatment equipment using superheated steam
JP2004225935A (en) Horizontal type rotary heating device for heat treatment of metal waste
JP3900951B2 (en) Thermal decomposition method and facility
JPH11118124A (en) Fluidized gassifying/melting apparatus, and method thereof
JP3502364B2 (en) Dioxin removal method from collected fly ash
JP3840208B2 (en) Soil treatment apparatus and treatment method
JP2005262015A (en) Method and apparatus for purifying dioxin pollutant
JP3550265B2 (en) Waste treatment equipment
JP2002326076A (en) Method for treating waste and equipment therefor
JP2005030608A (en) Heating treatment installation with gas combustor
JP2003262316A (en) Heat treatment method and facility for water containing organic matter
JP2002221304A (en) Waste treatment system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040806

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees