JP3586438B2 - Intake pre-cleaner structure - Google Patents

Intake pre-cleaner structure Download PDF

Info

Publication number
JP3586438B2
JP3586438B2 JP2001158888A JP2001158888A JP3586438B2 JP 3586438 B2 JP3586438 B2 JP 3586438B2 JP 2001158888 A JP2001158888 A JP 2001158888A JP 2001158888 A JP2001158888 A JP 2001158888A JP 3586438 B2 JP3586438 B2 JP 3586438B2
Authority
JP
Japan
Prior art keywords
intake
cleaner
inner pipe
pipe
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001158888A
Other languages
Japanese (ja)
Other versions
JP2002349373A (en
Inventor
則行 高橋
浩 漆原
英樹 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2001158888A priority Critical patent/JP3586438B2/en
Publication of JP2002349373A publication Critical patent/JP2002349373A/en
Application granted granted Critical
Publication of JP3586438B2 publication Critical patent/JP3586438B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separating Particles In Gases By Inertia (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多段の各吸気プリクリーナから吸気ダクトに吸込まれる空気の流速の均一化を図った吸気プリクリーナ構造に関するものである。
【0002】
【従来の技術】
吸気ダクトから内燃機関の燃焼室に清浄な空気を供給するためにエアクリーナが用いられているが、このエアクリーナに空気を供給する前に予め吸気プリクリーナによって水ミストや比較的大きな塵埃を除去することが一般に行われており、吸気プリクリーナとしては多段のものがある。
【0003】
斯かる多段の吸気プリクリーナ構造の一例は図5に示されており、吸気ダクト1の上端部近傍の一側面に形成した開口部には、吸気ダクト1内に位置するよう、箱形状のケーシング2が取り付けられている。而して、ケーシング2内には複数(図示例では5段)の、軸方向両端部が開口したアウタパイプ3がケーシング2に支持された状態で水平且つ上下に一定間隔で多段に配置されている。又、アウタパイプ3は全て同一長さで、アウタパイプ3におけるケーシング2の壁面2aに対向する端部と当該壁面2aとの間には間隙Gが形成されている。
【0004】
アウタパイプ3の空気入口側先端部には、外部に向いた部分が半球状に形成された円筒状のガイド部材4が同心状に配置され、ガイド部材4外周とアウタパイプ3内周とは、円周方向へ所要のピッチで配置した複数の羽根5により接続されて旋回流形成手段6が形成されている。旋回流形成手段6は羽根5の間を通ってアウタパイプ3内に導入される空気Aに旋回流を生じさせるためのもので、例えば、羽根5は弧部と長さの異なる二つの直線部とからなり捩りを与えられた扇形の形状になっている。
【0005】
アウタパイプ3の空気流れ方向下流側には、軸方向両端が開口し且つ口径がアウタパイプ3の口径よりも小径のインナパイプ7が、アウタパイプ3に対し同心状に配置されている。而して、インナパイプ7の空気流れ方向上流側の端部はアウタパイプ3内に位置し、空気流れ方向下流側の端部は、アウタパイプ3の空気流れ方向下流側端部よりも空気流れ方向下流側へ延在し、ケーシング2の壁面2aを貫通して吸気ダクト1内まで延びている。
【0006】
インナパイプ7は全て同一長さで内径も同一であり、インナパイプ7の吸気ダクト1内側端部と吸気ダクト1の奥部の壁面1aとの間の間隙はLとなっている。又インナパイプ7の口径はアウタパイプ3の口径よりも小径となっており、このようにするのは、旋回流の中心を流れる空気Aをインナパイプ7内に流入させると共に、旋回流による遠心力により外側に飛ばされた水ミストや塵埃を空気から容易に排除するためである。
【0007】
而して、この従来例では、各アウタパイプ3、旋回流形成手段6、インナパイプ7により吸気プリクリーナが形成されており、複数段の吸気プリクリーナによりマルチ吸気プリクリーナ8が形成されている。
【0008】
内燃機関の駆動時には、空気Aは各旋回流形成手段6の羽根5の間に流入して羽根5により旋回力を付与され、旋回流となってアウタパイプ3内へ導入される。このため、空気Aに同伴されている水ミストや塵埃は遠心力によりアウタパイプ3の内周側に飛ばされ、アウタパイプ3の内周壁に当接して捕集され、凝集して粒子化し、塵埃を含んだ水となってアウタパイプ3内周に沿い流下し、しかる後、間隙Gからアウタパイプ3の外部に排出され、ケーシング2の下部に形成した排出部より外部へ排出される。
【0009】
アウタパイプ3内で水ミストや塵埃を除去された空気Aは、インナパイプ7を通って吸気ダクト1内に吸込まれ、反転して下方へ向かい、エアクリーナを通った後内燃機関に吸込まれる。
【0010】
【発明が解決しようとする課題】
図5に示す吸気ダクト1においては、吸気抵抗を低減するためには各インナパイプ7から吸気ダクト1内に吸込まれる空気Aの流速は均一であることが望ましく、空気Aの流速の均一化を図るためには、各インナパイプ7の入口部の負圧を均一にする必要がある。
【0011】
しかし、内燃機関の吸込み側に近い側のインナパイプ7、すなわち、図5において下方のインナパイプ7の方が上方のインナパイプ7よりも空気を吸込み易いため、図5に示すマルチ吸気プリクリーナ8における各インナパイプ7のように、長さが等しく、しかも各インナパイプ7の吸気ダクト1内側端部と吸気ダクト1の奥部の壁面1aとの間の間隙Lが等しい場合には、下側のインナパイプ7の空気入口部の負圧の方が上側のインナパイプ7の空気入口部の負圧よりも大きくなる。
【0012】
従って、下側のインナパイプ7の方が上側のインナパイプ7よりも空気Aを吸込みやすく、下側のインナパイプ7から吸気ダクト1内に吸込まれる空気Aの流速は、その上側に位置するインナパイプ7から吸気ダクト1内に吸込まれる空気Aの流速よりも速くなる。そのため、従来は各インナパイプ7から導入されて吸気ダクト1内を流れる空気Aの流速の均一化を図れないという問題がある。
【0013】
本発明は、斯かる実情に鑑み、多段のマルチ吸気プリクリーナを用いる場合に、各インナパイプから吸気ダクト内に吸込まれる空気の流速を均一化することを目的としてなしたものである。
【0014】
【課題を解決するための手段】
本発明の請求項1の吸気プリクリーナ構造は、
吸込まれた空気が反転して上方から下方へ向かい流れるようにした吸気ダクトに対し上下方向へ間隔をおいて配設された複数の吸気プリクリーナを備え、
各吸気プリクリーナは、
導入される空気を旋回流とするための旋回流形成手段と、
該旋回流形成手段の空気流れ方向下流側に略水平に配設されると共に、空気流れ方向両端部が開口し、しかも空気流れ方向下流側において、吸気ダクトを仕切る壁面に対し間隙が形成されたアウタパイプと、
略水平に配設されると共に空気流れ方向上流側端部がアウタパイプ内に位置し、且つ空気流れ方向下流側端部が前記壁面を貫通して吸気ダクト内に延在し、しかも空気流れ方向両端部が開口されて前記吸気ダクトに吸込まれる空気が流通するインナパイプとを備え、
各吸気プリクリーナのインナパイプの空気入口部の負圧は、他の吸気プリクリーナのインナパイプの空気入口部の負圧と略等しくなるよう構成されているものである。
【0015】
本発明の請求項2の吸気プリクリーナ構造は、各吸気プリクリーナのインナパイプの空気入口部の負圧を、他の吸気プリクリーナのインナパイプの空気入口部の負圧と略等しくなるよう構成するために、上下方向最下部の吸気プリクリーナ以外の各吸気プリクリーナのインナパイプの長さを各吸気プリクリーナよりも1段下方の吸気プリクリーナのインナパイプの長さよりも短くすることにより、前記各吸気プリクリーナにおけるインナパイプの吸気ダクト奥部壁面に対向する端部と前記吸気ダクト奥部壁面との間の間隙を、前記各吸気プリクリーナよりも1段下方の吸気プリクリーナにおけるインナパイプの吸気ダクト奥部壁面に対向する端部と前記吸気ダクト奥部壁面との間の間隙よりも、大きく形成したものである。
【0016】
本発明の請求項3の吸気プリクリーナ構造は、各吸気プリクリーナのインナパイプの空気入口部の負圧を、他の吸気プリクリーナのインナパイプの空気入口部の負圧と略等しくなるよう構成するために、各吸気プリクリーナのインナパイプに対向する吸気ダクト奥部壁面を、下方の吸気プリクリーナから上方の吸気プリクリーナ側に行くに従い、インナパイプから離反するように傾斜させ、上下方向最下部の吸気プリクリーナ以外の各吸気プリクリーナにおけるインナパイプの吸気ダクト奥部壁面に対向する端部と前記吸気ダクト奥部壁面との間の間隙を、前記各吸気プリクリーナよりも1段下方の吸気プリクリーナにおけるインナパイプの吸気ダクト奥部壁面に対向する端部と前記吸気ダクト奥部壁面との間隙よりも、大きく形成したものである。
【0017】
本発明の請求項4の吸気プリクリーナ構造は、各吸気プリクリーナのインナパイプの空気入口部の負圧を、他の吸気プリクリーナのインナパイプの空気入口部の負圧と略等しくなるよう構成するために、前記各吸気プリクリーナにおけるインナパイプの吸気ダクト奥部壁面に対向する端部と前記吸気ダクト奥部壁面との間の間隙を全てのインナパイプにおいて略等しくすると共に、上下方向最下部の吸気プリクリーナ以外の各吸気プリクリーナのインナパイプの吸気ダクト内側端部の内径を、前記各吸気プリクリーナよりも1段下方の吸気プリクリーナのインナパイプの吸気ダクト内側端部の内径よりも大きく形成したものである。
【0018】
本発明の請求項5の吸気プリクリーナ構造は、各吸気プリクリーナのインナパイプの空気入口部の負圧を、他の吸気プリクリーナのインナパイプの空気入口部の負圧と略等しくなるよう構成するために、上下方向最下部の吸気プリクリーナ以外の各吸気プリクリーナにおけるインナパイプの吸気ダクト奥部壁面に対向する端部の垂線に対する角度を、前記各吸気プリクリーナよりも1段下方の吸気プリクリーナにおけるインナパイプの吸気ダクト奥部壁面に対向する端部の垂線に対する角度よりも大きくなるよう、前記各吸気プリクリーナにおけるインナパイプの吸気ダクト奥部壁面に対向する端部に傾斜を付したものである。
【0019】
本発明によれば、上下方向へ多段の吸気プリクリーナにおける各段のインナパイプの空気入口部の負圧を下段から上段に亘って略等しくなるよう構成してあるため、各段のインナパイプから吸気ダクトに吸込まれる空気の流速の均一化を図ることができる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図示例と共に説明する。
図1は請求項1及び請求項2に対応する本発明の実施の形態の第一例であって、図中、図5と同一の符号を付した部分は同一物を表わしている。而して、本図示例の基本的な構成は図5に示す従来のものと同様であるが、本図示例の特徴とするところは、図1に示すごとく、インナパイプ7の長さを下段から上段に行くに従い順次短くし、下段のインナパイプ7の吸気ダクト1内の先端部を、上段のインナパイプ7の先端部よりも、吸気ダクト1のケーシング2を設けた側とは反対側の奥部(以下単に奥部という)の壁面1aに近接させた点である。
【0021】
すなわち、最下段のインナパイプ7の吸気ダクト1内先端部と吸気ダクト1の奥部の壁面1aとの間の間隙をL1、下から2段目のインナパイプ7の吸気ダクト1内先端部と吸気ダクト1の奥部の壁面1aとの間の間隙をL2、下から3段目のインナパイプ7の吸気ダクト1内先端部と吸気ダクト1の奥部の壁面1aとの間の間隙をL3、下から4段目のインナパイプ7の吸気ダクト1内先端部と吸気ダクト1の奥部の壁面1aとの間の間隙をL4、最上段のインナパイプ7の吸気ダクト1内先端部と吸気ダクト1の奥部の壁面1aとの間の間隙をL5とすると、L1<L2<L3<L4<L5としている。なお、吸気ダクト1の奥部の壁面1aは、特許請求の範囲や発明が解決しようとする課題においては、「吸気ダクト奥部壁面」と称する。
【0022】
なお、図中、9はアウタパイプ3で捕集された水Wや塵埃を排出するためにケーシング2の下端に設けられた排出管である。
【0023】
次に、上記図示例の作動を説明する。
本図示例においては、内燃機関の駆動時には、空気Aは各旋回流形成手段6の羽根5の間に流入して羽根5により旋回力を付与され、旋回流となってアウタパイプ3内へ導入される。このため、空気Aに同伴されている水ミストや塵埃は遠心力によりアウタパイプ3の内周側に飛ばされ、アウタパイプ3の内周壁に当接して捕集され、凝集して粒子化し、塵埃を含んだ水Wとなってアウタパイプ3内周に沿い流下し、しかる後、間隙Gからアウタパイプ3の外部に排出され、ケーシング2の下部に形成した排出管9から外部へ排出される。
【0024】
アウタパイプ3内で水ミストや塵埃を除去された空気Aは、インナパイプ7を通って吸気ダクト1内に吸込まれ、反転して下方へ向かい、エアクリーナを通った後内燃機関に吸込まれる。
【0025】
図5の従来例で説明したように、最下段から最上段の各インナパイプ7の長さ及び内径が等しく、各インナパイプ7の吸気ダクト1内先端部と吸気ダクト1の奥部の壁面1aとの間の間隙が全て等しいLの場合には、内燃機関の吸引力により各段のインナパイプ7の入口部に作用する負圧は、下段の方が上段よりも大きくなる。
【0026】
一方、本図示例においては、下段から上段に向けて、インナパイプ7の吸気ダクト1内先端部と吸気ダクト1の奥部の壁面1aとの間の間隙L1,L2,L3,L4,L5は、L1<L2<L3<L4<L5であり、インナパイプ7の吸気ダクト1内先端が壁面1aに近接する程、すなわち、下段のインナパイプ7程、背圧が高くなる。このため、各段のインナパイプ7の入口部に作用する負圧は、各段のインナパイプ7の背圧分だけ減少し、その結果、各段のインナパイプ7における入口部の負圧は、各段のインナパイプ7の入口部において略等しくなる。
【0027】
このため、各段のインナパイプ7から吸気ダクト1内に吸込まれる空気Aの流速は略均一化し、吸気抵抗の低減が図れて内燃機関の性能も向上する。
【0028】
図2は請求項1及び請求項3に対応する本発明の実施の形態の第二例であって、図中、図5と同一の符号を付した部分は同一物を表わしている。
【0029】
而して、本図示例の基本的な構成は図5に示す従来のものと同様であるが、本図示例の特徴とするところは、図2に示すごとく、各インナパイプ7の長さ及び内径を等しくすると共に、吸気ダクト1のケーシング2を設けた側とは反対側の壁面1aを、下段のインナパイプ7から上段のインナパイプ7に行くに従い、インナパイプ7の吸気ダクト1内に位置する端部から離反するよう傾斜させた点である。
【0030】
従って、最下段のインナパイプ7の吸気ダクト1内先端部と吸気ダクト1の奥部の壁面1aとの間の間隙をL1、下から2段目のインナパイプ7の吸気ダクト1内先端部と吸気ダクト1の奥部の壁面1aとの間の間隙をL2、下から3段目のインナパイプ7の吸気ダクト1内先端部と吸気ダクト1の奥部の壁面1aとの間の間隙をL3、下から4段目のインナパイプ7の吸気ダクト1内先端部と吸気ダクト1の奥部の壁面1aとの間の間隙をL4、最上段のインナパイプ7の吸気ダクト1内先端部と吸気ダクト1の奥部の壁面1aとの間の間隙をL5とすると、L1<L2<L3<L4<L5となっている。
【0031】
内燃機関の運転時には、図1に示す場合と同様にして、吸気ダクト1に吸込まれる空気A中の水ミストや塵埃が除去される。
【0032】
本図示例においても、インナパイプ7の吸気ダクト1内先端が壁面1aに近接する程、すなわち、下段のインナパイプ7程、背圧が高くなる。このため、各段のインナパイプ7の入口部に作用する負圧は、各段のインナパイプ7の背圧分だけ減少し、その結果、各段のインナパイプ7における入口部の負圧は、各段のインナパイプ7の入口部において略等しくなる。
【0033】
このため、各段のインナパイプ7から吸気ダクト1内に吸込まれる空気Aの流速は略均一化し、吸気抵抗の低減が図れて内燃機関の性能も向上する。
【0034】
図3は請求項1及び請求項4に対応する本発明の実施の形態の第三例であって、図中、図5と同一の符号を付した部分は同一物を表わしている。
【0035】
而して、本図示例の基本的な構成は図5に示す従来のものと同様であるが、本図示例の特徴とするところは、図3に示すごとく、各インナパイプ7の長さを等しくすると共に、各段のインナパイプ7の吸気ダクト内側端部の内径を下段から上段に行くに従い順次大きくした点である。
【0036】
すなわち、最下段のインナパイプ7の吸気ダクト内側端部の内径をD1、下から2段目のインナパイプ7の吸気ダクト内側端部の内径をD2、下から3段目のインナパイプ7の吸気ダクト内側端部の内径をD3、下から4段目のインナパイプ7の吸気ダクト内側端部の内径をD4、最上段のインナパイプ7の吸気ダクト内側端部の内径をD5とすると、D1<D2<D3<D4<D5となっている。なお、各段におけるインナパイプ7の吸気ダクト1内側端部と、吸気ダクト1の奥部の壁面1aとの間の間隙はLである。
【0037】
本図示例では、インナパイプ7の吸気ダクト内側端部の内径は下段のインナパイプ7程小径であり、従って、下段のインナパイプ7程、背圧が高くなる。このため、各段のインナパイプ7の入口部に作用する負圧は、各段のインナパイプ7の背圧分だけ減少し、その結果、各段のインナパイプ7における入口部の負圧は、各段のインナパイプ7の入口部において略等しくなる。
【0038】
従って、各段のインナパイプ7から吸気ダクト1内に吸込まれる空気Aの流速は略均一化し、吸気抵抗の低減が図れて内燃機関の性能も向上する。
【0039】
図4は請求項1及び請求項5に対応する本発明の実施の形態の第四例であって、図中、図5と同一の符号を付した部分は同一物を表わしている。
【0040】
而して、本図示例の基本的な構成は図5に示す従来のものと同様であるが、本図示例の特徴とするところは、図4に示すごとく、各インナパイプ7の長さ及び内径を略等しくすると共に、各段のインナパイプ7の吸気ダクト1内側の端部を下段から上段に行くに従い順次垂線に対する角度が大きくなるよう、傾斜させた点である。
【0041】
すなわち、最下段のインナパイプ7端部の垂線に対する角度をθ1、下から2段目のインナパイプ7端部の垂線に対する角度をθ2、下から3段目のインナパイプ7端部の垂線に対する角度をθ3、下から4段目のインナパイプ7端部の垂線に対する角度をθ4、最上段のインナパイプ7端部の垂線に対する角度をθ5とすると、θ1<θ2<θ3<θ4<θ5としてある。なお、各段におけるインナパイプ7の吸気ダクト1内側端先端部と、吸気ダクト1の奥部の壁面1aとの間の間隙はLである。
【0042】
本図示例では、各段のインナパイプ7の吸気ダクト1内端部の角度は、下段のインナパイプ7程小さく、従って、下段のインナパイプ7程、背圧が高くなる。このため、各段のインナパイプ7の入口部に作用する負圧は、各段のインナパイプ7の背圧分だけ減少し、その結果、各段のインナパイプ7における入口部の負圧は、各段のインナパイプ7の入口部において略等しくなる。
【0043】
従って、本図示例においても、各段のインナパイプ7から吸気ダクト1内に吸込まれる空気Aの流速は略均一化し、吸気抵抗の低減が図れて内燃機関の性能も向上する。
【0044】
なお、本発明の吸気プリクリーナ構造は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0045】
【発明の効果】
以上、説明したように本発明の請求項1〜5記載の吸気プリクリーナ構造によれば、上下方向における各段のインナパイプから吸気ダクトに吸込まれる空気の流速の均一化が図れて吸気抵抗が低減するという優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明の吸気プリクリーナ構造の実施の形態の第一例の縦断面図である。
【図2】本発明の吸気プリクリーナ構造の実施の形態の第二例の縦断面図である。
【図3】本発明の吸気プリクリーナ構造の実施の形態の第三例の縦断面図である。
【図4】本発明の吸気プリクリーナ構造の実施の形態の第四例の縦断面図である。
【図5】従来の吸気プリクリーナ構造の縦断面図である。
【符号の説明】
1 吸気ダクト
1a 壁面
2 ケーシング
2a 壁面
3 アウタパイプ
6 旋回流形成手段
7 インナパイプ
8 マルチ吸気プリクリーナ(吸気プリクリーナ構造)
A 空気
G 間隙
L1 間隙
L2 間隙
L3 間隙
L4 間隙
L5 間隙
D1 内径
D2 内径
D3 内径
D4 内径
D5 内径
θ1 角度
θ2 角度
θ3 角度
θ4 角度
θ5 角度
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an intake pre-cleaner structure that equalizes the flow velocity of air sucked from each multi-stage intake pre-cleaner into an intake duct.
[0002]
[Prior art]
An air cleaner is used to supply clean air from the intake duct to the combustion chamber of the internal combustion engine.Before supplying air to the air cleaner, remove water mist and relatively large dust with an intake pre-cleaner in advance. Is generally performed, and there are multistage intake precleaners.
[0003]
An example of such a multi-stage intake pre-cleaner structure is shown in FIG. 5, and an opening formed on one side near the upper end of the intake duct 1 has a box-shaped casing so as to be located in the intake duct 1. 2 are attached. In the casing 2, a plurality (five in the illustrated example) of outer pipes 3 each having an opening at both ends in the axial direction are horizontally and vertically arranged at predetermined intervals in a multistage manner while being supported by the casing 2. . The outer pipes 3 are all the same length, and a gap G is formed between the end of the outer pipe 3 facing the wall surface 2a of the casing 2 and the wall surface 2a.
[0004]
A cylindrical guide member 4 having a hemispherical portion facing the outside is disposed concentrically at the tip end of the outer pipe 3 on the air inlet side, and the outer circumference of the guide member 4 and the inner circumference of the outer pipe 3 are circumferentially aligned. The swirling flow forming means 6 is formed by being connected by a plurality of blades 5 arranged at a required pitch in the direction. The swirling flow forming means 6 is for generating a swirling flow in the air A introduced into the outer pipe 3 through the space between the blades 5. For example, the blade 5 has an arc portion and two straight portions having different lengths. It has a fan-shaped shape made of torsion.
[0005]
Downstream of the outer pipe 3 in the air flow direction, an inner pipe 7 whose both ends in the axial direction are open and whose diameter is smaller than the diameter of the outer pipe 3 is disposed concentrically with the outer pipe 3. Thus, the end of the inner pipe 7 on the upstream side in the air flow direction is located in the outer pipe 3, and the end on the downstream side in the air flow direction is located downstream of the downstream end of the outer pipe 3 in the air flow direction. And extends through the wall surface 2a of the casing 2 into the intake duct 1.
[0006]
All inner pipes 7 have the same length and the same inner diameter, and the gap between the inner end of the intake duct 1 of the inner pipe 7 and the inner wall surface 1a of the intake duct 1 is L. Also, the diameter of the inner pipe 7 is smaller than the diameter of the outer pipe 3. This is because air A flowing through the center of the swirling flow flows into the inner pipe 7 and the centrifugal force of the swirling flow causes the air A to flow. This is because water mist and dust blown outward are easily removed from the air.
[0007]
Thus, in this conventional example, an intake pre-cleaner is formed by each of the outer pipes 3, the swirling flow forming means 6, and the inner pipe 7, and a multi-intake pre-cleaner 8 is formed by a plurality of stages of intake pre-cleaners.
[0008]
When the internal combustion engine is driven, the air A flows between the blades 5 of the respective swirling flow forming means 6, imparts a swirling force by the blades 5, and is introduced into the outer pipe 3 as a swirling flow. For this reason, the water mist and dust entrained by the air A are blown toward the inner peripheral side of the outer pipe 3 by centrifugal force, and abut on the inner peripheral wall of the outer pipe 3 to be collected, aggregated and formed into particles, and contain dust. The water flows down along the inner circumference of the outer pipe 3 and is discharged to the outside of the outer pipe 3 from the gap G, and then to the outside from a discharge portion formed at a lower portion of the casing 2.
[0009]
The air A from which water mist and dust have been removed in the outer pipe 3 is sucked into the intake duct 1 through the inner pipe 7, turns downward, passes through the air cleaner, and is sucked into the internal combustion engine.
[0010]
[Problems to be solved by the invention]
In the intake duct 1 shown in FIG. 5, in order to reduce the intake resistance, it is desirable that the flow rate of the air A drawn into the intake duct 1 from each inner pipe 7 is uniform, and the flow rate of the air A is made uniform. In order to achieve this, it is necessary to make the negative pressure at the inlet of each inner pipe 7 uniform.
[0011]
However, since the inner pipe 7 on the side closer to the suction side of the internal combustion engine, that is, the lower inner pipe 7 in FIG. 5 is easier to suck air than the upper inner pipe 7, the multi-intake pre-cleaner 8 shown in FIG. If the gap L between the inner end of the intake duct 1 of each inner pipe 7 and the inner wall surface 1a of the intake duct 1 is equal, as in the case of The negative pressure at the air inlet of the inner pipe 7 is larger than the negative pressure at the air inlet of the upper inner pipe 7.
[0012]
Therefore, the lower inner pipe 7 sucks air A more easily than the upper inner pipe 7, and the flow rate of the air A sucked into the intake duct 1 from the lower inner pipe 7 is located above the lower inner pipe 7. The flow velocity is higher than the flow velocity of the air A drawn into the intake duct 1 from the inner pipe 7. Therefore, conventionally, there is a problem that the flow velocity of the air A introduced from each inner pipe 7 and flowing in the intake duct 1 cannot be made uniform.
[0013]
The present invention has been made in view of the above circumstances, and has an object to equalize the flow speed of air sucked from each inner pipe into an intake duct when a multi-stage multi-intake pre-cleaner is used.
[0014]
[Means for Solving the Problems]
The intake pre-cleaner structure according to claim 1 of the present invention includes:
A plurality of intake pre-cleaners arranged at intervals in the vertical direction with respect to the intake duct in which the sucked air reverses and flows downward from above ,
Each intake precleaner
Swirling flow forming means for turning the introduced air into a swirling flow,
The swirl flow forming means is disposed substantially horizontally on the downstream side in the air flow direction, and both ends in the air flow direction are open , and a gap is formed on the downstream side in the air flow direction with respect to the wall surface partitioning the intake duct. An outer pipe,
Substantially located air flow direction upstream end in the outer pipe while being horizontally disposed, and the air flow direction downstream end to extend into the intake duct through the wall, yet the direction of air flow across An inner pipe through which air is introduced and the air sucked into the intake duct flows ,
The negative pressure at the air inlet of the inner pipe of each intake precleaner is configured to be substantially equal to the negative pressure at the air inlet of the inner pipe of the other intake precleaner .
[0015]
The intake pre-cleaner structure according to claim 2 of the present invention is configured such that the negative pressure at the air inlet of the inner pipe of each intake pre-cleaner is substantially equal to the negative pressure at the air inlet of the inner pipe of the other intake pre-cleaner. In order to do so, the length of the inner pipe of each intake pre-cleaner other than the lowermost intake pre-cleaner in the vertical direction is made shorter than the length of the inner pipe of the intake pre-cleaner one stage below each intake pre-cleaner. A gap between an end of the inner pipe facing the inner wall surface of the intake duct of the inner pre-cleaner and the inner wall surface of the inner surface of the intake duct is set so that the inner pipe of the inner pre-cleaner is one stage lower than the intake pre-cleaner. The gap is formed larger than the gap between the end portion facing the inner wall surface of the intake duct and the inner wall surface of the intake duct .
[0016]
The intake pre-cleaner structure according to claim 3 of the present invention is configured such that the negative pressure at the air inlet of the inner pipe of each intake pre-cleaner is substantially equal to the negative pressure at the air inlet of the inner pipe of the other intake pre-cleaner. For this purpose, the inner wall of the intake duct facing the inner pipe of each intake precleaner is inclined so as to move away from the inner pipe as it goes from the lower intake precleaner to the upper intake precleaner side. In each intake pre-cleaner other than the lower intake pre-cleaner, the gap between the end of the inner pipe facing the intake duct inner wall surface of the inner pipe and the intake duct inner wall surface is one step lower than each of the intake pre-cleaners. those than the gap between the intake duct inner wall surface and the end opposite the intake duct inner wall surface of the inner pipe in the intake pre cleaner and larger A.
[0017]
The intake pre-cleaner structure according to claim 4 of the present invention is configured such that the negative pressure at the air inlet of the inner pipe of each intake pre-cleaner is substantially equal to the negative pressure at the air inlet of the inner pipe of the other intake pre-cleaner. In order to make the gap between the end of the inner pipe facing the inner wall surface of the intake duct and the inner wall surface of the inner surface of the intake duct substantially equal in all the inner pipes in each of the intake precleaners, The inner diameter of the inner end of the inner duct of the inner pipe of each intake pre-cleaner other than the intake pre-cleaner is smaller than the inner diameter of the inner end of the inner duct of the inner pipe of the intake pre-cleaner one stage lower than each of the intake pre-cleaners. It is formed large.
[0018]
The intake pre-cleaner structure according to claim 5 of the present invention is configured such that the negative pressure at the air inlet of the inner pipe of each intake pre-cleaner is substantially equal to the negative pressure at the air inlet of the inner pipe of the other intake pre-cleaner. In order to achieve this, the angle of the end of each inner pre-cleaner other than the lowermost pre-cleaner in the vertical direction with respect to the perpendicular to the end of the inner pipe facing the inner wall surface of the intake duct is set to be one stage lower than each of the intake pre-cleaners. The end of the inner pipe facing the inner duct wall surface of the inner pipe in each pre-cleaner is inclined so as to be larger than the angle of the end of the inner pipe facing the inner duct wall surface of the pre-cleaner with respect to the perpendicular . Things.
[0019]
According to the present invention, since the negative pressure at the air inlet portion of each stage of the inner pipe in the multistage intake pre-cleaner in the vertical direction is configured to be substantially equal from the lower stage to the upper stage, from the inner pipe of each stage, The flow velocity of the air sucked into the intake duct can be made uniform.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a first example of an embodiment of the present invention corresponding to claims 1 and 2. In the drawing, portions denoted by the same reference numerals as those in FIG. 5 represent the same components. The basic structure of the illustrated example is the same as that of the conventional example shown in FIG. 5, but the feature of the illustrated example is that, as shown in FIG. From the upper end to the upper end, and the tip of the lower inner pipe 7 in the intake duct 1 is located on the opposite side of the tip of the upper inner pipe 7 from the side on which the casing 2 of the intake duct 1 is provided. This is a point close to the wall surface 1a of the inner part (hereinafter simply referred to as the inner part).
[0021]
That is, the gap between the tip of the lowermost inner pipe 7 inside the intake duct 1 and the inner wall surface 1a of the intake duct 1 is L1, and the gap between the tip of the inner pipe 7 in the second lowermost row is L2 is the gap between the inner wall 7a of the inner part of the intake duct 1 and L3 is the gap between the inner wall 7a and the inner wall 7a of the inner pipe 7 at the third level from the bottom. The gap between the inner end of the intake pipe 1 of the inner pipe 7 at the fourth stage from the bottom and the inner wall surface 1a of the intake duct 1 is L4. Assuming that a gap between the inner wall surface 1a of the duct 1 and the wall surface 1a is L5, L1 <L2 <L3 <L4 <L5. The inner wall surface 1a of the intake duct 1 is referred to as an "inward duct wall surface" in the claims and the problem to be solved by the invention.
[0022]
In the drawing, reference numeral 9 denotes a discharge pipe provided at the lower end of the casing 2 for discharging water W and dust collected by the outer pipe 3.
[0023]
Next, the operation of the illustrated example will be described.
In the illustrated example, when the internal combustion engine is driven, the air A flows between the blades 5 of the respective swirling flow forming means 6 and is given a swirling force by the blades 5 to be introduced into the outer pipe 3 as a swirling flow. You. For this reason, the water mist and dust entrained by the air A are blown toward the inner peripheral side of the outer pipe 3 by centrifugal force, and abut on the inner peripheral wall of the outer pipe 3 to be collected, aggregated and formed into particles, and contain dust. It flows down along the inner circumference of the outer pipe 3 as water W, after which it is discharged from the gap G to the outside of the outer pipe 3 and then to the outside through a discharge pipe 9 formed at the lower part of the casing 2.
[0024]
The air A from which water mist and dust have been removed in the outer pipe 3 is sucked into the intake duct 1 through the inner pipe 7, turns downward, passes through the air cleaner, and is sucked into the internal combustion engine.
[0025]
As described in the conventional example of FIG. 5, the lengths and inner diameters of the inner pipes 7 from the lowermost stage to the uppermost stage are equal, and the front end portion of each inner pipe 7 in the intake duct 1 and the inner wall surface 1a of the intake duct 1 Are equal to each other, the negative pressure acting on the inlet portions of the inner pipes 7 of the respective stages due to the suction force of the internal combustion engine is larger in the lower stage than in the upper stage.
[0026]
On the other hand, in the illustrated example, the gaps L1, L2, L3, L4, and L5 between the front end portion of the inner pipe 7 inside the intake duct 1 and the inner wall surface 1a of the intake duct 1 extend from the lower stage to the upper stage. , L1 <L2 <L3 <L4 <L5, and the back pressure increases as the tip of the inner pipe 7 in the intake duct 1 approaches the wall surface 1a, that is, as the lower inner pipe 7 reaches. For this reason, the negative pressure acting on the inlet of the inner pipe 7 of each stage decreases by the back pressure of the inner pipe 7 of each stage. As a result, the negative pressure of the inlet of the inner pipe 7 of each stage becomes It becomes substantially equal at the entrance of the inner pipe 7 in each stage.
[0027]
For this reason, the flow velocity of the air A drawn into the intake duct 1 from the inner pipe 7 of each stage is made substantially uniform, so that the intake resistance is reduced and the performance of the internal combustion engine is improved.
[0028]
FIG. 2 shows a second example of the embodiment of the present invention corresponding to claims 1 and 3. In the drawing, portions denoted by the same reference numerals as those in FIG. 5 represent the same components.
[0029]
The basic configuration of the illustrated example is the same as the conventional configuration shown in FIG. 5, but the feature of the illustrated example is, as shown in FIG. The inner diameter is made equal, and the wall surface 1a of the intake duct 1 opposite to the side on which the casing 2 is provided is located in the intake duct 1 of the inner pipe 7 as going from the lower inner pipe 7 to the upper inner pipe 7. This is a point that is inclined so as to be separated from the end portion that is to be moved.
[0030]
Accordingly, the gap between the inner end of the intake pipe 1 of the lowermost inner pipe 7 and the inner wall surface 1a of the intake duct 1 is L1, and the gap between the inner end of the inner pipe 7 of the second lowermost inner pipe 7 and the inner end is L2 is the gap between the inner wall 7a of the inner part of the intake duct 1 and L3 is the gap between the inner wall 7a and the inner wall 7a of the inner pipe 7 at the third level from the bottom. The gap between the inner end of the intake pipe 1 of the inner pipe 7 at the fourth stage from the bottom and the inner wall surface 1a of the intake duct 1 is L4. Assuming that the gap between the inner wall surface 1a of the duct 1 and the wall surface 1a is L5, L1 <L2 <L3 <L4 <L5.
[0031]
During operation of the internal combustion engine, water mist and dust in the air A sucked into the intake duct 1 are removed as in the case shown in FIG.
[0032]
Also in the illustrated example, the back pressure increases as the tip of the inner pipe 7 inside the intake duct 1 approaches the wall surface 1a, that is, as the lower inner pipe 7 moves. For this reason, the negative pressure acting on the inlet of the inner pipe 7 of each stage decreases by the back pressure of the inner pipe 7 of each stage. As a result, the negative pressure of the inlet of the inner pipe 7 of each stage becomes It becomes substantially equal at the entrance of the inner pipe 7 in each stage.
[0033]
For this reason, the flow velocity of the air A drawn into the intake duct 1 from the inner pipe 7 of each stage is made substantially uniform, so that the intake resistance is reduced and the performance of the internal combustion engine is improved.
[0034]
FIG. 3 shows a third example of the embodiment of the present invention corresponding to claims 1 and 4. In the drawing, portions denoted by the same reference numerals as those in FIG. 5 represent the same components.
[0035]
The basic configuration of the illustrated example is the same as that of the conventional one shown in FIG. 5, but the feature of the illustrated example is that, as shown in FIG. The point is that the inner diameters of the inner end portions of the inner pipes 7 of the inner pipes 7 in each stage are gradually increased from the lower stage to the upper stage.
[0036]
That is, the inner diameter of the inner end of the intake duct of the lowermost inner pipe 7 is D1, the inner diameter of the inner end of the intake duct of the second lower inner pipe 7 is D2, and the intake of the third inner pipe 7 from the lower end. Assuming that the inner diameter of the inner end of the duct is D3, the inner diameter of the inner end of the intake duct of the fourth lowermost inner pipe is D4, and the inner diameter of the inner end of the uppermost inner pipe 7 is D5, D1 < D2 <D3 <D4 <D5. The gap between the inner end of the inner pipe 7 of the inner pipe 7 and the inner wall surface 1a of the intake duct 1 at each stage is L.
[0037]
In the illustrated example, the inner diameter of the inner end of the inner pipe 7 at the intake duct is smaller than that of the lower inner pipe 7, so that the lower the inner pipe 7, the higher the back pressure. For this reason, the negative pressure acting on the inlet of the inner pipe 7 of each stage decreases by the back pressure of the inner pipe 7 of each stage. As a result, the negative pressure of the inlet of the inner pipe 7 of each stage becomes It becomes substantially equal at the entrance of the inner pipe 7 in each stage.
[0038]
Therefore, the flow velocity of the air A sucked into the intake duct 1 from the inner pipes 7 of each stage is made substantially uniform, the intake resistance is reduced, and the performance of the internal combustion engine is improved.
[0039]
FIG. 4 shows a fourth embodiment of the present invention corresponding to claim 1 and claim 5. In the figure, portions denoted by the same reference numerals as those in FIG. 5 represent the same components.
[0040]
The basic configuration of the illustrated example is the same as the conventional configuration shown in FIG. 5, but the feature of the illustrated example is, as shown in FIG. The inner diameter of the inner pipe 7 of each stage is made substantially equal, and the end of the inner pipe 7 inside the intake duct 1 is inclined so that the angle with respect to the vertical line increases gradually from the lower stage to the upper stage.
[0041]
That is, the angle of the bottom end of the inner pipe 7 with respect to the perpendicular is θ1, the angle of the second bottom end of the inner pipe 7 with respect to the perpendicular is θ2, and the angle of the third bottom end of the inner pipe 7 with respect to the perpendicular. Is θ3, the angle with respect to the perpendicular of the end of the inner pipe 7 at the fourth stage from the bottom is θ4, and the angle with respect to the perpendicular of the end of the uppermost stage inner pipe 7 is θ5, the relationship is θ1 <θ2 <θ3 <θ4 <θ5. The gap between the end of the inner pipe 7 at the inner end of the intake duct 1 and the inner wall surface 1a of the intake duct 1 is L at each stage.
[0042]
In the illustrated example, the angle of the inner end of the intake pipe 1 of the inner pipe 7 in each stage is smaller in the lower inner pipe 7, and therefore, the back pressure is higher in the lower inner pipe 7. For this reason, the negative pressure acting on the inlet of the inner pipe 7 of each stage decreases by the back pressure of the inner pipe 7 of each stage. As a result, the negative pressure of the inlet of the inner pipe 7 of each stage becomes It becomes substantially equal at the entrance of the inner pipe 7 in each stage.
[0043]
Therefore, also in the illustrated example, the flow velocity of the air A sucked into the intake duct 1 from the inner pipes 7 of the respective stages is made substantially uniform, the intake resistance is reduced, and the performance of the internal combustion engine is improved.
[0044]
Note that the intake precleaner structure of the present invention is not limited to the above-described illustrated example, and it is needless to say that various changes can be made without departing from the gist of the present invention.
[0045]
【The invention's effect】
As described above, according to the intake pre-cleaner structure according to the first to fifth aspects of the present invention, it is possible to equalize the flow velocity of the air sucked into the intake duct from the inner pipes of the respective stages in the vertical direction , thereby achieving the intake resistance. Can be achieved.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a first example of an embodiment of an intake pre-cleaner structure of the present invention.
FIG. 2 is a longitudinal sectional view of a second example of the embodiment of the intake precleaner structure of the present invention.
FIG. 3 is a longitudinal sectional view of a third example of the embodiment of the intake precleaner structure of the present invention.
FIG. 4 is a longitudinal sectional view of a fourth example of the embodiment of the intake precleaner structure of the present invention.
FIG. 5 is a longitudinal sectional view of a conventional intake pre-cleaner structure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Intake duct 1a Wall surface 2 Casing 2a Wall surface 3 Outer pipe 6 Swirl flow forming means 7 Inner pipe 8 Multi intake pre-cleaner (intake pre-cleaner structure)
A Air G Gap L1 Gap L2 Gap L3 Gap L4 Gap L5 Gap D1 Inside diameter D2 Inside diameter D3 Inside diameter D4 Inside diameter D5 Inside diameter θ1 Angle θ2 Angle θ3 Angle θ4 Angle θ5 Angle

Claims (5)

吸込まれた空気が反転して上方から下方へ向かい流れるようにした吸気ダクトに対し上下方向へ間隔をおいて配設された複数の吸気プリクリーナを備え、
各吸気プリクリーナは、
導入される空気を旋回流とするための旋回流形成手段と、
該旋回流形成手段の空気流れ方向下流側に略水平に配設されると共に、空気流れ方向両端部が開口し、しかも空気流れ方向下流側において、吸気ダクトを仕切る壁面に対し間隙が形成されたアウタパイプと、
略水平に配設されると共に空気流れ方向上流側端部がアウタパイプ内に位置し、且つ空気流れ方向下流側端部が前記壁面を貫通して吸気ダクト内に延在し、しかも空気流れ方向両端部が開口されて前記吸気ダクトに吸込まれる空気が流通するインナパイプとを備え、
各吸気プリクリーナのインナパイプの空気入口部の負圧は、他の吸気プリクリーナのインナパイプの空気入口部の負圧と略等しくなるよう構成されていることを特徴とする吸気プリクリーナ構造。
A plurality of intake pre-cleaners arranged at intervals in the vertical direction with respect to the intake duct in which the sucked air reverses and flows downward from above ,
Each intake precleaner
Swirling flow forming means for turning the introduced air into a swirling flow,
The swirl flow forming means is disposed substantially horizontally on the downstream side in the air flow direction, and both ends in the air flow direction are open , and a gap is formed on the downstream side in the air flow direction with respect to the wall surface partitioning the intake duct. An outer pipe,
Substantially located air flow direction upstream end in the outer pipe while being horizontally disposed, and the air flow direction downstream end to extend into the intake duct through the wall, yet the direction of air flow across An inner pipe through which air is introduced and the air sucked into the intake duct flows ,
Negative pressure, intake pre cleaner, characterized in that it is configured to substantially equal to the negative pressure in the air inlet portion of the inner pipe of the other intake pre cleaner structure of the air inlet portion of the inner pipe of the intake pre cleaner.
各吸気プリクリーナのインナパイプの空気入口部の負圧を、他の吸気プリクリーナのインナパイプの空気入口部の負圧と略等しくなるよう構成するために、上下方向最下部の吸気プリクリーナ以外の各吸気プリクリーナのインナパイプの長さを各吸気プリクリーナよりも1段下方の吸気プリクリーナのインナパイプの長さよりも短くすることにより、前記各吸気プリクリーナにおけるインナパイプの吸気ダクト奥部壁面に対向する端部と前記吸気ダクト奥部壁面との間の間隙を、前記各吸気プリクリーナよりも1段下方の吸気プリクリーナにおけるインナパイプの吸気ダクト奥部壁面に対向する端部と前記吸気ダクト奥部壁面との間の間隙よりも、大きく形成した請求項1に記載の吸気プリクリーナ構造。 In order to configure the negative pressure at the air inlet of the inner pipe of each intake pre-cleaner to be substantially equal to the negative pressure of the air inlet of the inner pipe of the other intake pre-cleaner, except for the lowermost intake pre-cleaner in the vertical direction The length of the inner pipe of each intake pre-cleaner is shorter than the length of the inner pipe of the intake pre-cleaner that is one stage lower than each intake pre-cleaner, so that the inner portion of the inner pipe at the intake pre-cleaner is deeper. The gap between the end facing the wall and the inner wall of the intake duct is defined by the end facing the inner wall of the inner duct of the inner pipe in the intake pre-cleaner one stage below each of the intake pre-cleaners. 2. The intake pre-cleaner structure according to claim 1 , wherein the clearance is formed to be larger than a gap between the inner surface of the intake duct and the inner wall surface . 各吸気プリクリーナのインナパイプの空気入口部の負圧を、他の吸気プリクリーナのインナパイプの空気入口部の負圧と略等しくなるよう構成するために、各吸気プリクリーナのインナパイプに対向する吸気ダクト奥部壁面を、下方の吸気プリクリーナから上方の吸気プリクリーナ側に行くに従い、インナパイプから離反するように傾斜させ、上下方向最下部の吸気プリクリーナ以外の各吸気プリクリーナにおけるインナパイプの吸気ダクト奥部壁面に対向する端部と前記吸気ダクト奥部壁面との間の間隙を、前記各吸気プリクリーナよりも1段下方の吸気プリクリーナにおけるインナパイプの吸気ダクト奥部壁面に対向する端部と前記吸気ダクト奥部壁面との間隙よりも、大きく形成した請求項1に記載の吸気プリクリーナ構造。 In order to configure the negative pressure at the air inlet of the inner pipe of each intake pre-cleaner to be substantially equal to the negative pressure at the air inlet of the inner pipe of the other intake pre-cleaner, face the inner pipe of each intake pre-cleaner. The inner wall of each intake pre-cleaner other than the intake pre-cleaner at the bottom in the vertical direction is inclined so that the inner wall of the intake duct at the bottom of the intake duct is separated from the inner pipe as it goes from the lower intake pre-cleaner to the upper intake pre-cleaner. The gap between the end of the pipe facing the inner wall of the intake duct and the inner wall of the inner wall of the intake duct is formed on the inner wall of the inner duct at the inner side of the inner duct in the intake pre-cleaner that is one stage lower than each of the intake pre-cleaners. 2. The intake pre-cleaner structure according to claim 1, wherein a gap is formed larger than a gap between an end portion facing the inner wall surface and the inner wall surface of the intake duct . 各吸気プリクリーナのインナパイプの空気入口部の負圧を、他の吸気プリクリーナのインナパイプの空気入口部の負圧と略等しくなるよう構成するために、前記各吸気プリクリーナにおけるインナパイプの吸気ダクト奥部壁面に対向する端部と前記吸気ダクト奥部壁面との間の間隙を全てのインナパイプにおいて略等しくすると共に、上下方向最下部の吸気プリクリーナ以外の各吸気プリクリーナのインナパイプの吸気ダクト内側端部の内径を、前記各吸気プリクリーナよりも1段下方の吸気プリクリーナのインナパイプの吸気ダクト内側端部の内径よりも大きく形成した請求項1に記載の吸気プリクリーナ構造。 In order to make the negative pressure at the air inlet of the inner pipe of each intake pre-cleaner substantially equal to the negative pressure at the air inlet of the inner pipe of the other intake pre-cleaner, The gap between the end facing the inner wall surface of the intake duct and the inner wall surface of the intake duct is made substantially equal in all the inner pipes, and the inner pipes of the intake precleaners other than the intake precleaner at the lowermost part in the vertical direction. 2. The intake pre-cleaner structure according to claim 1 , wherein the inner diameter of the inner end of the intake duct is formed larger than the inner diameter of the inner end of the intake duct of the inner pipe of the intake pre-cleaner which is one stage lower than each of the intake pre -cleaners. . 各吸気プリクリーナのインナパイプの空気入口部の負圧を、他の吸気プリクリーナのインナパイプの空気入口部の負圧と略等しくなるよう構成するために、上下方向最下部の吸気プリクリーナ以外の各吸気プリクリーナにおけるインナパイプの吸気ダクト奥部壁面に対向する端部の垂線に対する角度を、前記各吸気プリクリーナよりも1段下方の吸気プリクリーナにおけるインナパイプの吸気ダクト奥部壁面に対向する端部の垂線に対する角度よりも大きくなるよう、前記各吸気プリクリーナにおけるインナパイプの吸気ダクト奥部壁面に対向する端部に傾斜を付した請求項1に記載の吸気プリクリーナ構造。 In order to configure the negative pressure at the air inlet of the inner pipe of each intake pre-cleaner to be substantially equal to the negative pressure of the air inlet of the inner pipe of the other intake pre-cleaner, except for the lowermost intake pre-cleaner in the vertical direction The angle of the end of the inner pipe of each of the intake pre-cleaners, which is opposed to the perpendicular to the inner wall of the intake duct, is opposite to the inner duct of the inner pipe of the intake pre-cleaner, which is one stage below the intake pre-cleaner. The intake pre-cleaner structure according to claim 1 , wherein an end of each of the inner pre-cleaners facing the inner wall surface of the intake duct is inclined so as to be larger than an angle of the end with respect to a perpendicular line .
JP2001158888A 2001-05-28 2001-05-28 Intake pre-cleaner structure Expired - Fee Related JP3586438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001158888A JP3586438B2 (en) 2001-05-28 2001-05-28 Intake pre-cleaner structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001158888A JP3586438B2 (en) 2001-05-28 2001-05-28 Intake pre-cleaner structure

Publications (2)

Publication Number Publication Date
JP2002349373A JP2002349373A (en) 2002-12-04
JP3586438B2 true JP3586438B2 (en) 2004-11-10

Family

ID=19002546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001158888A Expired - Fee Related JP3586438B2 (en) 2001-05-28 2001-05-28 Intake pre-cleaner structure

Country Status (1)

Country Link
JP (1) JP3586438B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5485685B2 (en) * 2009-12-25 2014-05-07 日野自動車株式会社 Air intake duct
US8683970B2 (en) 2011-07-28 2014-04-01 Cnh America Llc Air intake system for off-road vehicles

Also Published As

Publication number Publication date
JP2002349373A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
US4746340A (en) Air cleaner apparatus
JP4598060B2 (en) Cyclone separator
US6540917B1 (en) Cyclonic inertial fluid cleaning apparatus
JP5047352B2 (en) Exhaust turbocharger housing structure
BRPI0508494B1 (en) oil separator
WO2016132570A1 (en) Demister, exhaust gas recirculating system, and marine engine provided with same
CN104720690A (en) Cyclone separator device and electric cleaner
WO2015157889A1 (en) Vacuum cleaner
JP3448285B2 (en) Oil mist removal device
US4218223A (en) Pre-cleaner for combustion engines
CN209663527U (en) For separating the cyclone separator and dip-tube of gas
KR101275755B1 (en) Multifunctional Back-Flowing Type Strong Suction Blower
JP3586438B2 (en) Intake pre-cleaner structure
JP3898915B2 (en) Intake pre-cleaner structure
KR102638412B1 (en) Separation system for vacuum cleaner and vacuum cleaner including separation system
US20150377192A1 (en) Exhaust ejector tube for engine system
JPH08128366A (en) Air cleaner
JP2008169829A (en) Cylinder head cover for internal combustion engine having oil separator
US5720243A (en) Device for separation of dust
JP2666271B2 (en) Centrifugal pre-cleaner
TWI641414B (en) Filtration system
JP2009121370A (en) Pre-cleaner
JP2001073890A (en) Precleaner
US11154873B2 (en) Multi-cyclonic dust filter device
US20120272630A1 (en) Controlled flow air precleaner

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040806

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees