JP3585056B2 - Polyester shrink film - Google Patents

Polyester shrink film Download PDF

Info

Publication number
JP3585056B2
JP3585056B2 JP7827895A JP7827895A JP3585056B2 JP 3585056 B2 JP3585056 B2 JP 3585056B2 JP 7827895 A JP7827895 A JP 7827895A JP 7827895 A JP7827895 A JP 7827895A JP 3585056 B2 JP3585056 B2 JP 3585056B2
Authority
JP
Japan
Prior art keywords
film
polyester
longitudinal direction
shrinkage
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7827895A
Other languages
Japanese (ja)
Other versions
JPH08244114A (en
Inventor
弘造 高橋
幸恵 中井
将弘 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP7827895A priority Critical patent/JP3585056B2/en
Publication of JPH08244114A publication Critical patent/JPH08244114A/en
Application granted granted Critical
Publication of JP3585056B2 publication Critical patent/JP3585056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、長手方向に高い収縮率を示し、かつ長手方向、幅方向の両方向において機械的強度等に優れ、収縮ラベルや食品包装等に用いられるポリエステル系収縮フィルムに関するものである。
【0002】
【従来の技術】
従来、ガラスびんやポリエチレンテレフタレート(以下PETと記す。)ボトルに用いられる収縮ラベルや、食品包装用の収縮フィルムとしては、ポリ塩化ビニルまたはポリスチレンからなる延伸フィルムが主として用いられてきた。しかし近年、安全衛生性や耐薬品性、透明性に優れたポリエステル系の収縮フィルムが要望されるようになり、ポリエステルからなる延伸フィルムが提案されている。また市場のニーズからこれらのフィルムは一軸収縮性を示すタイプとバランスタイプに大別されている。
【0003】
一軸収縮性を示すタイプのポリエステル系収縮フィルムは、その特性を発現させるために、例えば特開平6−18902に代表されるように、所望の方向には高倍率の延伸をかけていて、それと直交する方向には未延伸あるいは微延伸としている場合が多い。このため所望の方向の機械的性質は良好なものの、それと直交方向の機械的性質は劣るという問題がある。
【0004】
また、一軸収縮性ポリエステルフィルムは、フィルム幅方向に一軸収縮性を示すものが主流であり、フィルム長手方向に一軸収縮性を示すものはほとんど無い。
【0005】
【発明が解決しようとする課題】
従って本発明の目的は、フィルム長手方向に一軸収縮性を示し、かつ両軸方向の機械的特性や耐熱性等に優れたポリエステル系収縮フィルムを提供することにある。
【0006】
【課題を解決するための手段】
上述の目的は、融点が170℃以上250℃以下であるポリエステルから成るフィルムであって、該ポリエステル系フィルムにおいて100℃の熱風中でのフィルム長手方向における収縮率(Sm)が20%以上であり、幅方向における収縮率(St)が(長手方向の収縮率Sm)×2/3以下であって、長手方向と幅方向のヤング率が共に250kg/mm 2 以上、長手方向と幅方向の屈折率が共に1.590以上であることを特徴とするポリエステル系収縮フィルムによって達成される。
【0007】
本発明のポリエステル系収縮フィルムは、融点が170℃以上250℃以下であり、特に180℃以上240℃以下が好ましい。融点が170℃未満であると耐熱性が悪化し、一方250℃を越えるとヒートシール性が低下する。
【0008】
本発明におけるポリエステルは、ジカルボン酸成分として、テレフタル酸、アジピン酸、シュウ酸、マロン酸、コハク酸、アゼライン酸、セバシン酸、フタル酸、イソフタル酸、ナフタレンジカルボン酸、ジフェニルエーテルジカルボン酸、シクロヘキサンジカルボン酸、5−スルホン酸塩イソフタル酸や長鎖脂肪族ジカルボン酸のドデカンジオン酸、エイコ酸、ダイマー酸およびそれらの誘導体等、公知のジカルボン酸成分の一種もしくは二種以上からなり、また、ジオール成分として、エチレングリコール、プロピレングリコール、ネオペンチルグリコール、ヘキサメチレングリコール、1, 4−ブタンジオール、トリメチレングリコール、テトラメチレングリコール、ジエチレングリコール、ポリエチレングリコール、ポリアルキレングリコール、1,4−シクロヘキサンジメタノール、2−アルキル1,3−プロパンジオール、ビスフェノールAまたはビスフェノールSのジエトキシ化合物等公知のジオール成分の一種又は二種以上からなるポリエステル又は共重合ポリエステルである。
【0009】
共重合ポリエステルとしては、ジカルボン酸成分及び/又はグリコール成分の一部を他のジカルボン酸またはグリコール成分に置換することにより得られるものが使用できるが、他の成分、例えば、p−オキシ安息香酸、p−オキシエトキシ安息香酸のごときオキシカルボン酸、安息香酸、メトキシポリアルキレングリコールのごとき一官能性化合物、グリセリン、ペンタエリスリトール、トリメチロールエタン、トリメチロールプロパンのごとき多官能性化合物も、生成物が実質的に線上の高分子を保持できる範囲内で使用することが出来る。
【0010】
本発明のポリエステルにおいては、ジカルボン酸成分として、テレフタル酸、ジオール成分としてエチレングリコールを主成分とする共重合ポリエスエルが好ましく用いられ、該共重合成分としてはジカルボン酸成分としてイソフタル酸、フタル酸、アジピン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、ジオール成分としてジエチレングリコール、ポリエチレングリコール、ポリアルキレングリコール、必要に応じて1, 4シクロヘキサンジメタノールを用いた共重合ポリエステルが、工業的に安価に入手でき、かつ収縮特性も良好で好ましい。
【0011】
本発明のポリエステルにおいてはポリエステル及び/または共重合ポリエステルの一種又は二種以上をポリエステルまたは共重合ポリエステルにブレンドして使用することもできる。ブレンドするポリエステルの融点は、ブレンド後混合されたポリエステルの示差走査熱量測定において観測される融点の吸熱ピーク面積の大きいピーク温度が170℃〜250℃の範囲であれば、特に限定されない。
【0012】
本発明で用いられる共重合ポリエステルにおいては、ジカルボン酸成分の好ましくは65%モル以上、より好ましくは70%モル以上がテレフタル酸単位であり、ジオール成分の好ましくは65モル%以上、より好ましくは70%モル以上がエチレングリコール単位である。テレフタル酸及び/又はエチレングリコール単位が65モル%未満の共重合ポリエステルは、フィルムにした際のフィルムの強度、耐溶剤性が劣るので好ましくない。
【0013】
また、上記ポリエステルは、該ポリエステル以外に30重量%以下であればポリエステル以外の他のポリマーを添加、混合したものでもよい。
【0014】
さらに、フィルムの易滑性を向上させるために、有機滑剤、無機の滑剤等の微粒子を含有させるもの好ましい。また、必要に応じて安定剤、着色剤、酸化防止剤、消泡剤、帯電防止剤等の添加剤を含有するものであってもよい。滑り性を付与する微粒子としては、カリオン、クレー、炭酸カルシウム、酸化ケイ素、テレフタル酸カルシウム、酸化アルミニウム、酸化チタン、リン酸カルシウム、フッ化リチウム、カーボンブラック等の公知の不活性外部粒子、ポリエステル樹脂の溶融製膜に際して不溶な高融点有機化合物、架橋ポリマ及びポリエステル合成時に使用する金属化合物触媒、例えばアルカリ金属化合物、アルカリ土類金属化合物などによってポリエステル製造時に、ポリマー内部に形成される内部粒子を挙げることができる。フィルム中に含まれる微粒子の含有量は通常、0.005〜0.9重量%、該微粒子の平均粒径は、通常、0.001〜3.5μmの範囲である。
【0015】
本発明のフィルムの極限粘度は好ましくは0.50以上、さらに好ましくは0.55以上である。フィルムの極限粘度が0.5未満であると耐熱性が低下し、溶融製膜が不安定になり、好ましくない。
【0016】
本発明のフィルムにおいて、100℃の熱風中でのフィルム長手方向における収縮率(Sm)が20%以上であることが必要である。本発明においてフィルムの長手方向の収縮率が20%未満の場合、収縮量が不十分となり、フィルムが容器に十分密着せず好ましくない。
【0017】
本発明のフィルムにおいて、長手方向と直交する方向、つまり幅方向における100℃の熱風中での収縮率(St)が(長手方向の収縮率Sm)×2/3以下であることが必要である。幅方向の収縮率が(長手方向の収縮率Sm)×2/3を越すフィルムでは、一軸収縮性が失われ、さらには収縮時に歪やシワ、端部のカール等が発生するため好ましくない。
【0018】
上記の如く、本発明者らは、融点、ポリマ種、フィルムの収縮率、極限粘度などを特定の範囲内とすることにより長手方向に一軸収縮性を示し、かつ耐熱性、耐溶剤性に優れ、収縮時の歪やシワの改善したフィルムを得るに至った。しかしながら、フィルムの長手方向、幅方向の強度については上記検討においても未だ十分でなく、更なる改良が必要であった。
【0019】
本発明者は更に鋭意検討の結果、フィルムの屈折率を一定以上の値にすることにより、長手方向に一軸収縮性を示しながら、しかも横方向にも強度の優れたフィルムを得ることを見出した。
【0020】
すなわち、本発明のフィルムにおいては、長手方向と幅方向の屈折率は、共に1.590以上であることが必要である。フィルムの屈折率が1.590未満のフィルムでは強度が低下し、好ましくない。
【0021】
さらに、本発明のフィルムにおいて、フィルムの面配向係数は、0. 07以上であるのが好ましい。フィルムの面配向係数が0. 07未満のフィルムは、耐溶剤性、厚み斑、強度等が悪化し、好ましくない。
【0022】
本発明のフィルムにおいて、取扱い時の機械特性の点からヤング率は長手方向、幅方向とも250kg/mm2 以上であることが必要である。また破断強度は長手方向、幅方向ともに8kg/mm2 以上であることが強度の点から好ましい。
【0023】
さらに本発明のフィルムには、各種コーティングを施してもよい。また、本発明のフィルムの厚さは特に限定しないが、1〜300μm、好ましくは5〜100μmで有効に使用される。
【0024】
次に、本発明のフィルムの製造方法について説明する。
前述の本発明の組成のポリエステル又は共重合ポリエステルを通常のホッパドライヤー、パドルドライヤー、真空乾燥機等を用いて乾燥した後、200〜320℃の温度で押出しを行う。押出し後、急冷して未延伸フィルムを得るが、Tダイ法を用いた場合、急冷時にいわゆる静電印加密着法を用いることにより、厚さ斑の均一なフィルムを得ることができ好ましい。
【0025】
得られた未延伸フィルムを、最終的に得られるフィルムが本発明の構成要件を満たすべく、長手方向、横方向にそれぞ2.0〜5. 0倍延伸し、フィルムを得る。延伸手段については特に制限はなく、ロール延伸、テンター延伸等の方法が適用され、形状面においてはフラット状、チューブ状等どの様なものであってもよい。また延伸方法は、一軸延伸、逐次二軸延伸、同時二軸延伸のいずれでもよい。
【0026】
上記延伸において、さらに長手方向に再延伸を少なくとも1. 1倍以上、好ましくは1.2倍以上で、かつ本発明のフィルムの屈折率の範囲を満たすように延伸することにより、従来では得られなかった、長手方向に高い収縮率を示し、かつ長手方向、幅方向の両方向において機械的強度等に優れたフィルムを得ることができる。また再延伸を行う前に熱処理を施してもよく、熱処理温度は250℃以下の範囲であれば特に制限はないが、所望の収縮率や厚み斑等の点からポリマのガラス転移温度Tg〜250℃が好ましい。
【0027】
このように延伸されたフィルムを、延伸後50℃以上120℃以下で0. 01秒以上30秒以下の熱処理を行うこともフィルムの均一な収縮を得る上で好ましい手法である。熱処理は通常、緊張固定下で実施されるが、同時に20%以下の弛緩又は幅出しを行うことも可能である。熱処理方法としては加熱ロールに接触させる方法やテンター内でクリップに把持して行う方法など既知の方法を用いることができる。また、前記延伸工程中、延伸前、又は延伸後にフィルムの片面又は両面にコロナ放電処理を施し、フィルムの印刷層等に対する密着性を向上させることも可能である。さらに、上記延伸工程中、延伸前、又は延伸後にフィルムの片面又は両面に塗布を行い、フィルムの密着性、帯電防止性、易滑性、遮光性等を向上させることも可能である。かくして得られたフィルムを巻取り、製品とする。
【0028】
【実施例】
以下、実施例にて本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。まず、測定および評価方法を以下に示す。
(1)熱収縮率
フイルムサンプル標線間を200mmにとり、フイルムを10mmに切断して、100℃の熱風を用い5分間加熱し標線間の長さを測定し、フイルムの収縮量を原寸法に対する割合として百分率で表した。
【0029】
(2)融点(℃)
セイコー電子工業(株)製示差走査熱量計RDC220型を用い、試料5mgを採取し、室温より昇温速度20℃/分で昇温した時の吸熱曲線のピークの温度より求めた。
【0030】
(3)フィルムの屈折率
アタゴ社製アッベ屈折率計を用い、光源をナトリウムランプとして、フィルムの屈折率の測定を行った。フィルム面内の長手方向の屈折率nγ、それに直交する横方向の屈折率nβ、及び厚さ方向の屈折率nαを求め、下記式により面配向度ΔPを求めた。
ΔP=1/2(nγ+nβ)−nα
【0031】
(4)破断強度、引張弾性率(ヤング率)
JIS−Z1702−1976に準じ、幅10mm、長さ100mmの試料片を、引長速度300mm/分で測定した。
【0032】
(5)シール強度
熱収縮性ポリエステルフィルムを二枚重ね合わせた状態でインパルスシーラー、目盛り4によりヒートシールした後、シール後の剥離強度を測定した。
【0033】
実施例1
ジカルボン酸成分としてテレフタル酸単位82. 5モル%、イソフタル酸単位17. 5モル%よりなり、ジオール成分としてエチレングリコールよりなり、平均粒径1. 4μmの酸化ケイ素粒子800ppmを含む共重合ポリエステルを常法により乾燥後、押出機で265℃に溶融しTダイより押出し、急冷固化して未延伸フィルムを得た。得られた未延伸フィルムを縦方向に88℃で2. 7倍、横方向に97℃で3. 5倍延伸した後125℃で熱処理を施し、次いで縦方向に98℃で1.5倍再延伸し、85℃の熱処理を施し、冷却して平均厚さ35μmのフィルムを得た。
【0034】
実施例2
実施例1で用いたポリエステルを実施例1で用いた共重合ポリエステル90重量%とジカルボン酸成分としてテレフタル酸単位100モル%、ジオール成分としてエチレングリコール90モル%、平均分子量4000のポリエチレングリコール10モル%よりなる共重合ポリエステル10重量%とする他は実施例1と同様にして平均厚さ35μmのフィルムを得た。
【0035】
実施例3
実施例1で用いたポリエステルを実施例1で用いた共重合ポリエステル90重量%とジカルボン酸成分としてテレフタル酸単位90モル%、セバシン酸10モル%よりなりジオール成分としてエチレングリコールよりなる共重合ポリエステル10重量%とする他は実施例1と同様にして平均厚さ35μmのフィルムを得た。
【0036】
実施例4
実施例1で用いたポリエステルを実施例1で用いた共重合ポリエステル90重量%とポリブチレンテレフタレート10重量%とする他は実施例1と同様にして平均厚さ35μmのフィルムを得た。
【0037】
実施例5
ジカルボン酸成分としてテレフタル酸単位75モル%、イソフタル酸単位25モル%よりなり、ジオール成分としてエチレングリコールよりなり、平均粒径1. 4μmの酸化ケイ素粒子800ppmを含む共重合ポリエステルを常法により乾燥後、押出機で250℃に溶融しTダイより押出し、急冷固化して未延伸フィルムを得た。得られた未延伸フィルムを縦方向に88℃で2.8倍、横方向に97℃で3. 5倍延伸した後125℃で熱処理を施し、次いで縦方向に95℃で1. 5倍再延伸し、85℃の熱処理を施し、冷却して平均厚さ35μmのフィルムを得た。
【0038】
比較例1
実施例1において延伸条件を90℃、1. 4倍の縦延伸、85℃の熱処理のみとする以外は実施例1と同様にして平均厚さ35μmのフィルムを得た。
【0039】
比較例2
実施例1において延伸条件を90℃、3. 8倍の縦延伸と90℃、1. 5倍の横延伸、85℃の熱処理のみとする以外は実施例1と同様にして平均厚さ35μmのフィルムを得た。
【0040】
比較例3
実施例1で用いたポリエステルをポリエチレンテレフタレートとする他は実施例1と同様にして平均厚さ35μmのフィルムを得た。
【0041】
以上、得られたフィルムの評価結果を表1、2に示す。
比較例1のフィルムでは、横方向の屈折率が低く、機械特性(ヤング率、破断強度)が劣り好ましくなかった。比較例2のフィルムでは、収縮率が満たされておらず好ましくなかった。比較例3のフィルムでは、シール強度が低く好ましくなかった。
上記比較例に対し、実施例の各フィルムは、長手方向に一軸収縮性を示し、シール特性が良好で、横方向の機械特性にも優れる特徴を有するものである。
【0042】
【表1】

Figure 0003585056
【0043】
【表2】
Figure 0003585056
【0044】
【発明の効果】
本発明のポリエステル系収縮フィルムによれば、フィルム長手方向に一軸収縮性を示し、かつ両軸方向の機械的特性や耐熱性等に優れた収縮性フィルムを提供することができる。[0001]
[Industrial applications]
The present invention relates to a polyester-based shrinkable film which exhibits a high shrinkage rate in a longitudinal direction, has excellent mechanical strength in both a longitudinal direction and a width direction, and is used for shrinkable labels and food packaging.
[0002]
[Prior art]
Conventionally, stretched films made of polyvinyl chloride or polystyrene have been mainly used as shrink labels used for glass bottles or polyethylene terephthalate (hereinafter referred to as PET) bottles and shrink films for food packaging. However, in recent years, a polyester-based shrink film excellent in safety and health, chemical resistance, and transparency has been demanded, and a stretched film made of polyester has been proposed. Further, these films are roughly classified into a type exhibiting uniaxial shrinkage and a balance type according to market needs.
[0003]
A polyester-based shrinkable film of a type exhibiting uniaxial shrinkage is stretched at a high magnification in a desired direction as represented by, for example, JP-A-6-18902 in order to express its properties, In many cases, the film is not stretched or slightly stretched in the direction in which it is performed. For this reason, although the mechanical properties in the desired direction are good, there is a problem that the mechanical properties in the direction orthogonal thereto are inferior.
[0004]
In addition, uniaxially contractible polyester films are mainly uniaxially contractible in the film width direction, and there are few uniaxially contractible polyester films in the longitudinal direction of the film.
[0005]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a polyester-based shrink film that exhibits uniaxial shrinkage in the longitudinal direction of the film and has excellent mechanical properties and heat resistance in both axial directions.
[0006]
[Means for Solving the Problems]
The object described above is a film made of polyester having a melting point of 170 ° C. or more and 250 ° C. or less, wherein the polyester film has a shrinkage (Sm) in a film longitudinal direction in hot air of 100 ° C. of 20% or more. The shrinkage ratio (St) in the width direction is (shrinkage ratio Sm in the longitudinal direction) × 2/3 or less, the Young's modulus in the longitudinal direction and the width direction are both 250 kg / mm 2 or more, and the refraction in the longitudinal direction and the width direction. This is achieved by a polyester-based shrink film characterized in that both the ratios are 1.590 or more.
[0007]
The polyester-based shrinkable film of the present invention has a melting point of 170 ° C or more and 250 ° C or less, and particularly preferably 180 ° C or more and 240 ° C or less. If the melting point is lower than 170 ° C., the heat resistance deteriorates, while if it exceeds 250 ° C., the heat sealability decreases.
[0008]
Polyester in the present invention, as a dicarboxylic acid component, terephthalic acid, adipic acid, oxalic acid, malonic acid, succinic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, naphthalenedicarboxylic acid, diphenylether dicarboxylic acid, cyclohexanedicarboxylic acid, 5-sulfonic acid salt isophthalic acid or long-chain aliphatic dicarboxylic acid dodecanedioic acid, eicoic acid, dimer acid and their derivatives, such as one or more known dicarboxylic acid components, and as a diol component, Ethylene glycol, propylene glycol, neopentyl glycol, hexamethylene glycol, 1,4-butanediol, trimethylene glycol, tetramethylene glycol, diethylene glycol, polyethylene glycol, polyalkylene It is a polyester or copolymerized polyester comprising one or more known diol components such as glycol, 1,4-cyclohexanedimethanol, 2-alkyl-1,3-propanediol, a diethoxy compound of bisphenol A or bisphenol S.
[0009]
As the copolyester, those obtained by substituting a part of a dicarboxylic acid component and / or a glycol component with another dicarboxylic acid or a glycol component can be used. Other components, for example, p-oxybenzoic acid, Oxycarboxylic acids such as p-oxyethoxybenzoic acid, benzoic acid, monofunctional compounds such as methoxypolyalkylene glycol, and polyfunctional compounds such as glycerin, pentaerythritol, trimethylolethane, and trimethylolpropane also have substantially the same products. It can be used as long as the polymer on the line can be retained.
[0010]
In the polyester of the present invention, terephthalic acid is preferably used as the dicarboxylic acid component, and copolymerized polyester having ethylene glycol as the main component as the diol component is preferably used. As the copolymerization component, isophthalic acid, phthalic acid, and adipine are used as the dicarboxylic acid component. Acid, sebacic acid, dodecanedioic acid, dimer acid, copolymerized polyester using diethylene glycol, polyethylene glycol, polyalkylene glycol as a diol component, and 1,4-cyclohexanedimethanol as needed, can be obtained industrially at low cost, In addition, the shrinkage characteristics are good and preferable.
[0011]
In the polyester of the present invention, one or more of polyester and / or copolyester may be blended with polyester or copolyester. The melting point of the polyester to be blended is not particularly limited as long as the peak temperature at which the endothermic peak area of the melting point observed in the differential scanning calorimetry of the polyester mixed after blending is large is in the range of 170 ° C to 250 ° C.
[0012]
In the copolyester used in the present invention, preferably at least 65% mol, more preferably at least 70% mol of the dicarboxylic acid component is a terephthalic acid unit, and preferably at least 65 mol%, more preferably at least 70%, of the diol component. % Mol or more is an ethylene glycol unit. Copolyesters having less than 65 mol% of terephthalic acid and / or ethylene glycol units are not preferred because the strength and solvent resistance of the film when formed into a film are poor.
[0013]
In addition, the above-mentioned polyester may be a mixture of a polymer other than the polyester as long as it is 30% by weight or less in addition to the polyester.
[0014]
Further, in order to improve the lubricity of the film, those containing fine particles such as an organic lubricant and an inorganic lubricant are preferable. Further, if necessary, additives such as a stabilizer, a coloring agent, an antioxidant, an antifoaming agent, and an antistatic agent may be contained. As the fine particles imparting lubricating properties, known inert external particles such as carion, clay, calcium carbonate, silicon oxide, calcium terephthalate, aluminum oxide, titanium oxide, calcium phosphate, lithium fluoride, and carbon black, and melting of polyester resin Insoluble high-melting point compounds during film formation, cross-linked polymers and metal compound catalysts used during polyester synthesis, such as alkali metal compounds, alkaline earth metal compounds, etc., during polyester production, include internal particles formed inside the polymer. it can. The content of the fine particles contained in the film is usually 0.005 to 0.9% by weight, and the average particle size of the fine particles is usually in the range of 0.001 to 3.5 μm.
[0015]
The intrinsic viscosity of the film of the present invention is preferably 0.50 or more, more preferably 0.55 or more. If the intrinsic viscosity of the film is less than 0.5, the heat resistance decreases, and the melt-forming becomes unstable, which is not preferable.
[0016]
In the film of the present invention, the shrinkage ratio (Sm) in the longitudinal direction of the film in hot air at 100 ° C. needs to be 20% or more. In the present invention, when the shrinkage ratio in the longitudinal direction of the film is less than 20%, the amount of shrinkage becomes insufficient, and the film does not adhere sufficiently to the container, which is not preferable.
[0017]
In the film of the present invention, the shrinkage ratio (St) in a direction perpendicular to the longitudinal direction, that is, in the width direction in hot air at 100 ° C., needs to be (longitudinal shrinkage ratio Sm) × 2/3 or less. . A film having a shrinkage ratio in the width direction exceeding (shrinkage ratio Sm in the longitudinal direction) × 2/3 is not preferable because the uniaxial shrinkage is lost, and furthermore, distortion, wrinkles, curl at the end, and the like are generated during shrinkage.
[0018]
As described above, the present inventors show uniaxial shrinkage in the longitudinal direction by setting the melting point, polymer type, film shrinkage, intrinsic viscosity and the like within a specific range, and have excellent heat resistance and solvent resistance. As a result, a film with improved distortion and wrinkles during shrinkage was obtained. However, the strength in the longitudinal direction and the width direction of the film was not yet sufficient in the above-mentioned study, and further improvement was required.
[0019]
As a result of further intensive studies, the present inventors have found that by setting the refractive index of the film to a value equal to or higher than a certain value, it is possible to obtain a film having excellent uniaxial shrinkage in the longitudinal direction and excellent transverse strength. .
[0020]
That is, in the film of the present invention, the refractive index in both the longitudinal direction and the width direction needs to be 1.590 or more. If the refractive index of the film is less than 1.590, the strength is undesirably reduced.
[0021]
Further, in the film of the present invention, the plane orientation coefficient of the film is 0.1. It is preferably at least 07. The plane orientation coefficient of the film is 0. A film having a thickness of less than 07 is not preferable because the solvent resistance, unevenness of thickness, strength and the like are deteriorated.
[0022]
In the film of the present invention, the Young's modulus from the viewpoint of mechanical properties during handling longitudinal, it is required to be 250 kg / mm 2 or more in both the width direction. Further, the breaking strength is preferably 8 kg / mm 2 or more in both the longitudinal direction and the width direction from the viewpoint of strength.
[0023]
Further, the film of the present invention may be provided with various coatings. Although the thickness of the film of the present invention is not particularly limited, it is effectively used at 1 to 300 μm, preferably 5 to 100 μm.
[0024]
Next, a method for producing the film of the present invention will be described.
After drying the polyester or copolymerized polyester of the composition of the present invention using a conventional hopper dryer, paddle dryer, vacuum dryer, or the like, extrusion is performed at a temperature of 200 to 320 ° C. After extrusion, the film is rapidly cooled to obtain an unstretched film. When the T-die method is used, a film having a uniform thickness unevenness is preferably obtained by using a so-called electrostatic application contact method during the rapid cooling.
[0025]
Unstretched film thus obtained was, to the finally obtained film satisfies the requirements of the invention, the longitudinal direction, respectively are laterally from 2.0 to 5. And 0 times stretched to obtain a film. The stretching means is not particularly limited, and a method such as roll stretching or tenter stretching is applied, and the shape may be any shape such as a flat shape and a tube shape. The stretching method may be any of uniaxial stretching, sequential biaxial stretching, and simultaneous biaxial stretching.
[0026]
In the above stretching, re-stretching is further performed at least in the longitudinal direction. By stretching to at least 1 times, preferably at least 1.2 times, and satisfying the range of the refractive index of the film of the present invention, it shows a high shrinkage in the longitudinal direction, which was not obtained conventionally, and A film having excellent mechanical strength and the like in both the width direction and the width direction can be obtained. In addition, heat treatment may be performed before re-stretching, and the heat treatment temperature is not particularly limited as long as it is within a range of 250 ° C. or less. C is preferred.
[0027]
The film stretched in this way is stretched at a temperature of 50 ° C. or more and 120 ° C. or less after stretching. Performing a heat treatment for at least 01 second and at most 30 seconds is also a preferable method for obtaining uniform shrinkage of the film. The heat treatment is usually carried out under a fixed tension, but it is also possible to simultaneously relax or broaden by 20% or less. As a heat treatment method, a known method such as a method of contacting with a heating roll or a method of gripping a clip in a tenter can be used. Further, it is also possible to perform a corona discharge treatment on one side or both sides of the film during, before or after the stretching step to improve the adhesion of the film to a printed layer or the like. Furthermore, it is also possible to improve the adhesion, antistatic properties, slipperiness, light-shielding properties, etc. of the film by applying the film to one or both sides of the film during, before or after the stretching step. The film thus obtained is wound up to obtain a product.
[0028]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples. First, measurement and evaluation methods are described below.
(1) Heat shrinkage ratio The distance between the marked lines of the film sample was set to 200 mm, the film was cut into 10 mm, heated for 5 minutes using hot air of 100 ° C., and the length between the marked lines was measured. Expressed as a percentage with respect to.
[0029]
(2) Melting point (° C)
Using a differential scanning calorimeter RDC220 type manufactured by Seiko Instruments Inc., 5 mg of a sample was sampled and determined from the peak temperature of the endothermic curve when the temperature was raised from room temperature at a rate of 20 ° C./min.
[0030]
(3) Refractive index of film Using an Abbe refractometer manufactured by Atago Co., Ltd., the refractive index of the film was measured using a sodium lamp as a light source. The refractive index nγ in the longitudinal direction in the film plane, the refractive index nβ in the transverse direction perpendicular to the longitudinal direction, and the refractive index nα in the thickness direction were determined, and the degree of plane orientation ΔP was determined by the following equation.
ΔP = 1 / (nγ + nβ) −nα
[0031]
(4) Breaking strength, tensile modulus (Young's modulus)
A specimen having a width of 10 mm and a length of 100 mm was measured at a drawing speed of 300 mm / min according to JIS-Z1702-1977.
[0032]
(5) Seal strength After two heat-shrinkable polyester films were laminated and heat-sealed with an impulse sealer and scale 4, the peel strength after sealing was measured.
[0033]
Example 1
Terephthalic acid unit as dicarboxylic acid component 17. 5 mol%, isophthalic acid units 5 mol%, ethylene glycol as a diol component, and an average particle diameter of 1. The copolymer polyester containing 800 ppm of 4 μm silicon oxide particles was dried by a conventional method, melted at 265 ° C. with an extruder, extruded from a T-die, and quenched and solidified to obtain an unstretched film. 1. The obtained unstretched film was longitudinally heated at 88 ° C. 7 times, at 97 ° C in the horizontal direction. After stretching 5 times, the film was heat-treated at 125 ° C, then stretched again at 98 ° C 1.5 times in the machine direction, heat-treated at 85 ° C, and cooled to obtain a film having an average thickness of 35 µm.
[0034]
Example 2
90% by weight of the polyester used in Example 1 and 100% by mole of terephthalic acid unit as a dicarboxylic acid component, 90% by mole of ethylene glycol as a diol component, and 10% by mole of polyethylene glycol having an average molecular weight of 4000. A film having an average thickness of 35 μm was obtained in the same manner as in Example 1 except that the copolymerized polyester was 10% by weight.
[0035]
Example 3
Copolyester 10 comprising 90% by weight of the polyester used in Example 1 and 90% by mole of terephthalic acid unit and 10% by mole of sebacic acid as dicarboxylic acid components and ethylene glycol as a diol component. A film having an average thickness of 35 μm was obtained in the same manner as in Example 1 except that the weight% was used.
[0036]
Example 4
A film having an average thickness of 35 μm was obtained in the same manner as in Example 1 except that the polyester used in Example 1 was changed to 90% by weight of the copolymerized polyester used in Example 1 and 10% by weight of polybutylene terephthalate.
[0037]
Example 5
The dicarboxylic acid component is composed of 75 mol% of terephthalic acid units and 25 mol% of isophthalic acid units, and the diol component is composed of ethylene glycol. A copolymer polyester containing 800 ppm of 4 μm silicon oxide particles was dried by a conventional method, melted at 250 ° C. by an extruder, extruded from a T-die, and quenched and solidified to obtain an unstretched film. The obtained unstretched film was 2.8 times at 88 ° C. in the longitudinal direction and 3.times. After stretching 5 times, heat treatment is performed at 125 ° C, and then at 95 ° C in the longitudinal direction. The film was re-stretched 5 times, heat-treated at 85 ° C., and cooled to obtain a film having an average thickness of 35 μm.
[0038]
Comparative Example 1
In Example 1, the stretching conditions were 90 ° C. A film having an average thickness of 35 μm was obtained in the same manner as in Example 1 except that only 4 × longitudinal stretching and heat treatment at 85 ° C. were used.
[0039]
Comparative Example 2
In Example 1, the stretching conditions were 90 ° C .; Eight times longitudinal stretching and 90 ° C, 1. A film having an average thickness of 35 μm was obtained in the same manner as in Example 1 except that only the 5-fold transverse stretching and the heat treatment at 85 ° C. were performed.
[0040]
Comparative Example 3
A film having an average thickness of 35 μm was obtained in the same manner as in Example 1 except that the polyester used in Example 1 was changed to polyethylene terephthalate.
[0041]
Tables 1 and 2 show the evaluation results of the obtained films.
In the film of Comparative Example 1, the refractive index in the transverse direction was low, and the mechanical properties (Young's modulus and breaking strength) were poor, which was not preferable. In the film of Comparative Example 2, the shrinkage was not satisfied, which was not preferable. In the film of Comparative Example 3, the sealing strength was low, which was not preferable.
In contrast to the above comparative examples, each of the films of the examples has characteristics of exhibiting uniaxial shrinkage in the longitudinal direction, good sealing properties, and excellent mechanical properties in the transverse direction.
[0042]
[Table 1]
Figure 0003585056
[0043]
[Table 2]
Figure 0003585056
[0044]
【The invention's effect】
According to the polyester-based shrinkable film of the present invention, a shrinkable film exhibiting uniaxial shrinkage in the longitudinal direction of the film and having excellent mechanical properties and heat resistance in both axial directions can be provided.

Claims (2)

融点が170℃以上250℃以下であるポリエステルから成るフィルムであって、該ポリエステル系フィルムにおいて100℃の熱風中でのフィルム長手方向における収縮率(Sm)が20%以上であり、幅方向における収縮率(St)が(長手方向の収縮率Sm)×2/3以下であって、長手方向と幅方向のヤング率が共に250kg/mm 2 以上、長手方向と幅方向の屈折率が共に1.590以上であることを特徴とするポリエステル系収縮フィルム。A polyester film having a melting point of 170 ° C. or more and 250 ° C. or less, wherein the polyester film has a shrinkage ratio (Sm) of 20% or more in a film longitudinal direction in hot air at 100 ° C. and a shrinkage in a width direction. The modulus (St) is not more than (longitudinal shrinkage Sm) × 2/3, the Young's modulus in both the longitudinal direction and the width direction is 250 kg / mm 2 or more, and the refractive index in both the longitudinal direction and the width direction is 1. A polyester shrinkable film having a molecular weight of 590 or more. 面配向係数が0. 07以上である、請求項1のポリエステル系収縮フィルム。The polyester-based shrink film according to claim 1, wherein the plane orientation coefficient is 0.07 or more.
JP7827895A 1995-03-08 1995-03-08 Polyester shrink film Expired - Fee Related JP3585056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7827895A JP3585056B2 (en) 1995-03-08 1995-03-08 Polyester shrink film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7827895A JP3585056B2 (en) 1995-03-08 1995-03-08 Polyester shrink film

Publications (2)

Publication Number Publication Date
JPH08244114A JPH08244114A (en) 1996-09-24
JP3585056B2 true JP3585056B2 (en) 2004-11-04

Family

ID=13657510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7827895A Expired - Fee Related JP3585056B2 (en) 1995-03-08 1995-03-08 Polyester shrink film

Country Status (1)

Country Link
JP (1) JP3585056B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1142706A (en) * 1997-07-25 1999-02-16 Gunze Ltd Thermal contraction polyester film and vessel having the same mounted thereon
JP2001114912A (en) * 1999-08-09 2001-04-24 Du Pont Kk Stretched aromatic polyester film and preparation method thereof
JP2005292195A (en) * 2004-03-31 2005-10-20 C I Kasei Co Ltd Heat-shrinkable film for label
JP4411556B2 (en) 2006-06-14 2010-02-10 東洋紡績株式会社 Heat-shrinkable polyester film and method for producing the same
WO2008018528A1 (en) * 2006-08-09 2008-02-14 Toyo Boseki Kabushiki Kaisha Package
JP2008273619A (en) * 2006-08-09 2008-11-13 Toyobo Co Ltd Package
JP4560740B2 (en) 2007-09-25 2010-10-13 東洋紡績株式会社 Method for producing heat-shrinkable polyester film, heat-shrinkable polyester film and package
JP4809419B2 (en) 2007-12-13 2011-11-09 東洋紡績株式会社 Heat-shrinkable polyester film and method for producing the same
CN101970212B (en) 2008-02-27 2014-05-07 东洋纺织株式会社 Heat-shrinkable white polyester film, process for producing heat-shrinkable white polyester film, label, and package
EP2862892B1 (en) * 2012-08-03 2020-09-09 Toyobo Co., Ltd. Heat-shrinkable polyester-based film
WO2017022742A1 (en) * 2015-08-06 2017-02-09 日東電工株式会社 Polyester film
EP3339000B1 (en) 2015-08-19 2020-09-30 Toyobo Co., Ltd. Heat-shrinkable polyester film and package

Also Published As

Publication number Publication date
JPH08244114A (en) 1996-09-24

Similar Documents

Publication Publication Date Title
JP3657502B2 (en) Heat-shrinkable polyester film and method for producing the same
JP2730197B2 (en) Easy heat sealing laminated polyester film
US4939232A (en) Shrinkable polyester film
JPH0733064B2 (en) Polyester shrink film
JP3585056B2 (en) Polyester shrink film
JPS63193822A (en) Shrinkable film
JPH0753756A (en) Thermally shrinkable porous polyester film
JPH0753737A (en) Shrinkable polyester film
JP3496728B2 (en) Heat-shrinkable polyester film
JP3939470B2 (en) Heat-shrinkable polyester film
JP4535553B2 (en) Heat shrinkable polyester film
JP2848725B2 (en) Polyester shrink film
JP2932596B2 (en) Heat shrinkable polyester film
JP5004398B2 (en) Heat shrinkable polyester film
JP2692270B2 (en) Polyester film for fluorescent light shrink packaging
JPH04164930A (en) Shrink polyester film of improved surface property
JP3329067B2 (en) High shrink film
JP2611415B2 (en) Biaxially oriented polyester film for molding, film for molding transfer, and film for molding container
JP2000094513A (en) Polyester film
JP3949565B2 (en) Heat-shrinkable polyester film and method for producing the same
JP4799066B2 (en) Laminated polyester film
JPH08302035A (en) Polyester-based heat-shrinkable film
JPH0748441A (en) Shrinkable polyester film
JPH0729376B2 (en) Low temperature shrinkable polyester film
JPH11246684A (en) Heat-shrinkable polyester film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040716

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040729

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees