JP3584786B2 - Ofdm復調装置 - Google Patents

Ofdm復調装置 Download PDF

Info

Publication number
JP3584786B2
JP3584786B2 JP17107199A JP17107199A JP3584786B2 JP 3584786 B2 JP3584786 B2 JP 3584786B2 JP 17107199 A JP17107199 A JP 17107199A JP 17107199 A JP17107199 A JP 17107199A JP 3584786 B2 JP3584786 B2 JP 3584786B2
Authority
JP
Japan
Prior art keywords
signal
level information
signal level
subcarrier
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17107199A
Other languages
English (en)
Other versions
JP2000358010A (ja
Inventor
智明 熊谷
匡人 溝口
正博 守倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP17107199A priority Critical patent/JP3584786B2/ja
Publication of JP2000358010A publication Critical patent/JP2000358010A/ja
Application granted granted Critical
Publication of JP3584786B2 publication Critical patent/JP3584786B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Synchronisation In Digital Transmission Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、直交周波数分割多重(Orthogonal Frequency Division Multiplexing:OFDM)方式を用いるディジタル無線通信システムの復調装置において、特に熱雑音の影響によるチャネル推定精度の低下に起因する劣化を抑制する復調装置に関する。
【0002】
【従来の技術】
OFDM方式のディジタル無線通信システムでは、互いに周波数の異なる直交する複数のサブキャリアを同時に使用して情報を伝送する。従って、受信側では一般に高速フーリエ変換(FFT)を用いて受信したOFDM信号から各サブキャリアの信号成分を分離する。また、OFDM方式では送信する各シンボルの間にガードインターバルを設ける。一般にこのガードインターバルでは、送信する各シンボルのデータ部分を循環的に拡張した信号を送信する。データ部分を循環的に拡張した信号をガードインターバルで送信することにより、受信したOFDM信号のタイミングと受信側のシンボルタイミング(FFTウインドウタイミング)とが多少ずれている場合であっても、ずれの大きさがガードインターバル内に収まる程度であれば、隣接シンボルからの干渉を受けずに受信信号を復調することができる。
【0003】
従来例のOFDM復調装置について、図8を参照して説明する。なお、この例では図5に示すバーストフォーマットのOFDM信号を送受信する場合を想定している。
【0004】
図8において、アンテナ1で受信されたOFDM信号は、受信回路2に入力される。受信回路2は入力されたOFDM信号に対し、周波数変換、フィルタリング、直交検波等の受信処理を行い受信信号を複素ベースバンド信号として出力する。受信回路2から出力される複素ベースバンド信号は、同期処理回路3に入力される。
【0005】
同期処理回路3は、入力される複素ベースバンド信号に含まれる同期用プリアンブル信号を用いて、搬送波周波数誤差およびシンボルタイミングを検出する。また、検出した搬送波周波数誤差の情報を用いて受信処理後の複素ベースバンド信号に対して搬送波周波数誤差補正処理を行い、補正された複素ベースバンド信号を出力する。また、検出されたシンボルタイミングの情報も同期処理回路3から出力される。シンボルタイミングの検出は、複素ベースバンド信号からガードインターバルを除去しフーリエ変換回路に入力すべき信号だけを抽出するために必要になる。同期処理回路3から出力される搬送波周波数誤差補正処理後の複素ベースバンド信号およびシンボルタイミング情報の信号がガードインターバル除去回路4に入力される。
【0006】
ガードインターバル除去回路4は、入力されるシンボルタイミング情報に従い、入力される搬送波周波数補正処理後の複素ベースバンド信号に対して、1OFDMシンボル毎に1OFDMシンボル長からガードインターバルに相当する信号を抜いた時間幅のFFTウインドウ処理を施す。すなわち、ガードインターバルに相当する信号を除去し、フーリエ変換回路5に入力すべき有効な信号成分だけを抽出し出力する。ガードインターバルが除去された複素ベースバンド信号がガードインターバル除去回路4から出力され、フーリエ変換回路5に入力される。
【0007】
フーリエ変換回路5は、入力される複素ベースバンド信号を1OFDMシンボル毎に高速フーリエ変換処理する。高速フーリエ変換処理の結果、サブキャリア毎に分離された信号がフーリエ変換回路5から出力される。フーリエ変換回路5が出力するサブキャリア毎の信号は、同期検波回路7およびチャネル推定回路6にそれぞれ入力される。
【0008】
チャネル推定回路6は、入力される各サブキャリアの信号のうち、チャネル推定用プリアンブル信号に相当する信号を用いて、受信したOFDM信号が通ってきた伝送路(チャネル)の状態を推定し、推定されたチャネル推定結果を出力する。このチャネル推定結果からは、例えば、各々のサブキャリアの振幅や位相がフェージングによってどのような影響を受けているかを知ることができる。チャネル推定回路6から出力されるチャネル推定結果は同期検波回路7に入力される。
【0009】
同期検波回路7は、チャネル推定回路6から入力されるチャネル推定結果を用いて、各サブキャリアの信号成分毎にフェージング等のチャネル特性に起因する振幅変動および位相回転を補正するとともに同期検波を行う。同期検波によって検波された信号が同期検波回路7から出力され、識別回路8に入力される。
【0010】
識別回路8は、同期検波回路7が出力する検波信号に含まれるデータ信号に対してシンボル判定を行い、判定結果を出力する。
【0011】
【発明が解決しようとする課題】
前述のように、OFDMバースト信号を同期検波する場合には、OFDMバースト信号の先頭に設けられる同期用プリアンブル信号を用いて、搬送波周波数誤差およびシンボルタイミングを検出する。また、検出された搬送波周波数誤差およびシンボルタイミングに基づいて、搬送波の周波数誤差を補正するとともに、1個のOFDMシンボル毎にFFTウインドウ処理によりガードインターバルを除去する。更に、OFDMバースト信号の先頭に設けられる同期用プリアンブルに続いて設けられるチャネル推定用プリアンブル信号を用いてチャネル情報を検出し、その検出結果に基づいてデータ部分の信号の振幅および位相の変化を検出し、各サブキャリア毎に同期検波を行う。
【0012】
ところで、実際の受信装置では一般に受信回路102において受信信号をアナログ処理する際に熱雑音が付加され、受信回路2からは熱雑音が付加された複素ベースバンド信号が出力される。同期処理回路3、ガードインターバル除去回路4およびフーリエ変換回路5は熱雑音の影響を除去あるいは低減する機能を持たないため、受信回路2から出力される複素ベースバンド信号に熱雑音が付加されていると、フーリエ変換回路5が出力するサブキャリア毎の各信号の信号品質は熱雑音の影響によって劣化することになる。一方、チャネル推定回路6はフーリエ変換回路5が出力するサブキャリア毎の各信号のうち、図5に示す固定長のチャネル推定用プリアンブル信号に相当する信号だけを用いて、受信したOFDM信号が通ってきた伝送路(チャネル)の状態を推定する。システムのスループット特性を向上させるため、一般にバーストのチャネル推定用プリアンブル信号の信号長は短く設定される。従って、フーリエ変換回路5が出力するサブキャリア毎の各信号の信号品質が熱雑音の影響によって劣化すると、チャネル推定回路6における伝送路(チャネル)の状態の推定精度も熱雑音の影響によって低下する。チャネル推定回路6における推定精度が低下した場合、何も補正を行わずに同期検波回路7で同期検波を行うと各サブキャリア信号の正しい振幅および位相が検出できなくなるため、大きな劣化を生じる。
【0013】
このような熱雑音による伝送路(チャネル)状態の推定精度の低下を回避するため、OFDMバースト信号の先頭部分に設けられるチャネル推定用プリアンブル信号を複数回送信し受信側で平均化を行うことにより熱雑音の影響を低減する方法や、受信したチャネル推定用プリアンブル信号を周波数方向に移動平均処理することにより熱雑音の影響を低減する方法が考えられる。しかし、前者には、OFDMバースト信号に占めるチャネル推定用プリアンブル信号の割合が増加するため、伝送効率が低下するという問題がある。また、後者には、周波数方向に移動平均処理を行うので、各サブキャリア毎の伝送路(チャネル)状態の変動が大きい場合にその変動に追従することができなくなるため、チャネルの推定精度が低下するという問題がある。
【0014】
本発明は、上述のようなOFDM復調装置において、受信信号に熱雑音が付加される場合に、簡易な回路で伝送効率を低下させずに復調信号の劣化を抑制することを目的とする。
【0015】
【課題を解決するための手段】
請求項1は、OFDM信号を受信して所定の受信処理を行う受信手段と、前記受信手段が出力する受信信号に対してタイミング同期処理および搬送波周波数同期処理を行い同期後の信号および搬送波周波数誤差情報を出力する同期処理手段と、前記同期処理手段によってタイミング同期処理および搬送波周波数同期処理された信号をフーリエ変換を用いて各サブキャリア毎の信号に分離するフーリエ変換手段とを備えるOFDM復調装置において、前記フーリエ変換手段によって分離された各サブキャリア信号を用いてチャネル特性の推定を行うチャネル推定手段と、前記フーリエ変換手段によって分離された各サブキャリア信号の信号レベル情報を抽出する信号レベル情報抽出手段と、前記信号レベル情報抽出手段によって得られた各サブキャリア信号の信号レベル情報を各サブキャリア毎に時間方向に平滑化を行う信号レベル情報平滑化手段と、前記信号レベル情報平滑化手段によって得られた平滑化された各サブキャリア信号の信号レベル情報を用いて前記チャネル推定手段によって得られたチャネル特性の推定結果の補正を行いチャネル情報を出力するチャネル推定結果補正手段と、前記チャネル推定結果補正手段によって得られたチャネル情報を用いて前記フーリエ変換手段によって分離されたサブキャリア信号に対し等化処理および同期検波処理を行い検波信号を出力する同期検波手段とを設けたことを特徴とする。
【0016】
チャネル推定手段は、前記フーリエ変換手段によって分離された各サブキャリア信号を用いてチャネル特性の推定を行う。請求項1においては、チャネル推定手段は、バーストの先頭部分に設けられた固定長のチャネル推定用プリアンブル信号だけを用いて、受信したOFDM信号が通ってきた伝送路(チャネル)の状態を推定することを前提としている。受信手段による受信処理時に受信信号に熱雑音が付加されると、チャネル推定手段が推定する伝送路(チャネル)の状態に誤差が生じる。この誤差は振幅成分と位相成分の両方に生じることになる。この場合、例えば変調方式として16QAM変調のように振幅成分と位相成分の両方に情報を持つ変調方式の場合には、この振幅成分と位相成分の両方の誤差によって大きな劣化を生じてしまう。また、例えばQPSK変調のような位相変調方式の場合であっても、同期検波手段の出力を軟判定する場合には、この振幅成分と位相成分の両方の誤差によって大きな劣化を生じてしまう。すなわち、チャネル推定手段が推定する伝送路(チャネル)の状態の振幅成分の誤差を除去するだけであっても、その熱雑音によって生じる劣化を大きく改善することができる。信号レベル情報抽出手段は、前記フーリエ変換手段によって分離された各サブキャリア信号の信号レベル情報を抽出する。信号レベル情報平滑化手段は、前記信号レベル情報抽出手段によって得られた各サブキャリア信号の信号レベル情報を各サブキャリア毎に時間方向に平滑化を行う。この平滑化により、前記信号レベル情報抽出手段の出力する各サブキャリアの信号の信号レベル情報に含まれる熱雑音の影響を低減することができる。すなわち、チャネルの振幅成分の特性を高精度に検出することができる。ただし、変調方式として振幅成分に情報を持つ変調方式、例えば16QAM変調を採用している場合には、フーリエ変換後の各サブキャリアの信号は、本来、位相平面上で図6に示す16個の基準信号点S1〜S16のいずれかの位置に現れる。すなわち、フーリエ変換後の各サブキャリアの信号が持つ信号レベルは、熱雑音が無い場合であっても変動してしまう。しかしながら、一般にバーストのデータ信号部(図5参照)で送信するデータのパターンはランダムであり、変調後の各サブキャリアの信号が図6に示す16個のそれぞれの基準信号点S1〜S16に現れる確率は全て等しくなる。従って、振幅成分に情報を持つ変調方式で変調が行われた信号であっても、十分に平滑化を行うことによりその振幅変動の影響を除去することが可能である。なお、変調方式として振幅成分に情報を持たない位相変調方式、例えばQPSK変調を採用している場合には、フーリエ変換後の各サブキャリアの信号は、本来、位相平面上で図7に示す4個の基準信号点S1〜S4のいずれかの位置に現れる。図7に示すように、振幅成分に情報を持たない位相変調方式の場合には、一般に位相平面上の基準信号点の位置は原点から全て等しい距離になるように配置されるため、熱雑音がない場合にはフーリエ変換後の各サブキャリアの信号が持つ信号レベルは全て等しくなり、変調により振幅変動が生じることはない。チャネル推定結果補正手段は、前記信号レベル情報平滑化手段によって得られた平滑化された各サブキャリア信号の信号レベル情報を用いて前記チャネル推定手段によって得られたチャネル特性の推定結果の振幅成分の補正を行い高精度のチャネル情報を出力する。同期検波手段は、前記チャネル推定結果補正手段によって得られた高精度のチャネル情報を用いて前記フーリエ変換手段によって分離されたサブキャリア信号に対し等化処理および同期検波処理を行い検波信号を出力する。高精度のチャネル情報を用いて等化処理および同期検波処理を行うため、検波信号の品質劣化を改善することができる。
【0017】
また、上述の補正処理は、チャネル推定用プリアンブル信号の信号長を長くする必要がないため、システムのスループットの低下を招くことはない。さらに、各サブキャリア毎の伝送路(チャネル)状態の変動が大きい場合であっても、周波数方向の移動平均等の処理を行っていないため、チャネルの推定精度が低下することはない。
【0018】
請求項2は、請求項1のOFDM復調装置において、前記信号レベル情報平滑化手段が、前記信号レベル情報抽出手段によって得られた各サブキャリア信号の信号レベル情報を各サブキャリア毎に時間方向に移動平均化を行うことを特徴とする。
【0019】
請求項3は、請求項1のOFDM復調装置において、前記信号レベル情報平滑化手段が、前記信号レベル情報抽出手段によって得られた各サブキャリア信号の信号レベル情報をそれぞれ時間方向に積分するとともに該積分を行った信号数で除算を行うことを特徴とする。
【0020】
請求項3においては、フェージングによる伝送路(チャネル)の状態が、1バースト区間を通してほとんど変化しないような場合を前提としている。この場合、各サブキャリアの信号の1個のOFDMシンボル当たりの信号レベルは、各サブキャリアの信号の信号レベルを1個のOFDMシンボル毎に積分処理を行い、その積分値を、積分を行った回数すなわち積分を行ったOFDMシンボル数で除算することにより求めることができる。この場合、バーストの後ろに行くほど積分するOFDMシンボル数が増加するため平滑化の効果が高くなり、熱雑音の影響をより低減することができるため、高精度に伝送路(チャネル)の状態を推定することができる。
【0021】
また、上述の補正処理を行うことにより、前述した16QAM変調のような振幅成分に情報が含まれる変調方式の場合に生じる振幅変動による推定誤差の影響を、バーストの後ろに行くほど効果的に除去することができる。
【0022】
請求項4は、請求項1のOFDM復調装置において、前記信号レベル情報平滑化手段が、前記信号レベル情報抽出手段によって得られた各サブキャリア信号の信号レベル情報をそれぞれ時間方向に積分するとともに該積分を行った信号数が2(N:自然数)で表される時にNビットのビットシフトにより除算を行うことを特徴とする。
【0023】
請求項4においては、フェージングによる伝送路(チャネル)の状態が、1バースト区間を通してほとんど変化しないような場合を前提としている。この場合、各サブキャリアの信号の1個のOFDMシンボル当たりの信号レベルは、各サブキャリアの信号の信号レベルを1個のOFDMシンボル毎に積分処理を行い、その積分値を、積分を行った回数すなわち積分を行ったOFDMシンボル数で除算することにより求めることができる。この場合、バーストの後ろに行くほど積分するOFDMシンボル数が増加するため平滑化の効果が高くなり、熱雑音の影響をより低減することができるため、高精度に伝送路(チャネル)の状態を推定することができる。また、各サブキャリアの信号の1個のOFDMシンボル当たりの信号レベルを求めるための除算をビットシフトによって実現するため、回路規模の増加を抑制することができる。さらに、ビットシフトは積分処理を行ったOFDMシンボル数が2(N:自然数)で表される時にのみ行うため、OFDMシンボル毎の動作が不要であり、また、バーストの後ろに行くほどビットシフト処理の頻度が少なくなるため、消費電力を著しく低減できる。さらにまた、上述の補正処理を行うことにより、前述した16QAM変調のような振幅成分に情報が含まれる変調方式の場合に生じる振幅変動による推定誤差の影響を、バーストの後ろに行くほど効果的に除去することができる。
【0024】
【発明の実施の形態】
(第1の実施の形態)
この形態のOFDM復調装置について、図1を参照して説明する。この形態は請求項1に対応する。
【0025】
この形態では、請求項1の受信手段、同期処理手段、フーリエ変換手段、チャネル推定手段、信号レベル情報抽出手段、信号レベル情報平滑化手段、チャネル推定結果補正手段および同期検波手段は、それぞれ受信回路102、同期処理回路103、フーリエ変換回路105、チャネル推定回路106、信号レベル情報抽出回路109、平滑化回路110、チャネル推定結果補正回路111および同期検波回路107に対応する。
【0026】
アンテナ101で受信されたOFDM信号は、受信回路102に入力される。受信回路102は、入力されるOFDM信号に対して周波数変換、フィルタリング、直交検波等の受信処理を施す。この受信処理の結果、複素ベースバンド信号として受信信号が受信回路102から出力される。
【0027】
受信回路102から出力される複素ベースバンド信号は、同期処理回路103に入力される。同期処理回路103は、入力される複素ベースバンド信号に含まれる同期用プリアンブル信号(図5参照)を用いて搬送波周波数誤差およびシンボルタイミングを検出する。そして、受信回路102から入力される複素ベースバンド信号に対して、検出した搬送波周波数誤差の情報を用いて搬送波周波数誤差を補正するための処理を施す。
【0028】
同期処理回路103は、搬送波周波数誤差の補正された複素ベースバンド信号と、検出したシンボルタイミングの情報を出力する。同期処理回路103から出力された搬送波周波数誤差の補正された複素ベースバンド信号と、検出したシンボルタイミングの情報はガードインターバル除去回路104に入力される。なお、シンボルタイミングの検出は、受信したOFDM信号のシンボル間に存在するガードインターバルを除去して各シンボルから有効なデータ成分を抽出するために必要になる。
【0029】
ガードインターバル除去回路104は、同期処理回路103から入力されるシンボルタイミングの情報に従って、入力される複素ベースバンド信号にFFTウインドウ処理を施す。すなわち、複素ベースバンド信号の1個のOFDMシンボル毎に、FFTウインドウの時間幅の信号成分だけを抽出し、ガードインターバルを除去する。FFTウインドウの時間幅は、1OFDMシンボル長からガードインターバルに相当する信号長を引いた時間幅である。
【0030】
ガードインターバル除去回路104によってガードインターバルを除去された複素ベースバンド信号がフーリエ変換回路105に入力される。フーリエ変換回路105は、入力される複素ベースバンド信号に1個のOFDMシンボル毎に高速フーリエ変換処理を施して、入力信号に含まれる多数のサブキャリアの各信号成分をそれぞれ分離する。フーリエ変換回路105で分離された各サブキャリアの信号は、同期検波回路107、チャネル推定回路106および信号レベル情報抽出回路109にそれぞれ入力される。
【0031】
チャネル推定回路106は、入力される各サブキャリアの信号のうち、チャネル推定用プリアンブル信号(図5参照)に相当する信号成分を用いて受信したOFDM信号が通ってきた伝送路(チャネル)の状態を推定し、その推定結果を出力する。チャネル推定回路106のチャネル推定結果を参照することにより、例えば、各々のサブキャリアの振幅や位相がフェージングによってどのような影響を受けているのかを知ることができる。チャネル推定回路106のチャネル推定結果は、チャネル推定結果補正回路111に入力される。
【0032】
信号レベル情報抽出回路109は、入力される各サブキャリアの信号の信号レベルを1個のOFDMシンボル毎にそれぞれ検出する。信号レベル情報抽出回路109によって検出された各サブキャリアの信号レベル情報は平滑化回路110に入力される。
【0033】
平滑化回路110は、1個のOFDMシンボル毎に入力される各サブキャリアの信号の信号レベルを平滑化する。この平滑化により、受信回路102において付加される熱雑音の影響を軽減し、各サブキャリアの信号の振幅成分がフェージングによってどのような影響を受けているのかを精度良く知ることができる。
【0034】
チャネル推定結果補正回路111は、平滑化回路110から出力される平滑化された各サブキャリア信号の信号レベル情報を利用して、チャネル推定回路106が出力する各サブキャリア毎のチャネル推定結果の振幅成分に関する情報を補正する。チャネル推定結果補正回路111によって補正されたチャネル推定結果は同期検波回路107に入力される。
【0035】
同期検波回路107は、フーリエ変換回路105から入力される複素ベースバンド信号について、チャネル推定結果補正回路111から入力される振幅補正後のチャネル推定結果を利用して、サブキャリア毎に、フェージング等のチャネル特性に起因する振幅変動および位相回転を補正するとともに同期検波を行う。同期検波回路107が出力する検波信号は、識別回路108に入力される。
【0036】
識別回路108は、入力される検波信号のうち、データ信号(図5参照)についてシンボル判定を行い、その判定結果を復調出力として出力する。例えば、16QAM変調の場合には識別回路108は各々の検波信号が図7に示す基準信号点S1〜S16のいずれに該当するかを識別する。
【0037】
(第2の実施の形態)
この形態のOFDM復調装置について、図2を参照して説明する。この形態は請求項2に対応する。この形態は第1の実施の形態の変形例である。図2において、第1の実施の形態と対応する要素は同一の符号を付けて示してある。第1の実施の形態と同一の部分については、以下の説明を省略する。
【0038】
図2のOFDM復調装置には、平滑化回路110の代わりに移動平均回路112を備えている。移動平均回路112の入力には、信号レベル情報抽出回路109が出力する各サブキャリアの信号レベル情報が印加される。
【0039】
移動平均回路112は、信号レベル情報抽出回路109が出力する各サブキャリアの信号レベル情報を各サブキャリア毎に時間方向に移動平均処理を行う。この移動平均処理により、信号レベル情報抽出回路109が出力する各サブキャリアの信号レベル情報に対する平滑化が行われる。移動平均回路112によって移動平均処理が施された各サブキャリアの信号レベル情報はチャネル推定結果補正回路111に入力される。
【0040】
(第3の実施の形態)
この形態のOFDM復調装置について、図3を参照して説明する。この形態は請求項3に対応する。この形態は第1の実施の形態の変形例である。図3において、第1の実施の形態と対応する要素は同一の符号を付けて示してある。第1の実施の形態と同一の部分については、以下の説明を省略する。
【0041】
図3のOFDM復調装置には、平滑化回路110の代わりに積分回路113および除算回路114を備えている。積分回路113の入力には、信号レベル情報抽出回路109が出力する各サブキャリアの信号レベル情報が印加される。
【0042】
積分回路113は、信号レベル情報抽出回路109が出力する各サブキャリアの信号レベル情報を各サブキャリア毎に時間方向に積分する。積分回路113により積分された各サブキャリアの信号レベル情報は除算回路114に入力される。
【0043】
除算回路114は、各サブキャリアの1OFDMシンボル当たりの信号レベルを算出するために、積分回路113が出力する各サブキャリアの信号レベル情報の積分値を、積分回路113にて積分処理したOFDMシンボル数でそれぞれ除算する。このように各サブキャリアの信号レベルの積分値を利用して各サブキャリアの1個のOFDMシンボル当たりの信号レベルを算出することにより、バーストの後ろにいくほど精度良く熱雑音の成分を除去することが可能となる。なお、振幅成分に情報を持つような変調方式によって変調された変調信号の場合には、除算回路114によって算出されるバースト先頭付近における各サブキャリアの1OFDMシンボル当たりの信号レベル情報は、変調による振幅変動の影響により信頼性が低くなることが考えられる。このような場合には、除算回路114は信頼性の低いバースト先頭付近における各サブキャリアの1個のOFDMシンボル当たりの信号レベル情報としてヌル信号を出力する。除算回路114によって算出された各サブキャリアの1個のOFDMシンボル当たりの信号レベル情報はチャネル推定結果補正回路111に入力される。
【0044】
(第4の実施の形態)
この形態のOFDM復調装置について、図4を参照して説明する。この形態は請求項4に対応する。この形態は第3の実施の形態の変形例である。図4において、第3の実施の形態と対応する要素は同一の符号を付けて示してある。第3の実施の形態と同一の部分については、以下の説明を省略する。
【0045】
図4のOFDM復調装置には、除算回路114の代わりにビットシフト回路115を備えている。ビットシフト回路115の入力には、積分回路113が出力する各サブキャリアの信号レベル情報の積分値が印加される。
【0046】
ビットシフト回路115は、各サブキャリアの1個のOFDMシンボル当たりの信号レベルを算出するために、積分回路113にて積分処理したOFDMシンボル数が2(N:自然数)で表される時に、積分回路113から出力された各サブキャリアの信号レベル情報の積分値をNビットのビットシフトにより除算を行う。なお、このビットシフトは、積分回路113にて積分処理したOFDMシンボル数が2(N:自然数)で表される時にのみ行い、ビットシフト回路115の出力を更新する。なお、シンボル数が2であらわされないときは、前回のビットシフトをしたときの出力をそのまま用いる。また、シンボル数が1の時はビットシフト回路115は入力された信号をそのまま出力する。このような処理を行うと、バーストの前に行くほどビットシフト回路115の出力が高い頻度で更新され、バーストの後ろに行くほどその更新頻度は低くなる。しかしながら、前述のように、各サブキャリアの信号レベルの積分値を利用して各サブキャリアの1個のOFDMシンボル当たりの信号レベルを算出することにより、バーストの後ろにいくほど精度良く熱雑音の成分を除去することが可能となる。従って、バーストの後ろの更新頻度を低くしても特性は劣化しない。また、ビットシフトを行うために必要な回路規模は一般に非常に小さいため、回路規模を大幅に低減することができる。なお、振幅成分に情報を持つような変調方式によって変調された変調信号の場合には、ビットシフト回路115によって算出されるバースト先頭付近における各サブキャリアの1OFDMシンボル当たりの信号レベル情報は、変調による振幅変動の影響により信頼性が低くなることが考えられる。このような場合には、ビットシフト回路115は信頼性の低いバースト先頭付近における各サブキャリアの1個のOFDMシンボル当たりの信号レベル情報としてヌル信号を出力する。ビットシフト回路115によって算出された各サブキャリアの1OFDMシンボル当たりの信号レベル情報はチャネル推定結果補正回路111に入力される。
【0047】
【発明の効果】
以上説明したように本発明によれば、受信信号に熱雑音が付加されている場合でも高精度のチャネル情報を用いて等化処理および同期検波処理を行うため、検波信号の品質劣化を改善することが可能である。また、チャネル推定用プリアンブル信号の信号長を長くする必要がないため、システムのスループットの低下を招くことがない。さらに、各サブキャリア毎の伝送路(チャネル)状態の変動が大きい場合であっても、周波数方向の移動平均等の処理を行わないため、チャネルの推定精度が低下することがない。
【0048】
また、各サブキャリアの信号レベルの積分値を利用して各サブキャリアの1個のOFDMシンボル当たりの信号レベルを算出することにより、バーストの後ろにいくほど精度良く熱雑音の成分を除去することができる。
【0049】
また、各サブキャリアの信号レベルの積分値をビットシフトすることで各サブキャリアの1個のOFDMシンボル当たりの信号レベルを算出することにより、回路規模を大幅に簡略化し、消費電力の増加を大幅に低減することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の第1の例を示す図である。
【図2】本発明の実施の形態の第2の例を示す図である。
【図3】本発明の実施の形態の第3の例を示す図である。
【図4】本発明の実施の形態の第4の例を示す図である。
【図5】OFDM信号のバーストフォーマットの例を示す図である。
【図6】16QAM変調方式における位相平面上の基準信号点を示す図である。
【図7】QPSK変調方式における位相平面上の基準信号点を示す図である。
【図8】従来のOFDM復調装置の構成例を示す図である。
【符号の説明】
1、101 アンテナ
2、102 受信回路
3、103 同期処理回路
4、104 ガードインターバル除去回路
5、105 フーリエ変換回路
6、106 チャネル推定回路
7、107 同期検波回路
8、108 識別回路
109 信号レベル情報抽出回路
110 平滑化回路
111 チャネル推定結果補正回路
112 移動平均回路
113 積分回路
114 除算回路
115 ビットシフト回路

Claims (4)

  1. 直交周波数多重(OFDM)信号を受信して所定の受信処理を行う受信手段と、
    前記受信手段が出力する受信信号に対してタイミング同期処理および搬送波周波数同期処理を行い同期後の信号および搬送波周波数誤差情報を出力する同期処理手段と、
    前記同期処理手段によってタイミング同期処理および搬送波周波数同期処理された信号をフーリエ変換を用いて各サブキャリア毎の信号に分離するフーリエ変換手段と
    を備えるOFDM復調装置において、
    前記フーリエ変換手段によって分離された各サブキャリア信号を用いてチャネル特性の推定を行うチャネル推定手段と、
    前記フーリエ変換手段によって分離された各サブキャリア信号の信号レベル情報を抽出する信号レベル情報抽出手段と、
    前記信号レベル情報抽出手段によって得られた各サブキャリア信号の信号レベル情報を各サブキャリア毎に時間方向に平滑化を行う信号レベル情報平滑化手段と、
    前記信号レベル情報平滑化手段によって得られた平滑化された各サブキャリア信号の信号レベル情報を用いて前記チャネル推定手段によって得られたチャネル特性の推定結果の補正を行いチャネル情報を出力するチャネル推定結果補正手段と、
    前記チャネル推定結果補正手段によって得られたチャネル情報を用いて前記フーリエ変換手段によって分離されたサブキャリア信号に対し等化処理および同期検波処理を行い検波信号を出力する同期検波手段と
    を設けたことを特徴とするOFDM復調装置。
  2. 請求項1のOFDM復調装置において、
    前記信号レベル情報平滑化手段が、
    前記信号レベル情報抽出手段によって得られた各サブキャリア信号の信号レベル情報を各サブキャリア毎に時間方向に移動平均化を行う手段を有すること
    を特徴とするOFDM復調装置。
  3. 請求項1のOFDM復調装置において、
    前記信号レベル情報平滑化手段が、
    前記信号レベル情報抽出手段によって得られた各サブキャリア信号の信号レベル情報をそれぞれ時間方向に積分するとともに該積分を行った信号数で除算を行う手段を有すること
    を特徴とするOFDM復調装置。
  4. 請求項1のOFDM復調装置において、
    前記信号レベル情報平滑化手段が、
    前記信号レベル情報抽出手段によって得られた各サブキャリア信号の信号レベル情報をそれぞれ時間方向に積分するとともに該積分を行った信号数が2(N:自然数)で表される時にNビットのビットシフトにより除算を行う手段を有すること
    を特徴とするOFDM復調装置。
JP17107199A 1999-06-17 1999-06-17 Ofdm復調装置 Expired - Lifetime JP3584786B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17107199A JP3584786B2 (ja) 1999-06-17 1999-06-17 Ofdm復調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17107199A JP3584786B2 (ja) 1999-06-17 1999-06-17 Ofdm復調装置

Publications (2)

Publication Number Publication Date
JP2000358010A JP2000358010A (ja) 2000-12-26
JP3584786B2 true JP3584786B2 (ja) 2004-11-04

Family

ID=15916500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17107199A Expired - Lifetime JP3584786B2 (ja) 1999-06-17 1999-06-17 Ofdm復調装置

Country Status (1)

Country Link
JP (1) JP3584786B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101312443B (zh) * 2007-05-24 2010-10-27 中国科学院微电子研究所 一种用于正交频分复用通信均衡与解调的***及方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6985533B2 (en) * 2001-02-07 2006-01-10 Agency For Science, Technology And Research Method and apparatus for reducing peak to average power ratio in a multi-carrier modulation communication system
KR20030014078A (ko) * 2001-08-10 2003-02-15 최승국 엠엠에스이 채널 추정 방식의 오에프디엠 무선 전송 장치
JP4356470B2 (ja) * 2004-02-05 2009-11-04 富士通株式会社 Ofdm復調装置
KR100678053B1 (ko) 2006-02-08 2007-02-02 삼성전자주식회사 고정 광대역 무선접속 시스템에서 신호의 왜곡 보상 장치및 방법
JP2008131352A (ja) * 2006-11-21 2008-06-05 N H K Itec:Kk 1セグメント信号生成装置及び1セグメント信号生成プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101312443B (zh) * 2007-05-24 2010-10-27 中国科学院微电子研究所 一种用于正交频分复用通信均衡与解调的***及方法

Also Published As

Publication number Publication date
JP2000358010A (ja) 2000-12-26

Similar Documents

Publication Publication Date Title
US7436906B2 (en) Synchronous detector with high accuracy in detecting synchronization and a method therefor
US7627059B2 (en) Method of robust timing detection and carrier frequency offset estimation for OFDM systems
EP2242226B1 (en) Receiver and method of receiving
US7313086B2 (en) OFDM receiver, semiconductor integrated circuit and OFDM method for receiving a signal
US7139340B2 (en) Robust OFDM carrier recovery methods and apparatus
KR100807886B1 (ko) 직교 주파수 분할 다중화 시스템의 수신 장치
EP1689140A1 (en) Apparatus and method for compensating for a frequency offset in a wireless communication system
JP4735680B2 (ja) 同期回路及び同期方法
US8170149B2 (en) OFDM receiver apparatus
US20090296862A1 (en) Receiving apparatus and receiving method
JP2002511711A (ja) 多重搬送波復調システムにおいて精細な周波数同期を行うための方法および装置
US20130034192A1 (en) Receiving method and apparatus, and communication system using the same
US8537713B2 (en) Carrier frequency acquisition method and apparatus having improved reliability for detecting carrier acquisition or loss thereof
EP2806610A1 (en) Coarse symbol boundary detection in ofdm receivers
JP3584786B2 (ja) Ofdm復調装置
JP4295012B2 (ja) 半導体集積回路及び復調装置
JP3639195B2 (ja) Ofdmパケット通信用受信装置
JP3636944B2 (ja) Ofdm復調装置
JP2004007280A (ja) 位相補正回路
JP4050476B2 (ja) 直交周波数分割多重伝送信号受信装置
JP3534020B2 (ja) マルチキャリア変調方式用復調回路
JP3700290B2 (ja) 直交周波数分割多重信号伝送方法及びそれに用いる受信装置
JP3533354B2 (ja) Ofdmパケット通信用復調装置
US7664186B2 (en) Channel decoding for multicarrier signal transmission by means of DC-offset and carrier-frequency offset-dependent weighting of reliability information
JP4255908B2 (ja) マルチキャリア信号復調回路およびマルチキャリア信号復調方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040713

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040726

R151 Written notification of patent or utility model registration

Ref document number: 3584786

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term